aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJuan Marín Noguera <juan@mnpi.eu>2024-12-01 20:11:03 +0100
committerJuan Marín Noguera <juan@mnpi.eu>2024-12-01 20:11:03 +0100
commit6b9ef86f54aa3acab4c55118382e6a98b006b301 (patch)
treedcc833499c7d57d71318e132b738e91c603a6e37
parent8bbe7955e154bac1eeda33db9530b016725f7fdd (diff)
Exercise 2.3.4.4--21
-rw-r--r--2.3.4.4.lyx92
-rw-r--r--index.lyx12
2 files changed, 35 insertions, 69 deletions
diff --git a/2.3.4.4.lyx b/2.3.4.4.lyx
index 4f62d33..0172abf 100644
--- a/2.3.4.4.lyx
+++ b/2.3.4.4.lyx
@@ -92,23 +92,6 @@
\begin_body
\begin_layout Standard
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-TODO 5,
- 10,
- 14,
- 21 (3pp.,
- 1:08)
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
\begin_inset ERT
status open
@@ -722,74 +705,45 @@ answer
\end_inset
These are precisely the 0-2-trees in exercise 2.3–20.
- We know 0-2-trees always have an odd number of nodes.
- Let
-\begin_inset Formula $b_{n}$
-\end_inset
-
- be the number of such trees with
-\begin_inset Formula $2n+1$
-\end_inset
-
- nodes,
- then
-\begin_inset Formula $b_{0}=1$
+ We know 0-2-trees always have an odd number of nodes,
+ say
+\begin_inset Formula $2m+1$
\end_inset
- and,
- for
-\begin_inset Formula $n>0$
+ nodes.
+ By the construction in the text,
+ these trees correspond to sequences of
+\begin_inset Formula $2m$
\end_inset
-,
-\begin_inset Formula
-\[
-b_{n}=\sum_{m=0}^{n-1}b_{m}b_{n-m-1},
-\]
-
+ nodes where each node that appears does so exactly twice.
+ There are
+\begin_inset Formula $\binom{2m+1}{m}$
\end_inset
-as the root would have
-\begin_inset Formula $2m+1$
+ ways to choose which nodes
+\emph on
+do
+\emph default
+ appear in the sequence,
+ and
+\begin_inset Formula $\frac{(2m)!}{2^{m}}$
\end_inset
- nodes in the left side and
-\begin_inset Formula $2(n-m-1)+1=2n-2m-1$
+ ways to arranging them (we can think of arranging
+\begin_inset Formula $2m$
\end_inset
- nodes in the right side.
- Then,
+ elements and then discarding the relative order of equal pairs of elements).
+ This gives us
\begin_inset Formula
\[
-B(z)\coloneqq\sum_{n\geq0}b_{n}z^{n}=1+\sum_{n\geq1}\sum_{m=0}^{n-1}b_{m}b_{n-m-1}z^{n}=1+z\sum_{m,k\geq0}b_{m}b_{k}z^{m+k}=1+zB(z)^{2},
+\binom{2m+1}{m}(2m)!\Bigg/2^{m}
\]
\end_inset
-so
-\begin_inset Formula $zB(z)^{2}-B(z)+1=0$
-\end_inset
-
- and
-\begin_inset Formula $B(z)=\frac{1-\sqrt{1-4z}}{2z}$
-\end_inset
-
-,
- where we take the negative sign as it is the one where the solution converges at
-\begin_inset Formula $z=0$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-TODO
-\end_layout
-
-\end_inset
-
-
+labeled oriented 0-2-trees.
\end_layout
\end_body
diff --git a/index.lyx b/index.lyx
index 300f62e..0d76513 100644
--- a/index.lyx
+++ b/index.lyx
@@ -1662,6 +1662,18 @@ literal "false"
\end_inset
+\begin_inset Note Note
+status open
+
+\begin_layout Plain Layout
+
+\family typewriter
+A10+R25
+\end_layout
+
+\end_inset
+
+
\end_layout
\begin_layout Subsubsection