diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-04-22 19:50:20 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-04-22 19:50:20 +0200 |
| commit | 24a5630b8b6ba37bd922c778e60cbf449e7a6db6 (patch) | |
| tree | 093568719415d35a33f02e457bd85bd69e23c2ce | |
| parent | a26ecf585ec33763381173d51e9d35485ad2ad18 (diff) | |
Fix some line overflows
| -rw-r--r-- | 3.3.3.lyx | 75 | ||||
| -rw-r--r-- | 3.4.2.lyx | 3 |
2 files changed, 46 insertions, 32 deletions
@@ -298,9 +298,10 @@ status open In this case, the law reduces to \begin_inset Formula -\[ -\sigma(h,k,0)+\sigma(k,h,0)=12\sum_{0\leq j<k}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)+12\sum_{0\leq j<h}\left(\left(\frac{j}{h}\right)\right)\left(\left(\frac{kj}{h}\right)\right)=\frac{h}{k}+\frac{k}{h}+\frac{1}{hk}-3. -\] +\begin{multline*} +\sigma(h,k,0)+\sigma(k,h,0)=\\ +=12\sum_{0\leq j<k}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)+12\sum_{0\leq j<h}\left(\left(\frac{j}{h}\right)\right)\left(\left(\frac{kj}{h}\right)\right)=\frac{h}{k}+\frac{k}{h}+\frac{1}{hk}-3. +\end{multline*} \end_inset @@ -355,10 +356,13 @@ for so substituting above, \begin_inset Formula -\begin{align*} -S & \coloneqq kh(h-1)=\sum_{j=1}^{k-1}\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)-\frac{1}{2}\right)\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)+\frac{1}{2}\right)+2\sum_{j=1}^{h-1}j\left(\frac{kj}{h}-\left(\left(\frac{kj}{h}\right)\right)+\frac{1}{2}\right)\\ - & =\frac{h^{2}}{k^{2}}\sum_{j=1}^{k-1}j^{2}-\frac{2h}{k}\sum_{j=1}^{k-1}j\left(\left(\frac{hj}{k}\right)\right)+\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2}-\frac{k-1}{4}+\frac{2k}{h}\sum_{j=1}^{h-1}j^{2}-2\sum_{j=1}^{h-1}j\left(\left(\frac{kj}{h}\right)\right)+\frac{h^{2}-h}{2}. -\end{align*} +\begin{multline*} +S\coloneqq kh(h-1)=\\ +=\sum_{j=1}^{k-1}\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)-\frac{1}{2}\right)\left(\frac{hj}{k}-\left(\left(\frac{hj}{k}\right)\right)+\frac{1}{2}\right)+\\ ++2\sum_{j=1}^{h-1}j\left(\frac{kj}{h}-\left(\left(\frac{kj}{h}\right)\right)+\frac{1}{2}\right)=\\ +=\frac{h^{2}}{k^{2}}\sum_{j=1}^{k-1}j^{2}-\frac{2h}{k}\sum_{j=1}^{k-1}j\left(\left(\frac{hj}{k}\right)\right)+\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2}-\frac{k-1}{4}+\frac{2k}{h}\sum_{j=1}^{h-1}j^{2}-\\ +-2\sum_{j=1}^{h-1}j\left(\left(\frac{kj}{h}\right)\right)+\frac{h^{2}-h}{2}. +\end{multline*} \end_inset @@ -372,9 +376,10 @@ Now, so \begin_inset Formula -\[ -\sigma(h,k,0)=12\sum_{j=0}^{k-1}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)=12\sum_{j=1}^{k-1}\left(\frac{j}{k}-\frac{1}{2}\right)\left(\left(\frac{hj}{k}\right)\right)=12\sum_{j=1}^{k-1}\frac{j}{k}\left(\left(\frac{hj}{k}\right)\right). -\] +\begin{multline*} +\sigma(h,k,0)=12\sum_{j=0}^{k-1}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj}{k}\right)\right)=12\sum_{j=1}^{k-1}\left(\frac{j}{k}-\frac{1}{2}\right)\left(\left(\frac{hj}{k}\right)\right)=\\ +=12\sum_{j=1}^{k-1}\frac{j}{k}\left(\left(\frac{hj}{k}\right)\right). +\end{multline*} \end_inset @@ -389,7 +394,8 @@ In addition, and in particular \begin_inset Formula \begin{align*} -\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2} & =\sum_{j=1}^{k-1}\left(\left(\frac{j}{k}\right)\right)^{2}=\sum_{j=1}^{k-1}\frac{j^{2}}{k^{2}}-\sum_{j=1}^{k-1}\frac{j}{k}+\frac{k-1}{4}=\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{k-1}{4}\\ +\sum_{j=1}^{k-1}\left(\left(\frac{hj}{k}\right)\right)^{2} & =\sum_{j=1}^{k-1}\left(\left(\frac{j}{k}\right)\right)^{2}\\ + & =\sum_{j=1}^{k-1}\frac{j^{2}}{k^{2}}-\sum_{j=1}^{k-1}\frac{j}{k}+\frac{k-1}{4}=\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{k-1}{4}\\ & =\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{4}, \end{align*} @@ -398,8 +404,9 @@ and in particular so finally \begin_inset Formula \begin{align*} -S & =\frac{kh^{2}}{3}-\frac{h^{2}}{2}+\frac{h^{2}}{6k}-\frac{h}{6}\sigma(h,k,0)+\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{2kh^{2}}{3}-kh+\frac{k}{3}-\frac{h}{6}\sigma(k,h,0)+\frac{h^{2}}{2}-\frac{h}{2}\\ - & =kh(h-1)-\frac{h}{2}+\frac{h^{2}}{6k}+\frac{k}{6}+\frac{1}{6k}-\frac{h}{6}\sigma(h,k,0)-\frac{h}{6}\sigma(k,h,0). +S= & \frac{kh^{2}}{3}-\frac{h^{2}}{2}+\frac{h^{2}}{6k}-\frac{h}{6}\sigma(h,k,0)+\frac{k}{3}-\frac{1}{2}+\frac{1}{6k}-\frac{k-1}{2}+\frac{2kh^{2}}{3}-kh+\\ + & +\frac{k}{3}-\frac{h}{6}\sigma(k,h,0)+\frac{h^{2}}{2}-\frac{h}{2}\\ += & kh(h-1)-\frac{h}{2}+\frac{h^{2}}{6k}+\frac{k}{6}+\frac{1}{6k}-\frac{h}{6}\sigma(h,k,0)-\frac{h}{6}\sigma(k,h,0). \end{align*} \end_inset @@ -517,8 +524,8 @@ The number \begin_inset Formula \begin{multline*} \sigma(2^{18}+1,2^{35},1)=\frac{(\cancel{2^{18}}+1)+(2^{35}\cancel{-2^{18}}+1)}{2^{35}}+\left((2^{17}-1)-6\cdot0+6\frac{1^{2}}{2^{35}(2^{18}+1)}\right)-\\ --\left(1-6\cdot0+6\frac{1^{2}}{(2^{18}+1)(2^{17}+1)}\right)+\left(1-6\cdot0+6\frac{1^{2}}{(2^{17}+1)2^{17}}\right)-\left(2^{17}-6\cdot1+6\frac{1^{2}}{2^{17}\cdot1}\right)-\\ --3-2+1=\\ +-\left(1-6\cdot0+\frac{6\cdot1^{2}}{(2^{18}+1)(2^{17}+1)}\right)+\left(1-6\cdot0+6\frac{1^{2}}{(2^{17}+1)2^{17}}\right)-\left(2^{17}-6\cdot1+6\frac{1^{2}}{2^{17}}\right)\\ +\\-3-2+1=\\ =\cancel{1}+\frac{2}{2^{35}}\cancel{+2^{17}}\cancel{-1}+\frac{6}{2^{53}+2^{35}}\cancel{-1}-\frac{6}{2^{35}+2^{18}+2^{17}+1}\cancel{+1}+\frac{6}{2^{34}+2^{17}}\cancel{-2^{17}}+6-\frac{6}{2^{17}}-4=\\ =2+\frac{1}{2^{34}}+6\left(\frac{1}{2^{53}+2^{35}}-\frac{1}{2^{35}+3\cdot2^{17}+1}+\frac{1}{2^{34}+2^{17}}-\frac{1}{2^{17}}\right)=\\ =2+\frac{1}{2^{34}}+6\frac{2^{17}+1-2^{35}\cancel{+2^{36}+2^{18}}-2^{53}\cancel{-2^{36}}-2^{35}\cancel{-2^{18}}}{2^{35}(2^{18}+1)(2^{17}+1)}=\\ @@ -530,9 +537,10 @@ The number Thus, \begin_inset Formula -\[ -C=\frac{8(2^{17}-1)(2^{16}-1)-3+6\cdot2^{18}(2^{17}-1)}{2^{70}-1}=\frac{91624920407}{393530540239137101141}\cong2.33\cdot10^{-10}. -\] +\begin{multline*} +C=\frac{8(2^{17}-1)(2^{16}-1)-3+6\cdot2^{18}(2^{17}-1)}{2^{70}-1}=\frac{91624920407}{393530540239137101141}\cong\\ +\cong2.33\cdot10^{-10}. +\end{multline*} \end_inset @@ -642,7 +650,8 @@ so we may assume \begin_inset Formula \begin{multline*} S(h,k,c,z)=\sum_{0\leq j<k}\left(\left\lfloor \frac{j}{k}\right\rfloor -\left\lfloor \frac{j-z}{k}\right\rfloor \right)\left(\left(\frac{hj+c}{k}\right)\right)=\\ -=\sum_{0\leq j<k}\left(\cancel{\frac{j}{k}}-\left(\left(\frac{j}{k}\right)\right)\cancel{-\frac{1}{2}}-\frac{\cancel{j}-z}{k}+\left(\left(\frac{j-z}{k}\right)\right)\cancel{+\frac{1}{2}}\right)\left(\left(\frac{hj+c}{k}\right)\right)+\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right)=\\ +=\sum_{0\leq j<k}\left(\cancel{\frac{j}{k}}-\left(\left(\frac{j}{k}\right)\right)\cancel{-\frac{1}{2}}-\frac{\cancel{j}-z}{k}+\left(\left(\frac{j-z}{k}\right)\right)\cancel{+\frac{1}{2}}\right)\left(\left(\frac{hj+c}{k}\right)\right)+\\ ++\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right)=\\ =\sum_{0\leq j<k}\left(\left(\left(\frac{j-z}{k}\right)\right)+\frac{z}{k}-\left(\left(\frac{j}{k}\right)\right)\right)\left(\left(\frac{hj+c}{k}\right)\right)+\frac{1}{2}\left(\left(\frac{c}{k}\right)\right)-\frac{1}{2}\left(\left(\frac{hz+c}{k}\right)\right). \end{multline*} @@ -672,9 +681,10 @@ Let's evaluate the sum term by term. . Finally, \begin_inset Formula -\[ -\sum_{0\leq j<k}\left(\left(\frac{j-z}{k}\right)\right)\left(\left(\frac{hj+c}{k}\right)\right)=\sum_{-z\leq j<k-z}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj+c+hz}{k}\right)\right)=\frac{1}{12}\sigma(h,k,c+hz). -\] +\begin{multline*} +\sum_{0\leq j<k}\left(\left(\frac{j-z}{k}\right)\right)\left(\left(\frac{hj+c}{k}\right)\right)=\sum_{-z\leq j<k-z}\left(\left(\frac{j}{k}\right)\right)\left(\left(\frac{hj+c+hz}{k}\right)\right)=\\ +=\frac{1}{12}\sigma(h,k,c+hz). +\end{multline*} \end_inset @@ -808,9 +818,10 @@ answer is \begin_inset Formula -\[ -\frac{1}{m}\sum_{0\leq x<m}P(x)Q(ax+c)=\frac{1}{m}\sum_{0\leq x<m}\left(\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor \right)\left(\left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor -\left\lfloor \frac{S(x)-\beta'}{m}\right\rfloor \right) -\] +\begin{multline*} +\frac{1}{m}\sum_{0\leq x<m}P(x)Q(ax+c)=\\ +=\frac{1}{m}\sum_{0\leq x<m}\left(\left\lfloor \frac{x-\alpha}{m}\right\rfloor -\left\lfloor \frac{x-\beta}{m}\right\rfloor \right)\left(\left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor -\left\lfloor \frac{S(x)-\beta'}{m}\right\rfloor \right) +\end{multline*} \end_inset @@ -829,7 +840,8 @@ Thus, \begin_inset Formula \begin{multline*} \sum_{0\leq x<m}\left\lfloor \frac{x-\alpha}{m}\right\rfloor \left\lfloor \frac{S(x)-\alpha'}{m}\right\rfloor =\\ -=\sum_{0\leq x<m}\left(\left(\frac{x}{m}-\frac{1}{2}\right)-\frac{\alpha}{m}-\left(\left(\frac{x-\alpha}{m}\right)\right)\right)\left(\left(\left(\frac{ax+c}{m}\right)\right)-\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)-\frac{\alpha'}{m}\right)+\\ +=\sum_{0\leq x<m}\left(\left(\frac{x}{m}-\frac{1}{2}\right)-\frac{\alpha}{m}-\left(\left(\frac{x-\alpha}{m}\right)\right)\right)\\ +\left(\left(\left(\frac{ax+c}{m}\right)\right)-\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)-\frac{\alpha'}{m}\right)+\\ +\frac{1}{2}\left(\left\lfloor \frac{S(\alpha)-\alpha'}{m}\right\rfloor +\left\lfloor \frac{S^{-1}(\alpha')-\alpha}{m}\right\rfloor -\left\lfloor \frac{S^{-1}(0)-\alpha}{m}\right\rfloor \right)+\frac{1}{4}([S(\alpha)=\alpha']-[S(\alpha)=0]). \end{multline*} @@ -856,8 +868,8 @@ The terms outside this last sum can be calculated directly. and similarly, \begin_inset Formula \begin{multline*} -\sum_{0\leq x<m}\left(\left(\frac{x-\alpha}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)=\sum_{-\alpha\leq x<m-\alpha}\left(\left(\frac{x}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'+\alpha}{m}\right)\right)=\\ -=\frac{1}{12}\sigma(a,m,c-\alpha'+\alpha). +\sum_{0\leq x<m}\left(\left(\frac{x-\alpha}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'}{m}\right)\right)=\\ +=\sum_{-\alpha\leq x<m-\alpha}\left(\left(\frac{x}{m}\right)\right)\left(\left(\frac{ax+c-\alpha'+\alpha}{m}\right)\right)=\frac{1}{12}\sigma(a,m,c-\alpha'+\alpha). \end{multline*} \end_inset @@ -1353,9 +1365,10 @@ If , so the probability in this case is \begin_inset Formula -\[ -\max\left\{ 0,s_{p}^{-1}(\beta')-\max\{\alpha,s_{p}^{-1}(\alpha')\}\right\} +(q-p-1)\frac{\beta'-\alpha'}{a}+\max\left\{ 0,\min\{\beta,s_{q}^{-1}(\beta')\}-s_{q}^{-1}(\alpha')\right\} . -\] +\begin{multline*} +\max\left\{ 0,s_{p}^{-1}(\beta')-\max\{\alpha,s_{p}^{-1}(\alpha')\}\right\} +(q-p-1)\frac{\beta'-\alpha'}{a}+\\ ++\max\left\{ 0,\min\{\beta,s_{q}^{-1}(\beta')\}-s_{q}^{-1}(\alpha')\right\} . +\end{multline*} \end_inset @@ -448,7 +448,8 @@ so \begin_inset Formula \begin{align*} \text{mean}(G) & =\dot{G}(1)=n(1+H_{N}-H_{n});\\ -\text{var}(G) & =\ddot{G}(1)+\dot{G}(1)-\dot{G}(1)^{2}=\cancel{n(n-1)}\cancel{+2n\dot{F}(1)}+\ddot{F}(1)\cancel{+n}+\dot{F}(1)\cancel{-n^{2}}-\dot{F}(1)^{2}\cancel{-2n\dot{F}(1)}\\ +\text{var}(G) & =\ddot{G}(1)+\dot{G}(1)-\dot{G}(1)^{2}\\ + & =\cancel{n(n-1)}\cancel{+2n\dot{F}(1)}+\ddot{F}(1)\cancel{+n}+\dot{F}(1)\cancel{-n^{2}}-\dot{F}(1)^{2}\cancel{-2n\dot{F}(1)}\\ & =n(H_{N}-H_{n})-n^{2}(H_{N}^{(2)}-H_{n}^{(2)}),\\ \sigma(G) & =\sqrt{\text{var}(G)}=\sqrt{n(H_{N}-H_{n})-n^{2}(H_{N}^{(2)}-H_{n}^{(2)})}. \end{align*} |
