diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-03-03 12:47:54 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-03-03 12:47:54 +0100 |
| commit | 242a74fc4215d3d5e02596d38d43bb96fbc59de6 (patch) | |
| tree | 2fde335410f702b79d64257988f330a9a3451bc5 | |
| parent | 9ad815299e875247f8dab86cee99e5636aebab9e (diff) | |
3.3.3 Theoretical tests
| -rw-r--r-- | 3.3.3.lyx | 1370 | ||||
| -rw-r--r-- | index.lyx | 30 |
2 files changed, 1400 insertions, 0 deletions
diff --git a/3.3.3.lyx b/3.3.3.lyx new file mode 100644 index 0000000..71fc21f --- /dev/null +++ b/3.3.3.lyx @@ -0,0 +1,1370 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Subsubsection +First Set +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[M10] +\end_layout + +\end_inset + +Express +\begin_inset Formula $x\bmod y$ +\end_inset + + in terms of the sawtooth and +\begin_inset Formula $\delta$ +\end_inset + + functions. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $((x))-\frac{1}{2}\delta(x)=x-\lfloor x\rfloor-\frac{1}{2}$ +\end_inset + +, + so +\begin_inset Formula $\lfloor x\rfloor=x-((x))+\tfrac{1}{2}(\delta(x)-1)$ +\end_inset + +. + Therefore +\begin_inset Formula +\begin{multline*} +x\bmod y=x-y\left\lfloor \frac{x}{y}\right\rfloor =x-y\left(\frac{x}{y}-\left(\left(\frac{x}{y}\right)\right)+\frac{1}{2}\left(\delta(\tfrac{x}{y})-1\right)\right)=\\ +=\left(\left(\left(\frac{x}{y}\right)\right)+\frac{1-\delta(\frac{x}{y})}{2}\right)y. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M19] +\end_layout + +\end_inset + +If +\begin_inset Formula $m=10^{10}$ +\end_inset + +, + what is the highest possible value of +\begin_inset Formula $d$ +\end_inset + + (in the notation of Theorem P), + given that the potency of the generator is 10? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It's +\begin_inset Formula $d=2\cdot5^{10}$ +\end_inset + +. + First, + we note that +\begin_inset Formula +\[ +(2\cdot5^{10})^{9}\bmod10^{10}=2^{9}5^{90}\bmod2^{10}5^{10}=2^{9}5^{10}(5^{80}\bmod2)=m/2\neq0, +\] + +\end_inset + + and that +\begin_inset Formula $(2\cdot5^{10})^{10}\bmod10^{10}=2^{10}5^{100}\bmod2^{10}5^{10}=0$ +\end_inset + +, + so if +\begin_inset Formula $b=d$ +\end_inset + + we have potency 10. + Second, + we note that, + since +\begin_inset Formula $d\mid m$ +\end_inset + +, + and any divisor of +\begin_inset Formula $m$ +\end_inset + + greater that +\begin_inset Formula $2\cdot5^{10}$ +\end_inset + + has to be a multiple at least of +\begin_inset Formula $2^{2}$ +\end_inset + + and of +\begin_inset Formula $5^{2}$ +\end_inset + +, + and therefore of 100, + then +\begin_inset Formula $b$ +\end_inset + + would have to be a multiple of 100 and the potency would be at most 5. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc7[M24] +\end_layout + +\end_inset + +Give a proof of the reciprocity law (19), + when +\begin_inset Formula $c=0$ +\end_inset + +, + by using the general reciprocity law of exercise 1.2.4–45. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution, + obviously.) +\end_layout + +\end_inset + +In this case, + the law reduces to +\begin_inset Formula +\[ +\sigma(h,k,0)+\sigma(k,h,0)=12\sum_{0\leq j<k}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)+12\sum_{0\leq j<h}\left(\left(\frac{j}{h}\right)\right)\left(\left(\frac{kj}{h}\right)\right)=\frac{h}{k}+\frac{k}{h}+\frac{1}{hk}-3. +\] + +\end_inset + +where +\begin_inset Formula $0<h\leq k$ +\end_inset + + are coprime integers. + The last equation from exercise 1.2.4–45 with +\begin_inset Formula $k=2$ +\end_inset + + tells us that +\begin_inset Formula +\[ +\sum_{1\leq j<n}\left\lfloor \frac{mj}{n}\right\rfloor \left(\left\lfloor \frac{mj}{n}\right\rfloor +1\right)+2\sum_{1\leq j<m}j\left\lceil \frac{jn}{m}\right\rceil =nm(m-1) +\] + +\end_inset + +for +\begin_inset Formula $m,n\in\mathbb{N}$ +\end_inset + +, + where we multiply by 2 and then set the lower bound of the sums to 1 because terms with +\begin_inset Formula $j=0$ +\end_inset + + evaluate to 0. + Now, + since +\begin_inset Formula $h$ +\end_inset + + and +\begin_inset Formula $k$ +\end_inset + + are coprime, + for +\begin_inset Formula $j\in\{1,\dots,k-1\}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\left(\left(\frac{hj}{k}\right)\right) & =\frac{hj}{k}-\left\lfloor \frac{hj}{k}\right\rfloor -\frac{1}{2}=\frac{hj}{k}-\left\lceil \frac{hj}{k}\right\rceil +\frac{1}{2}, +\end{align*} + +\end_inset + +so substituting above, +\begin_inset Formula +\begin{align*} +S & \coloneqq kh(h-1)=\sum_{j=1}^{k-1}\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)-\frac{1}{2}\right)\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)+\frac{1}{2}\right)+2\sum_{j=1}^{h-1}j\left(\frac{kj}{h}-\left(\left(\frac{kj}{h}\right)\right)+\frac{1}{2}\right)\\ + & =\frac{h^{2}}{k^{2}}\sum_{j=1}^{k-1}j^{2}-\frac{2h}{k}\sum_{j=1}^{k-1}j\left(\left(\frac{hj}{k}\right)\right)+\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2}-\frac{k-1}{4}+\frac{2k}{h}\sum_{j=1}^{h-1}j^{2}-2\sum_{j=1}^{h-1}j\left(\left(\frac{kj}{h}\right)\right)+\frac{h^{2}-h}{2}. +\end{align*} + +\end_inset + +Now, +\begin_inset Formula +\begin{align*} +\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right) & =\sum_{j=1}^{k-1}\left(\left(\frac{j}{k}\right)\right)=\sum_{j=1}^{k-1}\left(\frac{j}{k}-\frac{1}{2}\right)=\frac{k(k-1)}{2k}-\frac{k-1}{2}=0, +\end{align*} + +\end_inset + +so +\begin_inset Formula +\[ +\sigma(h,k,0)=12\sum_{j=0}^{k-1}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)=12\sum_{j=1}^{k-1}\left(\frac{j}{k}-\frac{1}{2}\right)\left(\left(\frac{hj}{k}\right)\right)=12\sum_{j=1}^{k-1}\frac{j}{k}\left(\left(\frac{hj}{k}\right)\right). +\] + +\end_inset + +In addition, +\begin_inset Formula +\[ +\sum_{j=1}^{k-1}j^{2}=\frac{(k-1)k(2k-1)}{6}=\frac{k}{6}(2k^{2}-3k+1)=\frac{k^{3}}{3}-\frac{k^{2}}{2}+\frac{k}{6}, +\] + +\end_inset + +and in particular +\begin_inset Formula +\begin{align*} +\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2} & =\sum_{j=1}^{k-1}\left(\left(\frac{j}{k}\right)\right)^{2}=\sum_{j=1}^{k-1}\frac{j^{2}}{k^{2}}-\sum_{j=1}^{k-1}\frac{j}{k}+\frac{k-1}{4}=\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{k-1}{4}\\ + & =\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{4}, +\end{align*} + +\end_inset + +so finally +\begin_inset Formula +\begin{align*} +S & =\frac{kh^{2}}{3}-\frac{h^{2}}{2}+\frac{h^{2}}{6k}-\frac{h}{6}\sigma(h,k,0)+\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{2kh^{2}}{3}-kh+\frac{k}{3}-\frac{h}{6}\sigma(k,h,0)+\frac{h^{2}}{2}-\frac{h}{2}\\ + & =kh(h-1)-\frac{h}{2}+\frac{h^{2}}{6k}+\frac{k}{6}+\frac{1}{6k}-\frac{h}{6}\sigma(h,k,0)-\frac{h}{6}\sigma(k,h,0). +\end{align*} + +\end_inset + +With this, +\begin_inset Formula +\[ +\sigma(h,k,0)+\sigma(k,h,0)=-3+\frac{h}{k}+\frac{k}{h}+\frac{1}{hk}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc14[M20] +\end_layout + +\end_inset + +The linear congruential generator that has +\begin_inset Formula $m=2^{35}$ +\end_inset + +, + +\begin_inset Formula $a=2^{18}+1$ +\end_inset + +, + +\begin_inset Formula $c=1$ +\end_inset + +, + was given the serial correlation test on three batches of 1000 consecutive numbers, + and the result was a very high correlation, + between +\begin_inset Formula $0.2$ +\end_inset + + and +\begin_inset Formula $0.3$ +\end_inset + +, + in each case. + What is the serial correlation of this generator, + taken over all +\begin_inset Formula $2^{35}$ +\end_inset + + numbers of the period? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The generator has full period by 3.2.1.2–A, + and +\begin_inset Formula $x'\coloneqq2^{18}-1$ +\end_inset + + gives us +\begin_inset Formula $S(x')=0$ +\end_inset + +. + Thus, + by (17), + +\begin_inset Formula $C=(2^{35}\sigma(2^{18}+1,2^{35},1)-3+6(2^{35}-2^{18}))/(2^{70}-1)$ +\end_inset + +. + Now we calculate the Dedekind coefficient by Theorem D. +\begin_inset Formula +\begin{align*} +2^{35} & =(2^{17}-1)(2^{18}+1)+(2^{17}+1), & 1 & =0(2^{18}+1)+1;\\ +2^{18}+1 & =1(2^{17}+1)+2^{17}, & 1 & =0(2^{17}+1)+1;\\ +2^{17}+1 & =1\cdot2^{17}+1 & 1 & =0(2^{17})+1;\\ +2^{17} & =2^{17}\cdot1+0, & 1 & =1\cdot1+0. +\end{align*} + +\end_inset + +The number +\begin_inset Formula $h'\coloneqq2^{35}-2^{18}+1$ +\end_inset + + gives us +\begin_inset Formula $(2^{18}+1)h'\equiv1\pmod{2^{35}}$ +\end_inset + +, + so +\begin_inset Formula +\begin{multline*} +\sigma(2^{18}+1,2^{35},1)=\frac{(\cancel{2^{18}}+1)+(2^{35}\cancel{-2^{18}}+1)}{2^{35}}+\left((2^{17}-1)-6\cdot0+6\frac{1^{2}}{2^{35}(2^{18}+1)}\right)-\\ +-\left(1-6\cdot0+6\frac{1^{2}}{(2^{18}+1)(2^{17}+1)}\right)+\left(1-6\cdot0+6\frac{1^{2}}{(2^{17}+1)2^{17}}\right)-\left(2^{17}-6\cdot1+6\frac{1^{2}}{2^{17}\cdot1}\right)-\\ +-3-2+1=\\ +=\cancel{1}+\frac{2}{2^{35}}\cancel{+2^{17}}\cancel{-1}+\frac{6}{2^{53}+2^{35}}\cancel{-1}-\frac{6}{2^{35}+2^{18}+2^{17}+1}\cancel{+1}+\frac{6}{2^{34}+2^{17}}\cancel{-2^{17}}+6-\frac{6}{2^{17}}-4=\\ +=2+\frac{1}{2^{34}}+6\left(\frac{1}{2^{53}+2^{35}}-\frac{1}{2^{35}+3\cdot2^{17}+1}+\frac{1}{2^{34}+2^{17}}-\frac{1}{2^{17}}\right)=\\ +=2+\frac{1}{2^{34}}+6\frac{2^{17}+1-2^{35}\cancel{+2^{36}+2^{18}}-2^{53}\cancel{-2^{36}}-2^{35}\cancel{-2^{18}}}{2^{35}(2^{18}+1)(2^{17}+1)}=\\ +=2+\frac{1}{2^{34}}+3\frac{(-2^{36}+1)\cancel{(2^{17}+1)}}{2^{34}(2^{18}+1)\cancel{(2^{17}+1)}}=2+\frac{1}{2^{34}}-3\frac{2^{18}-1}{2^{34}}=2-\frac{3\cdot2^{18}-4}{2^{34}}=\\ +=2-\frac{3\cdot2^{16}-1}{2^{32}}=\frac{2^{33}-2^{17}-2^{16}+1}{2^{32}}=\frac{(2^{17}-1)(2^{16}-1)}{2^{32}}. +\end{multline*} + +\end_inset + +Thus, +\begin_inset Formula +\[ +C=\frac{8(2^{17}-1)(2^{16}-1)-3+6\cdot2^{18}(2^{17}-1)}{2^{70}-1}=\frac{91624920407}{393530540239137101141}\cong2.33\cdot10^{-10}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc18[M23] +\end_layout + +\end_inset + +(U. + Dieter.) Given positive integers +\begin_inset Formula $h$ +\end_inset + +, + +\begin_inset Formula $k$ +\end_inset + +, + +\begin_inset Formula $z$ +\end_inset + +, + let +\begin_inset Formula +\[ +S(h,k,c,z)=\sum_{0\leq j<z}\left(\left(\frac{hj+c}{k}\right)\right). +\] + +\end_inset + +Show that this sum can be evaluated in closed form, + in terms of the generalized Dedekind sums and the sawtooth function. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $S_{j}\coloneqq\left(\left(\frac{hj+c}{k}\right)\right)$ +\end_inset + + and note that +\begin_inset Formula $S_{j}=S_{j+k}$ +\end_inset + + for all +\begin_inset Formula $j$ +\end_inset + +. + Thus, + if +\begin_inset Formula $z>k$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{0\leq j<z}\left(\left(\frac{hj+c}{k}\right)\right)=\left\lfloor \frac{z}{k}\right\rfloor \sum_{0\leq j<k}\left(\left(\frac{hj+c}{k}\right)\right)+\sum_{0\leq j<z\bmod k}\left(\left(\frac{hj+c}{k}\right)\right), +\] + +\end_inset + +so we may assume +\begin_inset Formula $z\leq k$ +\end_inset + + from now on. + Now, + +\begin_inset Formula $\left\lfloor \frac{j}{k}\right\rfloor -\left\lfloor \frac{j-z}{k}\right\rfloor $ +\end_inset + + is 1 when +\begin_inset Formula $0\leq j<z$ +\end_inset + + and 0 when +\begin_inset Formula $z\leq j<k$ +\end_inset + +, + so +\begin_inset Formula +\begin{multline*} +S(h,k,c,z)=\sum_{0\leq j<k}\left(\left\lfloor \frac{j}{k}\right\rfloor -\left\lfloor \frac{j-z}{k}\right\rfloor \right)\left(\left(\frac{hj+c}{k}\right)\right)=\\ +=\sum_{0\leq j<k}\left(\cancel{\frac{j}{k}}-\left(\left(\frac{j}{k}\right)\right)\cancel{-\frac{1}{2}}-\frac{\cancel{j}-z}{k}+\left(\left(\frac{j-z}{k}\right)\right)\cancel{+\frac{1}{2}}\right)\left(\left(\frac{hj+c}{k}\right)\right)+\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right)=\\ +=\sum_{0\leq j<k}\left(\left(\left(\frac{j-z}{k}\right)\right)+\frac{z}{k}-\left(\left(\frac{j}{k}\right)\right)\right)\left(\left(\frac{hj+c}{k}\right)\right)+\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right). +\end{multline*} + +\end_inset + +Let's evaluate the sum term by term. + Clearly the term +\begin_inset Formula $-\left(\left(\frac{j}{k}\right)\right)$ +\end_inset + + sums to +\begin_inset Formula $-\frac{1}{12}\sigma(h,k,c)$ +\end_inset + +. + For the term with +\begin_inset Formula $\frac{z}{k}$ +\end_inset + +, + which is constant, + we use the argument used to derive Eq. + (13) in the text with +\begin_inset Formula $d\coloneqq\gcd\{h,k\}$ +\end_inset + +. + Finally, +\begin_inset Formula +\[ +\sum_{0\leq j<k}\left(\left(\frac{j-z}{k}\right)\right)\left(\left(\frac{hj+c}{k}\right)\right)=\sum_{-z\leq j<k-z}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj+c+hz}{k}\right)\right)=\frac{1}{12}\sigma(h,k,c+hz). +\] + +\end_inset + +Putting it all together, +\begin_inset Formula +\[ +S(h,k,c,z)=\frac{1}{12}\sigma(h,k,c+hz)-\frac{1}{12}\sigma(h,k,c)+\frac{zd}{k}\left(\left(\frac{c}{d}\right)\right)+\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right). +\] + +\end_inset + +For +\begin_inset Formula $z=k$ +\end_inset + +, + this simplifies to +\begin_inset Formula $d\left(\left(\frac{c}{d}\right)\right)$ +\end_inset + +, + and since +\begin_inset Formula $\left\lfloor \frac{z}{k}\right\rfloor +\frac{z\bmod k}{k}=\frac{z}{k}$ +\end_inset + +, + it's easy to check that this formula still applies when +\begin_inset Formula $z>k$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc19[M23] +\end_layout + +\end_inset + +Show that the +\emph on +serial test +\emph default + can be analyzed over the full period, + in terms of generalized Dedekind sums, + by finding a formula for the probability that +\begin_inset Formula $\alpha\leq X_{n}<\beta$ +\end_inset + + and +\begin_inset Formula $\alpha'\leq X_{n+1}<\beta'$ +\end_inset + +, + when +\begin_inset Formula $\alpha$ +\end_inset + +, + +\begin_inset Formula $\beta$ +\end_inset + +, + +\begin_inset Formula $\alpha'$ +\end_inset + +, + and +\begin_inset Formula $\beta'$ +\end_inset + + are given integers with +\begin_inset Formula $0\leq\alpha<\beta\leq m$ +\end_inset + + and +\begin_inset Formula $0\leq\alpha'<\beta'\leq m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $P(x)\coloneqq\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor $ +\end_inset + + is 1 precisely when +\begin_inset Formula $x\in[\alpha,\beta)$ +\end_inset + + and 0 for any other +\begin_inset Formula $x\in[0,1)$ +\end_inset + +. + +\begin_inset Formula $Q(x)\coloneqq\left\lfloor \frac{x-\alpha'}{m}\right\rfloor -\left\lfloor \frac{x-\beta'}{m}\right\rfloor $ +\end_inset + + works in an analogous manner. + For a linear congruential sequence given by +\begin_inset Formula $S(x)\coloneqq(ax+c)\bmod m$ +\end_inset + + that has maximum period, + the probability that +\begin_inset Formula $x_{n}\in[\alpha,\beta)\land x_{n+1}\in[\alpha',\beta')$ +\end_inset + + is +\begin_inset Formula +\[ +\frac{1}{m}\sum_{0\leq x<m}P(x)Q(ax+c)=\frac{1}{m}\sum_{0\leq x<m}\left(\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor \right)\left(\left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor -\left\lfloor \frac{S(x)-\beta'}{m}\right\rfloor \right) +\] + +\end_inset + +Now, +\begin_inset Formula +\begin{align*} +\left\lfloor \frac{x-\alpha}{m}\right\rfloor & =\frac{x}{m}-\frac{\alpha}{m}-\frac{1}{2}-\left(\left(\frac{x-\alpha}{m}\right)\right)+\frac{1}{2}\delta_{x,\alpha},\\ +\left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor & =\frac{(ax+c)\bmod m-\alpha'}{m}-\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)-\frac{1}{2}+\frac{1}{2}\delta_{S(x)\alpha'}=\\ + & =\left(\left(\frac{ax+c}{m}\right)\right)-\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)-\frac{\alpha'}{m}+\frac{1}{2}(\delta_{S(x)\alpha'}-\delta_{S(x)0}). +\end{align*} + +\end_inset + +Thus, + +\begin_inset Formula +\begin{multline*} +\sum_{0\leq x<m}\left\lfloor \frac{x-\alpha}{m}\right\rfloor \left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor =\\ +=\sum_{0\leq x<m}\left(\left(\frac{x}{m}-\frac{1}{2}\right)-\frac{\alpha}{m}-\left(\left(\frac{x-\alpha}{m}\right)\right)\right)\left(\left(\left(\frac{ax+c}{m}\right)\right)-\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)-\frac{\alpha'}{m}\right)+\\ ++\frac{1}{2}\left(\left\lfloor \frac{S(\alpha)-\alpha'}{m}\right\rfloor +\left\lfloor \frac{S^{-1}(\alpha')-\alpha}{m}\right\rfloor -\left\lfloor \frac{S^{-1}(0)-\alpha}{m}\right\rfloor \right)+\frac{1}{4}([S(\alpha)=\alpha']-[S(\alpha)=0]). +\end{multline*} + +\end_inset + +The terms outside this last sum can be calculated directly. + Inside the sum, + we have a product of two sums with three terms each, + which we may expand into 9 terms. + For these, + note that +\begin_inset Formula $\frac{x}{m}-\frac{1}{2}=\left(\left(\frac{x}{m}\right)\right)-\frac{1}{2}[x=0]$ +\end_inset + +, + so for example +\begin_inset Formula +\[ +\sum_{0\leq x<m}\left(\frac{x}{m}-\frac{1}{2}\right)\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)=\frac{1}{12}\delta(a,m,c-\alpha')-\left(\left(\frac{c-\alpha'}{m}\right)\right), +\] + +\end_inset + +and similarly, +\begin_inset Formula +\begin{multline*} +\sum_{0\leq x<m}\left(\left(\frac{x-\alpha}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)=\sum_{-\alpha\leq x<m-\alpha}\left(\left(\frac{x}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'+\alpha}{m}\right)\right)=\\ +=\frac{1}{12}\sigma(a,m,c-\alpha'+\alpha). +\end{multline*} + +\end_inset + +The other terms do not include sawtooth functions and can be expanded mechanically using that +\begin_inset Formula $\sum_{0\leq x<m}x=\frac{m(m-1)}{2}$ +\end_inset + +. + Then we can compute the initial sum as the sum of 4 of these sums. +\end_layout + +\begin_layout Subsubsection +Second Set +\end_layout + +\begin_layout Standard +In many cases, + exact computations with integers are quite difficult to carry out, + but we can attempt to study the probabilities that arise when we take the average real values of +\begin_inset Formula $x$ +\end_inset + + instead of restricting the calculation to integer values. + Although these results are only approximate, + they shed some light on the subject. +\end_layout + +\begin_layout Standard +It is convenient to deal with numbers +\begin_inset Formula $U_{n}$ +\end_inset + + between zero and one; + for linear congruential sequences, + +\begin_inset Formula $U_{n}=X_{n}/m$ +\end_inset + +, + and we have +\begin_inset Formula $U_{n+1}=\{aU_{n}+\theta\}$ +\end_inset + +, + where +\begin_inset Formula $\theta=c/m$ +\end_inset + + and +\begin_inset Formula $\{x\}$ +\end_inset + + denotes +\begin_inset Formula $x\bmod1$ +\end_inset + +. + For example, + the formula for serial correlation now becomes +\begin_inset Formula +\[ +C=\left(\int_{0}^{1}x\{ax+\theta\}\text{d}x-\left(\int_{0}^{1}x\text{d}x\right)^{2}\right)\biggg/\left(\int_{0}^{1}x^{2}\text{d}x-\left(\int_{0}^{1}x\text{d}x\right)^{2}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc21[HM23] +\end_layout + +\end_inset + +(R. + R. + Coveyou.) What is the value of +\begin_inset Formula $C$ +\end_inset + + in the formula just given? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula +\begin{align*} +\int_{0}^{1}x\text{d}x & =\left.\frac{x^{2}}{2}\right|_{x=0}^{1}=\frac{1}{2}, & \int_{0}^{1}x^{2}\text{d}x & =\left.\frac{x^{3}}{3}\right|_{x=0}^{1}=\frac{1}{3}, +\end{align*} + +\end_inset + +and we just need to calculate the more complex integral. + Assume +\begin_inset Formula $a>0$ +\end_inset + +. + Then the graph for +\begin_inset Formula $\{ax+\theta\}$ +\end_inset + + is a sequence of lines. + The first goes from +\begin_inset Formula $(0,\theta)$ +\end_inset + + to +\begin_inset Formula $(\frac{1-\theta}{a},1)$ +\end_inset + +, + the next one from +\begin_inset Formula $(\frac{1-\theta}{a},0)$ +\end_inset + + to +\begin_inset Formula $(\frac{2-\theta}{a},1)$ +\end_inset + +, + etc., + and the last one goes from +\begin_inset Formula $(1-\tfrac{\theta}{a},0)$ +\end_inset + + to +\begin_inset Formula $(1,\theta)$ +\end_inset + + (we used that +\begin_inset Formula $a$ +\end_inset + + is an integer to calculate this). + Thus +\begin_inset Formula +\[ +\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{k=1}^{a-1}\int_{\frac{k-\theta}{a}}^{\frac{k+1-\theta}{a}}x(ax+\theta-k)\text{d}x+\int_{0}^{\frac{1-\theta}{a}}x(ax+\theta)\text{d}x+\int_{1-\frac{\theta}{a}}^{1}x(ax+\theta-a)\text{d}x. +\] + +\end_inset + +Now, +\begin_inset Formula +\[ +\int x(ax+\theta-k)\text{d}x=\frac{a}{3}x^{3}+\frac{\theta-k}{2}x^{2}+C, +\] + +\end_inset + +so if we call +\begin_inset Formula $x_{k}\coloneqq\frac{k-\theta}{a}$ +\end_inset + + except that +\begin_inset Formula $x_{0}\coloneqq0$ +\end_inset + + and +\begin_inset Formula $x_{a+1}\coloneqq1$ +\end_inset + +, + we have +\begin_inset Formula +\begin{multline*} +\int_{0}^{1}x\{ax+\theta\}\text{d}x=\sum_{0\leq k\leq a}\int_{x_{k}}^{x_{k+1}}x(ax+\theta-k)\text{d}x=\\ +=\sum_{0\leq k\leq a}\left(\frac{a}{3}x_{k+1}^{3}+\frac{\theta-k}{2}x_{k+1}^{2}-\frac{a}{3}x_{k}^{3}-\frac{\theta-k}{2}x_{k}^{2}\right)=\frac{a}{3}+\frac{\theta-a}{2}+\sum_{0<k\leq a}\frac{1}{2}x_{k}^{2}=\\ +=\frac{a}{3}+\frac{\theta-a}{2}+\frac{1}{2a^{2}}\sum_{k=1}^{a}(k^{2}-2k\theta+\theta^{2})=\frac{\theta}{2}-\frac{a}{6}+\frac{(a+1)(2a+1)}{12a}-\frac{(a+1)\theta}{2a}+\frac{\theta^{2}}{2a}=\\ +=\frac{\theta(\theta-1)}{2a}+\frac{1}{12a}+\frac{1}{4}. +\end{multline*} + +\end_inset + +Putting it all together, +\begin_inset Formula +\[ +C=\left(\frac{\theta(\theta-1)}{2a}+\frac{1}{12a}+\frac{1}{4}-\frac{1}{4}\right)\biggg/\left(\frac{1}{3}-\frac{1}{4}\right)=\frac{6\theta(\theta-1)+1}{a}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[M22] +\end_layout + +\end_inset + +Let +\begin_inset Formula $a$ +\end_inset + + be an integer, + and let +\begin_inset Formula $0\leq\theta<1$ +\end_inset + +. + If +\begin_inset Formula $x$ +\end_inset + + is a random real number, + uniformly distributed between 0 and 1, + and if +\begin_inset Formula $s(x)=\{ax+\theta\}$ +\end_inset + +, + what is the probability that +\begin_inset Formula $s(x)<x$ +\end_inset + +? + (This is the +\begin_inset Quotes eld +\end_inset + +real number +\begin_inset Quotes erd +\end_inset + + analog of Theorem P.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +As in the previous exercise, + let +\begin_inset Formula $x_{0}\coloneqq0$ +\end_inset + +, + +\begin_inset Formula $x_{k}\coloneqq\frac{k-\theta}{a}$ +\end_inset + + for +\begin_inset Formula $k\in\{1,\dots,a\}$ +\end_inset + +, + and +\begin_inset Formula $x_{a+1}\coloneqq1$ +\end_inset + +, + for +\begin_inset Formula $k\in\{0,\dots,a\}$ +\end_inset + + and +\begin_inset Formula $x\in[x_{k},x_{k+1})$ +\end_inset + + we have +\begin_inset Formula $\lfloor ax+\theta\rfloor=k$ +\end_inset + + and +\begin_inset Formula +\[ +s(x)=ax+\theta-\lfloor ax+\theta\rfloor<x\iff(a-1)x<\lfloor ax+\theta\rfloor-\theta=k-\theta\iff x<\frac{k-\theta}{a-1}, +\] + +\end_inset + +so in particular +\begin_inset Formula $s(x)\geq x$ +\end_inset + + for +\begin_inset Formula $x<x_{1}$ +\end_inset + + and the probability is +\begin_inset Formula +\begin{multline*} +\int_{0}^{1}[s(x)<x]\text{d}x=\sum_{k=1}^{a}\int_{x_{k}}^{x_{k+1}}[x<\tfrac{k-\theta}{a-1}]\text{d}x=\sum_{k=1}^{a-1}\left(\frac{k-\theta}{a-1}-\frac{k-\theta}{a}\right)+1-\frac{a-\theta}{a}=\\ +=\sum_{k=1}^{a-1}\frac{k-\theta}{a(a-1)}+\frac{\theta}{a}=\left(\frac{1}{2}-\frac{\theta}{a}\right)+\frac{\theta}{a}=\frac{1}{2}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc25[M25] +\end_layout + +\end_inset + +Let +\begin_inset Formula $\alpha$ +\end_inset + +, + +\begin_inset Formula $\beta$ +\end_inset + +, + +\begin_inset Formula $\alpha'$ +\end_inset + +, + +\begin_inset Formula $\beta'$ +\end_inset + + be real numbers with +\begin_inset Formula $0\leq\alpha<\beta\leq1$ +\end_inset + +, + +\begin_inset Formula $0\leq\alpha'<\beta'\leq1$ +\end_inset + +. + Under the assumptions of exercise 22, + what is the probability that +\begin_inset Formula $\alpha\leq x<\beta$ +\end_inset + + and +\begin_inset Formula $\alpha'\leq s(x)<\beta'$ +\end_inset + +? + (This is the +\begin_inset Quotes eld +\end_inset + +real number +\begin_inset Quotes erd +\end_inset + + analog of exercise 19.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +In the notation of the answer to exercise 22, + assume that +\begin_inset Formula $\alpha\in[x_{p},x_{p+1})$ +\end_inset + + and +\begin_inset Formula $\beta\in[x_{q},x_{q+1})$ +\end_inset + +, + with +\begin_inset Formula $0\leq p\leq q\leq a$ +\end_inset + +. + For +\begin_inset Formula $x\in[x_{k},x_{k+1})$ +\end_inset + +, +\begin_inset Formula +\[ +\alpha'\leq s(x)<\beta'\iff\alpha'\leq ax+\theta-k<\beta'\iff x\in\left[\frac{\alpha'+k-\theta}{a},\frac{\beta'+k-\theta}{a}\right). +\] + +\end_inset + +Note that, + since +\begin_inset Formula $s(x)$ +\end_inset + + goes from 0 to 1 when +\begin_inset Formula $x$ +\end_inset + + goes from +\begin_inset Formula $x_{k}$ +\end_inset + + to +\begin_inset Formula $x_{k+1}$ +\end_inset + +, + each of these intervals has +\begin_inset Formula $s(x)$ +\end_inset + + enter and exit +\begin_inset Formula $[\alpha',\beta')$ +\end_inset + + and fully contains the interval above. + Let +\begin_inset Formula $s_{k}^{-1}(y)\coloneqq\frac{y+k-\theta}{a}$ +\end_inset + +. + If +\begin_inset Formula $p=q$ +\end_inset + +, + the probability is +\begin_inset Formula +\[ +\int_{\alpha}^{\beta}[\alpha'\leq s(x)<\beta']\text{d}x=\max\left\{ 0,\min\{\beta,s_{p}^{-1}(\beta')\}-\max\{\alpha,s_{p}^{-1}(\alpha')\}\right\} . +\] + +\end_inset + +If +\begin_inset Formula $p\neq q$ +\end_inset + +, + we have to consider the two extremes and the +\begin_inset Formula $q-p-1$ +\end_inset + + intervals in the middle, + each of which contributes +\begin_inset Formula $\frac{\beta'-\alpha'}{a}$ +\end_inset + +, + so the probability in this case is +\begin_inset Formula +\[ +\max\left\{ 0,s_{p}^{-1}(\beta')-\max\{\alpha,s_{p}^{-1}(\alpha')\}\right\} +(q-p-1)\frac{\beta'-\alpha'}{a}+\max\left\{ 0,\min\{\beta,s_{q}^{-1}(\beta')\}-s_{q}^{-1}(\alpha')\right\} . +\] + +\end_inset + +Note that this last formula is still valid when +\begin_inset Formula $p=q$ +\end_inset + +. +\end_layout + +\end_body +\end_document @@ -7,6 +7,11 @@ \textclass book \begin_preamble \input defs + +\makeatletter +\newcommand{\biggg}{\bBigg@\thr@@} +\newcommand{\Biggg}{\bBigg@{3.5}} +\makeatother \end_preamble \use_default_options true \maintain_unincluded_children no @@ -33,6 +38,8 @@ \output_sync 0 \bibtex_command default \index_command default +\float_placement class +\float_alignment class \paperfontsize 10 \spacing single \use_hyperref true @@ -2043,6 +2050,29 @@ A10+R25 Theoretical Tests \end_layout +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "3.3.3.lyx" +literal "false" + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\family typewriter +A10+R25 +\end_layout + +\end_inset + + +\end_layout + \begin_layout Subsection The Spectral Test \end_layout |
