diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /3.1.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to '3.1.lyx')
| -rw-r--r-- | 3.1.lyx | 1204 |
1 files changed, 0 insertions, 1204 deletions
diff --git a/3.1.lyx b/3.1.lyx deleted file mode 100644 index 81d7d26..0000000 --- a/3.1.lyx +++ /dev/null @@ -1,1204 +0,0 @@ -#LyX 2.4 created this file. For more info see https://www.lyx.org/ -\lyxformat 620 -\begin_document -\begin_header -\save_transient_properties true -\origin unavailable -\textclass book -\begin_preamble -\input defs -\end_preamble -\use_default_options true -\maintain_unincluded_children no -\language english -\language_package default -\inputencoding utf8 -\fontencoding auto -\font_roman "default" "default" -\font_sans "default" "default" -\font_typewriter "default" "default" -\font_math "auto" "auto" -\font_default_family default -\use_non_tex_fonts false -\font_sc false -\font_roman_osf false -\font_sans_osf false -\font_typewriter_osf false -\font_sf_scale 100 100 -\font_tt_scale 100 100 -\use_microtype false -\use_dash_ligatures true -\graphics default -\default_output_format default -\output_sync 0 -\bibtex_command default -\index_command default -\float_placement class -\float_alignment class -\paperfontsize default -\spacing single -\use_hyperref false -\papersize default -\use_geometry false -\use_package amsmath 1 -\use_package amssymb 1 -\use_package cancel 1 -\use_package esint 1 -\use_package mathdots 1 -\use_package mathtools 1 -\use_package mhchem 1 -\use_package stackrel 1 -\use_package stmaryrd 1 -\use_package undertilde 1 -\cite_engine basic -\cite_engine_type default -\biblio_style plain -\use_bibtopic false -\use_indices false -\paperorientation portrait -\suppress_date false -\justification true -\use_refstyle 1 -\use_formatted_ref 0 -\use_minted 0 -\use_lineno 0 -\index Index -\shortcut idx -\color #008000 -\end_index -\secnumdepth 3 -\tocdepth 3 -\paragraph_separation indent -\paragraph_indentation default -\is_math_indent 0 -\math_numbering_side default -\quotes_style english -\dynamic_quotes 0 -\papercolumns 1 -\papersides 1 -\paperpagestyle default -\tablestyle default -\tracking_changes false -\output_changes false -\change_bars false -\postpone_fragile_content false -\html_math_output 0 -\html_css_as_file 0 -\html_be_strict false -\docbook_table_output 0 -\docbook_mathml_prefix 1 -\end_header - -\begin_body - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc1[20] -\end_layout - -\end_inset - -Suppose that you wish to obtain a decimal digit at random, - not using a computer. - Which of the following methods would be suitable? -\end_layout - -\begin_layout Enumerate -Open a telephone directory to a random place by sticking your finger in it somewhere, - and use the units digit of the first number found on the selected page. -\end_layout - -\begin_layout Enumerate -Same as (a), - but use the units digit of the -\emph on -page -\emph default - number. -\end_layout - -\begin_layout Enumerate -Roll a die that is in the shape of a regular icosahedron, - whose twenty faces have been labeled with the digits 0, - 0, - 1, - 1, - ..., - 9, - 9. - Use the digit that appears on the top, - when the die comes to rest. - (A felt-covered table with a hard surface is recommended for rolling dice.) -\end_layout - -\begin_layout Enumerate -Expose a geiger counter to a source of radioactivity for one minute (shielding yourself) and use the units digit of the resulting count. - Assume that the geiger counter displays the number of counts in decimal notation, - and that the count is initially zero. -\end_layout - -\begin_layout Enumerate -Glance at your wristwatch; - and if the position of the second-hand is between -\begin_inset Formula $6n$ -\end_inset - - and -\begin_inset Formula $6(n+1)$ -\end_inset - - seconds, - choose the digit -\begin_inset Formula $n$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Ask a friend to think of a random digit, - and use the digit he names. -\end_layout - -\begin_layout Enumerate -Ask an enemy to think of a random digit, - and use the digit he names. -\end_layout - -\begin_layout Enumerate -Assume that 10 horses are entered in a race and that you know nothing whatever about their qualifications. - Assign to these horses the digits 0 to 9, - in arbitrary fashion, - and after the race use the winner's digit. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -This would work for a typical phone book. - It wouldn't work if the book has, - say, - entries ordered by number with a fixed number of entries per page that is a multiple of 2 or 5. - And, - according to the official solution, - in some places people can choose phone numbers (presumably in the US where Knuth lives) so it wouldn't work there as people would tend to choose round numbers. -\end_layout - -\begin_layout Enumerate -This would be suitable, - although some adjustment would have to be made to account for the fact that left pages would have even numbers and right pages would have round numbers (say, - we could take the even number and divide it by two) and to avoid the last few pages if the total number is not a multiple of 20. -\end_layout - -\begin_layout Enumerate -This would work very well. -\end_layout - -\begin_layout Enumerate -This would work well assuming there are several digits between the most significant one and the units. -\end_layout - -\begin_layout Enumerate -This would work assuming you only have to do it once at a time and not at a specific time. -\end_layout - -\begin_layout Enumerate -This wouldn't work, - as humans are not good at mentally generating random numbers. -\end_layout - -\begin_layout Enumerate -This definitely wouldn't work, - as the enemy would probably be compelled to choose the number strategically instead of randomly. -\end_layout - -\begin_layout Enumerate -This could work, - although it would be time consuming. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc3[10] -\end_layout - -\end_inset - -What number follows 1010101010 in the middle-square method? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\begin_inset Formula $1010101010^{2}=1020304050403020100$ -\end_inset - -, - so the next number would be 3040504030. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc6[M21] -\end_layout - -\end_inset - -Suppose that we want to generate a sequence of integers -\begin_inset Formula $X_{0},X_{1},X_{2},\dots$ -\end_inset - -, - in the range -\begin_inset Formula $0\leq X_{n}<m$ -\end_inset - -. - Let -\begin_inset Formula $f(x)$ -\end_inset - - be any function such that -\begin_inset Formula $0\leq x<m$ -\end_inset - - implies -\begin_inset Formula $0\leq f(x)<m$ -\end_inset - -. - Consider a sequence formed by the rule -\begin_inset Formula $X_{n+1}=f(X_{n})$ -\end_inset - -. - (Examples are the middle-square method and Algorithm K.) -\end_layout - -\begin_layout Enumerate -Show that the sequence is ultimately periodic, - in the sense that there exist numbers -\begin_inset Formula $\lambda$ -\end_inset - - and -\begin_inset Formula $\mu$ -\end_inset - - for which the values -\begin_inset Formula -\[ -X_{0},X_{1},\dots,X_{\mu},\dots,X_{\mu+\lambda-1} -\] - -\end_inset - -are distinct, - but -\begin_inset Formula $X_{n+\lambda}=X_{n}$ -\end_inset - - when -\begin_inset Formula $n\geq\mu$ -\end_inset - -. - Find the maximum and minimum possible values of -\begin_inset Formula $\mu$ -\end_inset - - and -\begin_inset Formula $\lambda$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset CommandInset label -LatexCommand label -name "enu:e316b" - -\end_inset - -(R. - W. - Floyd.) Show that there exists an -\begin_inset Formula $n>0$ -\end_inset - - such that -\begin_inset Formula $X_{n}=X_{2n}$ -\end_inset - -; - and the smallest such value of -\begin_inset Formula $n$ -\end_inset - - lies in the range -\begin_inset Formula $\mu\le n\leq\mu+\lambda$ -\end_inset - -. - Furthermore the value of -\begin_inset Formula $X_{n}$ -\end_inset - - is unique in the sense that if -\begin_inset Formula $X_{n}=X_{2n}$ -\end_inset - - and -\begin_inset Formula $X_{r}=X_{2r}$ -\end_inset - -, - then -\begin_inset Formula $X_{r}=X_{n}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Use the idea of part -\begin_inset CommandInset ref -LatexCommand ref -reference "enu:e316b" -plural "false" -caps "false" -noprefix "false" -nolink "false" - -\end_inset - - to design an algorithm that calculates -\begin_inset Formula $\mu$ -\end_inset - - and -\begin_inset Formula $\lambda$ -\end_inset - - for any given function -\begin_inset Formula $f$ -\end_inset - - and any given -\begin_inset Formula $X_{0}$ -\end_inset - -, - using only -\begin_inset Formula $O(\mu+\lambda)$ -\end_inset - - steps and only a bounded number of memory locations. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -Assume -\begin_inset Formula $f:\mathbb{Z}_{m}\to\mathbb{Z}_{m}$ -\end_inset - -, - as otherwise the statements below are not necessarily true (e.g. - if -\begin_inset Formula $f:\mathbb{R}\to\mathbb{R}$ -\end_inset - -, - -\begin_inset Formula $f(x)\coloneqq\frac{x}{2}$ -\end_inset - -, - and -\begin_inset Formula $X_{0}=\frac{m}{2}$ -\end_inset - -). -\end_layout - -\begin_layout Enumerate -Require that -\begin_inset Formula $\mu\in\mathbb{N}$ -\end_inset - - and -\begin_inset Formula $\lambda\in\mathbb{N}^{*}$ -\end_inset - -, - as otherwise it is unclear what is meant and, - in particular, - the statement is obviously true when -\begin_inset Formula $\mu\in\mathbb{N}$ -\end_inset - - and -\begin_inset Formula $\lambda=0$ -\end_inset - -. - Now, - since -\begin_inset Formula $\{X_{0},\dots,X_{m}\}\subseteq\{0,\dots,m-1\}$ -\end_inset - -, - then -\begin_inset Formula $|\{X_{0},\dots,X_{m}\}|\leq m$ -\end_inset - - and there must be integers -\begin_inset Formula $i$ -\end_inset - - and -\begin_inset Formula $j$ -\end_inset - -, - -\begin_inset Formula $0\leq i<j\leq m$ -\end_inset - -, - such that -\begin_inset Formula $X_{i}=X_{j}$ -\end_inset - -. - We choose -\begin_inset Formula $i$ -\end_inset - - and -\begin_inset Formula $j$ -\end_inset - - such that -\begin_inset Formula $j$ -\end_inset - - is minimum, - which ensures that -\begin_inset Formula $X_{0},\dots,X_{j-1}$ -\end_inset - - are distinct and uniquely determines -\begin_inset Formula $i$ -\end_inset - -, - and we set -\begin_inset Formula $\mu\coloneqq i$ -\end_inset - - and -\begin_inset Formula $\lambda\coloneqq j-i$ -\end_inset - -; - then -\begin_inset Formula $X_{0},\dots,X_{\mu+\lambda-1=j-1}$ -\end_inset - - are all distinct and, - for -\begin_inset Formula $n\geq\mu$ -\end_inset - -, -\begin_inset Formula -\[ -X_{n+\lambda}=X_{n-i+j}=f^{n-i}(X_{j})=f^{n-i}(X_{i})=X_{n}. -\] - -\end_inset - -It's easy to check that these values are unique: - -\begin_inset Formula $\mu+\lambda$ -\end_inset - - must be the first value such that -\begin_inset Formula $X_{\mu+\lambda}$ -\end_inset - - equals some other value earlier in the sequence, - and -\begin_inset Formula $\mu$ -\end_inset - - must be the only value less than -\begin_inset Formula $\mu+\lambda$ -\end_inset - - such that -\begin_inset Formula $X_{\mu}=X_{\mu+\lambda}$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -As for the maximum and minimum, - since -\begin_inset Formula $0\leq i<j\leq m$ -\end_inset - -, - we have -\begin_inset Formula $0\leq\mu\leq m-1$ -\end_inset - - and -\begin_inset Formula $1\leq\lambda\leq m$ -\end_inset - -. - These bounds can be reached: - when -\begin_inset Formula $f$ -\end_inset - - is the identity, - -\begin_inset Formula $\mu=0$ -\end_inset - - and -\begin_inset Formula $\lambda=1$ -\end_inset - -; - when -\begin_inset Formula $f(x)=(x+1)\bmod m$ -\end_inset - -, - -\begin_inset Formula $\lambda=m$ -\end_inset - -, - and when -\begin_inset Formula $f(x)=\max\{0,x-1\}$ -\end_inset - - and -\begin_inset Formula $X_{0}=m-1$ -\end_inset - -, - -\begin_inset Formula $\mu=m-1$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -Let -\begin_inset Formula $k\coloneqq\lceil\frac{\mu}{\lambda}\rceil$ -\end_inset - - and -\begin_inset Formula $n\coloneqq k\lambda$ -\end_inset - -, - then -\begin_inset Formula $\frac{\mu}{\lambda}\leq k\leq\frac{\mu}{\lambda}+1$ -\end_inset - - and therefore -\begin_inset Formula $\mu\leq n\leq\mu+\lambda$ -\end_inset - -, - and -\begin_inset Formula $X_{n}=X_{n+\lambda}=X_{n+2\lambda}=\dots=X_{n+k\lambda=2n}$ -\end_inset - -. - For the uniqueness, - let -\begin_inset Formula $r>0$ -\end_inset - - be such that -\begin_inset Formula $X_{r}=X_{2r}$ -\end_inset - -, - so necessarily -\begin_inset Formula $2r\geq\mu+\lambda$ -\end_inset - -. - We note that, - for any -\begin_inset Formula $s\geq\mu$ -\end_inset - -, - by induction, - -\begin_inset Formula $X_{s}=X_{s-\lfloor\frac{s-\mu}{\lambda}\rfloor\lambda}=X_{\mu+((s-\mu)\bmod\lambda)}$ -\end_inset - -, - and we call -\begin_inset Formula $R(s)\coloneqq\mu+((s-\mu)\bmod\lambda)\in\{\mu,\dots,\mu+\lambda-1\}$ -\end_inset - -. - With this, - -\begin_inset Formula $X_{R(2r)}=X_{2r}=X_{r}$ -\end_inset - -, - so either -\begin_inset Formula $r=R(2r)$ -\end_inset - - or -\begin_inset Formula $r\geq\mu+\lambda$ -\end_inset - -; - in any case -\begin_inset Formula $r\geq\mu$ -\end_inset - - and -\begin_inset Formula $X_{R(2r)}=X_{R(r)}$ -\end_inset - -. - This means -\begin_inset Formula $R(2r)=R(r)$ -\end_inset - -, - so -\begin_inset Formula $r\equiv0\mod{\lambda}$ -\end_inset - - and -\begin_inset Formula $R(r)=\mu+(-\mu\bmod\lambda)\equiv0\bmod\lambda$ -\end_inset - -, - so -\begin_inset Formula $R(r)$ -\end_inset - - is unique and -\begin_inset Formula $X_{r}=X_{R(r)}=X_{R(n)}=X_{n}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -First we set -\begin_inset Formula $a,b\gets X_{0}$ -\end_inset - - and then repeatedly set -\begin_inset Formula $a\gets f(a)$ -\end_inset - - and -\begin_inset Formula $b\gets f^{2}(b)$ -\end_inset - - until -\begin_inset Formula $a=b$ -\end_inset - -; - the number of times we do this operation is -\begin_inset Formula $n$ -\end_inset - -, - and in the end -\begin_inset Formula $a=X_{n}$ -\end_inset - -. - Then we set -\begin_inset Formula $b\gets a$ -\end_inset - - and repeat -\begin_inset Formula $b\gets f(b)$ -\end_inset - - until -\begin_inset Formula $b=a$ -\end_inset - -; - the number of times we do this operation is -\begin_inset Formula $\lambda$ -\end_inset - -. - Finally, - since -\begin_inset Formula $a$ -\end_inset - - is a multiple of -\begin_inset Formula $\lambda$ -\end_inset - -, - -\begin_inset Formula $X_{\mu}=X_{\mu+n}$ -\end_inset - -, - so we set -\begin_inset Formula $b\gets X_{0}$ -\end_inset - - and repeat -\begin_inset Formula $b\gets f(b)$ -\end_inset - - and -\begin_inset Formula $a\gets f(a)$ -\end_inset - - until -\begin_inset Formula $a=b$ -\end_inset - -; - the number of times we do this operation is -\begin_inset Formula $\mu$ -\end_inset - -. - In total this uses two slots of memory and runs in time -\begin_inset Formula $O(n)+O(\lambda)+O(\mu)=O(\mu+\lambda)$ -\end_inset - -. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -rexerc7[M21] -\end_layout - -\end_inset - -(R. - P. - Brent, - 1977.) Let -\begin_inset Formula $\ell(n)$ -\end_inset - - be the greatest power of 2 that is less than or equal to -\begin_inset Formula $n$ -\end_inset - -; - thus, - for example, - -\begin_inset Formula $\ell(15)=8$ -\end_inset - - and -\begin_inset Formula $\ell(\ell(n))=\ell(n)$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Show that, - in terms of the notation in exercise 6, - there exists an -\begin_inset Formula $n>0$ -\end_inset - - such that -\begin_inset Formula $X_{n}=X_{\ell(n)-1}$ -\end_inset - -. - Find a formula that expresses the least such -\begin_inset Formula $n$ -\end_inset - - in terms of the periodicity numbers -\begin_inset Formula $\mu$ -\end_inset - - and -\begin_inset Formula $\lambda$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Apply this result to design an algorithm that can be used in conjunction with any random number generator of the type -\begin_inset Formula $X_{n+1}=f(X_{n})$ -\end_inset - -, - to prevent it from cycling indefinitely. - Your algorithm should calculate the period length -\begin_inset Formula $\lambda$ -\end_inset - -, - and it should only use a small amount of memory space— -you must not simply store all the computed sequence values! -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -For sufficiently large -\begin_inset Formula $r$ -\end_inset - -, - -\begin_inset Formula $n\coloneqq2^{r}-1+\lambda<2^{r+1}$ -\end_inset - - and then -\begin_inset Formula $X_{\ell(n)-1}=X_{2^{r}-1}=X_{n}$ -\end_inset - -, - and it's easy to convince ourselves that all such -\begin_inset Formula $n$ -\end_inset - - are of the form -\begin_inset Formula $2^{r}-1+k\lambda$ -\end_inset - - with -\begin_inset Formula $r\in\mathbb{N}$ -\end_inset - -, - -\begin_inset Formula $k\in\mathbb{N}^{*}$ -\end_inset - -, - -\begin_inset Formula $k\lambda-1<2^{r}$ -\end_inset - -, - and -\begin_inset Formula $2^{r}-1\geq\mu$ -\end_inset - -. - The minimum value, - then, - happens with -\begin_inset Formula $k=1$ -\end_inset - - and -\begin_inset Formula $2^{r}$ -\end_inset - - is the minimum such that -\begin_inset Formula $\lambda,\mu+1\leq2^{r}$ -\end_inset - -, - so if -\begin_inset Formula $u(n)$ -\end_inset - - is the lowest power of 2 that is greater than or equal to -\begin_inset Formula $n$ -\end_inset - -, - then -\begin_inset Formula -\[ -n=u(\max\{\lambda,\mu+1\})+\lambda-1. -\] - -\end_inset - - -\end_layout - -\begin_layout Enumerate -We set -\begin_inset Formula $a\gets b\gets X_{0}$ -\end_inset - - and -\begin_inset Formula $r\gets0$ -\end_inset - -. - Then repeat -\begin_inset Formula $b\gets f(b)$ -\end_inset - - up to -\begin_inset Formula $2^{r}$ -\end_inset - - times; - if at any point -\begin_inset Formula $b=a$ -\end_inset - -, - terminate with -\begin_inset Formula $\lambda$ -\end_inset - - equal to the number of times that -\begin_inset Formula $b\gets f(b)$ -\end_inset - - has been run in this iteration; - otherwise set -\begin_inset Formula $a\gets b$ -\end_inset - -, - -\begin_inset Formula $r\gets r+1$ -\end_inset - -, - and repeat this step. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc16[15] -\end_layout - -\end_inset - -A sequence generated as in exercise 6 must begin to repeat after at most -\begin_inset Formula $m$ -\end_inset - - values have been generated. - Suppose we generalize the method so that -\begin_inset Formula $X_{n+1}$ -\end_inset - - depends on -\begin_inset Formula $X_{n-1}$ -\end_inset - - as well as on -\begin_inset Formula $X_{n}$ -\end_inset - -; - formally, - let -\begin_inset Formula $f(x,y)$ -\end_inset - - be a function such that -\begin_inset Formula $0\leq x,y<m$ -\end_inset - - implies -\begin_inset Formula $0\leq f(x,y)<m$ -\end_inset - -. - The sequence is constructed by selecting -\begin_inset Formula $X_{0}$ -\end_inset - - and -\begin_inset Formula $X_{1}$ -\end_inset - - arbitrarily, - and then letting -\begin_inset Formula -\begin{align*} -X_{n+1} & =f(X_{n},X_{n-1}), & \text{for }n & >0. -\end{align*} - -\end_inset - -What is the maximum period conceivably attainable in this case? -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -See exercise 17. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -exerc17[10] -\end_layout - -\end_inset - -Generalize the situation in the previous exercise so that -\begin_inset Formula $X_{n+1}$ -\end_inset - - depends on the preceding -\begin_inset Formula $k$ -\end_inset - - values of the sequence. -\end_layout - -\begin_layout Standard -\begin_inset ERT -status open - -\begin_layout Plain Layout - - -\backslash -answer -\end_layout - -\end_inset - -The maximum conceivable would be -\begin_inset Formula $m^{k}$ -\end_inset - -. - Why this is always attainable is not at all obvious. -\end_layout - -\end_body -\end_document |
