diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /2.3.4.4.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to '2.3.4.4.lyx')
| -rw-r--r-- | 2.3.4.4.lyx | 750 |
1 files changed, 0 insertions, 750 deletions
diff --git a/2.3.4.4.lyx b/2.3.4.4.lyx deleted file mode 100644 index 0172abf..0000000 --- a/2.3.4.4.lyx +++ /dev/null @@ -1,750 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc5[M25] -\end_layout - -\end_inset - -(A. - Cayley.) Let -\begin_inset Formula $c_{n}$ -\end_inset - - be the number of (unlabeled) oriented trees having -\begin_inset Formula $n$ -\end_inset - - leaves (namely, - vertices with in-degree zero) and having at least two subtrees at every other vertex. - Thus -\begin_inset Formula $c_{3}=2$ -\end_inset - -, - by virtue of the two trees -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -begin{center} -\end_layout - -\begin_layout Plain Layout - - -\backslash -def -\backslash -dot#1{node(#1){ -\backslash -textbullet}} -\end_layout - -\begin_layout Plain Layout - - -\backslash -begin{tikzpicture} -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw (0,1) -\backslash -dot R (-.5,0) -\backslash -dot A (0,0) -\backslash -dot B (.5,0) -\backslash -dot C -\end_layout - -\begin_layout Plain Layout - - (0,-1) node{}; -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (A) -> (R); -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (B) -> (R); -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (C) -> (R); -\end_layout - -\begin_layout Plain Layout - - -\backslash -end{tikzpicture} -\end_layout - -\begin_layout Plain Layout - - -\backslash -hfil -\end_layout - -\begin_layout Plain Layout - - -\backslash -begin{tikzpicture} -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw (0,1) -\backslash -dot R (-.5,0) -\backslash -dot A (.5,0) -\backslash -dot B -\end_layout - -\begin_layout Plain Layout - - (-1,-1) -\backslash -dot C (0,-1) -\backslash -dot D; -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (C) -> (A); -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (D) -> (A); -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (B) -> (R); -\end_layout - -\begin_layout Plain Layout - - -\backslash -draw[->] (A) -> (R); -\end_layout - -\begin_layout Plain Layout - - -\backslash -end{tikzpicture} -\end_layout - -\begin_layout Plain Layout - - -\backslash -end{center} -\end_layout - -\end_inset - -Find a formula analogous to (3) for the generating function -\begin_inset Formula -\[ -C(z)=\sum_{n}c_{n}z^{n}. -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Every tree has at least one leaf, - so -\begin_inset Formula $c_{0}=0$ -\end_inset - -. - This includes subtrees, - so -\begin_inset Formula $c_{1}=1$ -\end_inset - - as, - if the root weren't also a leaf, - it would have at least two children and therefore two trees. - For -\begin_inset Formula $n>1$ -\end_inset - -, - the root has a tree and various subtrees. - Let -\begin_inset Formula $j_{k}$ -\end_inset - - be the number of subtrees with -\begin_inset Formula $k$ -\end_inset - - leaves, - -\begin_inset Formula $1\leq k<n$ -\end_inset - -, - for those subtrees we may choose up to -\begin_inset Formula -\[ -\binom{c_{k}+j_{k}-1}{j_{k}} -\] - -\end_inset - -possibilities, - since these are combinations with repetition (see exercise 1.2.6–60), - so -\begin_inset Formula -\[ -c_{n}=\sum_{\begin{subarray}{c} -j_{1},\dots,j_{n-1}\geq0\\ -j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n -\end{subarray}}\binom{c_{1}+j_{1}-1}{j_{1}}\cdots\binom{c_{n-1}+j_{n-1}-1}{j_{n-1}}. -\] - -\end_inset - -Note that this is like (2) except that we have -\begin_inset Formula $n$ -\end_inset - - under the sum instead of -\begin_inset Formula $n-1$ -\end_inset - -. - Thus, - using the same identity as in the derivation of (3), -\begin_inset Formula -\begin{align*} -C(z) & =c_{0}+c_{1}z+\sum_{n\geq2}\sum_{\begin{subarray}{c} -j_{1},\dots,j_{n-1}\geq0\\ -j_{1}+2j_{2}+\dots+(n-1)j_{n-1}=n -\end{subarray}}\prod_{k=1}^{n-1}\binom{c_{k}+j_{k}-1}{j_{k}}z^{kj_{k}}\\ - & =z+\sum_{(j_{n})_{n}\in\mathbb{N}^{(\mathbb{N}^{*})}}\prod_{n\geq1}\binom{c_{n}+j_{n}-1}{j_{n}}z^{nj_{n}}-\sum_{n\geq1}c_{n}z^{n}-1\\ - & =\prod_{n\geq1}\sum_{j\geq1}\binom{c_{n}+j-1}{j}z^{nj_{n}}-C(z)+z-1\\ - & =\frac{1}{(1-z)^{c_{1}}(1-z^{2})^{c_{2}}\cdots(1-z^{n})^{c_{n}}\cdots}-C(z)+z-1, -\end{align*} - -\end_inset - -where -\begin_inset Formula $\mathbb{N}^{(\mathbb{N}^{*})}$ -\end_inset - - is the set of sequences of natural numbers starting at -\begin_inset Formula $j_{1}$ -\end_inset - - and with a finite amount of nonzero coefficients; - the subtracted term -\begin_inset Formula $\sum_{n\geq1}c_{n}z^{n}$ -\end_inset - - is there to cancel the terms which correspond to nodes having just one child, - and likewise for -\begin_inset Formula $-1$ -\end_inset - - for the term with all zeroes. -\end_layout - -\begin_layout Standard -Thus, -\begin_inset Formula -\[ -C(z)=\frac{1}{2}\left(\prod_{n\geq1}\frac{1}{(1-z^{n})^{c_{n}}}+z-1\right). -\] - -\end_inset - - -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc10[M22] -\end_layout - -\end_inset - -Prove that a free tree with -\begin_inset Formula $n$ -\end_inset - - vertices and two centroids consists of two free trees with -\begin_inset Formula $n/2$ -\end_inset - - vertices, - joined by an edge. - Conversely, - if two free trees with -\begin_inset Formula $m$ -\end_inset - - vertices are joined by an edge, - we obtain a free tree with -\begin_inset Formula $2m$ -\end_inset - - vertices and two centroids. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - -Let -\begin_inset Formula $u$ -\end_inset - - and -\begin_inset Formula $v$ -\end_inset - - be the two centroids, - with weight -\begin_inset Formula $m$ -\end_inset - -. - If -\begin_inset Formula $u$ -\end_inset - - had weight -\begin_inset Formula $m$ -\end_inset - - from an edge that wasn't the one that leads to -\begin_inset Formula $v$ -\end_inset - -, - then -\begin_inset Formula $v$ -\end_inset - - would have weight at least -\begin_inset Formula $m+1$ -\end_inset - -, - owing to the -\begin_inset Formula $m$ -\end_inset - - nodes that stem from that edge in -\begin_inset Formula $u$ -\end_inset - - and -\begin_inset Formula $u$ -\end_inset - - itself. -\begin_inset Formula $\#$ -\end_inset - - By a similar argument, - if there were an intermediate node -\begin_inset Formula $w\neq u,v$ -\end_inset - - in the path connecting -\begin_inset Formula $u$ -\end_inset - - with -\begin_inset Formula $v$ -\end_inset - -, - its weight must necessarily be at most -\begin_inset Formula $m-1\#$ -\end_inset - -. - Therefore -\begin_inset Formula $u$ -\end_inset - - and -\begin_inset Formula $v$ -\end_inset - - are the only centroids, - they are connected with an edge and the subtrees that result from removing that edge have -\begin_inset Formula $m$ -\end_inset - - nodes each. -\end_layout - -\begin_layout Itemize -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -Let -\begin_inset Formula $u$ -\end_inset - - and -\begin_inset Formula $v$ -\end_inset - - be the two nodes that are newly connected, - then -\begin_inset Formula $u$ -\end_inset - - has weight -\begin_inset Formula $m$ -\end_inset - - because of its connection with -\begin_inset Formula $v$ -\end_inset - -, - -\begin_inset Formula $v$ -\end_inset - - has weight -\begin_inset Formula $m$ -\end_inset - - because of its connection with -\begin_inset Formula $u$ -\end_inset - -, - and any other node has weight at least -\begin_inset Formula $m+1$ -\end_inset - - because of their connection to -\begin_inset Formula $u$ -\end_inset - - and -\begin_inset Formula $v$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc14[10] -\end_layout - -\end_inset - -True or false: - The last entry, - -\begin_inset Formula $f(V_{n-1})$ -\end_inset - -, - in the canonical representation of an oriented tree is always the root of that tree. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -True. - After each removal step, - we still have a tree with the same root, - and by the end the tree has no edges and therefore it only has one node, - which is the root. - Just before that, - it only has one edge, - which must connect a direct child of the root to the root. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc21[M20] -\end_layout - -\end_inset - -Enumerate the number of labeled oriented trees in which each vertex has in-degree zero or two. - (See exercise 20 and exercise 2.3–20.) -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -These are precisely the 0-2-trees in exercise 2.3–20. - We know 0-2-trees always have an odd number of nodes, - say -\begin_inset Formula $2m+1$ -\end_inset - - nodes. - By the construction in the text, - these trees correspond to sequences of -\begin_inset Formula $2m$ -\end_inset - - nodes where each node that appears does so exactly twice. - There are -\begin_inset Formula $\binom{2m+1}{m}$ -\end_inset - - ways to choose which nodes -\emph on -do -\emph default - appear in the sequence, - and -\begin_inset Formula $\frac{(2m)!}{2^{m}}$ -\end_inset - - ways to arranging them (we can think of arranging -\begin_inset Formula $2m$ -\end_inset - - elements and then discarding the relative order of equal pairs of elements). - This gives us -\begin_inset Formula -\[ -\binom{2m+1}{m}(2m)!\Bigg/2^{m} -\] - -\end_inset - -labeled oriented 0-2-trees. -\end_layout - -\end_body -\end_document |
