diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-01-20 16:08:09 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-01-20 16:08:09 +0100 |
| commit | f65a9d24730168df151346eb196bc5d51895408c (patch) | |
| tree | 9edf8332545a00da5945b6a2a0925cc327493fba | |
| parent | f7ca10aa94d351d9fda022f0d9e59c7144831f98 (diff) | |
3.2.1.2
| -rw-r--r-- | 3.2.1.2.lyx | 1542 | ||||
| -rw-r--r-- | index.lyx | 23 |
2 files changed, 1565 insertions, 0 deletions
diff --git a/3.2.1.2.lyx b/3.2.1.2.lyx new file mode 100644 index 0000000..ad58b78 --- /dev/null +++ b/3.2.1.2.lyx @@ -0,0 +1,1542 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[10] +\end_layout + +\end_inset + +What is the length of the period of the linear congruential sequence with +\begin_inset Formula $X_{0}=5772156648$ +\end_inset + +, + +\begin_inset Formula $a=3141592621$ +\end_inset + +, + +\begin_inset Formula $c=2718281829$ +\end_inset + +, + and +\begin_inset Formula $m=10000000000$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Obviously +\begin_inset Formula $c$ +\end_inset + + is relatively prime to +\begin_inset Formula $m$ +\end_inset + +. + Furthermore, + the prime divisors of +\begin_inset Formula $m$ +\end_inset + + are 2 and 5 and +\begin_inset Formula $a-1$ +\end_inset + + is a multiple of both 4 and 5. + Therefore the length is +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[10] +\end_layout + +\end_inset + +Are the following two conditions sufficient to guarantee the maximum length period, + when +\begin_inset Formula $m$ +\end_inset + + is a power of 2? +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $c$ +\end_inset + + is odd; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a\bmod4=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Yes, + by theorem A. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[20] +\end_layout + +\end_inset + +Find all multipliers +\begin_inset Formula $a$ +\end_inset + + that satisfy the conditions of Theorem A when +\begin_inset Formula $m=10^{6}-1$ +\end_inset + +. + (See Table 3.2.1.1–1.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +By the table, + +\begin_inset Formula $m=3^{3}\cdot7\cdot11\cdot13\cdot37$ +\end_inset + +. + Multipliers are numbers +\begin_inset Formula $a$ +\end_inset + + such that +\begin_inset Formula +\[ +a\bmod3=a\bmod7=a\bmod11=a\bmod13=a\bmod37=1. +\] + +\end_inset + +These identities tell us that +\begin_inset Formula $a\equiv1\pmod{3\cdot7\cdot11\cdot13\cdot37=m/3^{2}=111111}$ +\end_inset + +, + so the possible values are +\begin_inset Formula $1,111112,222223,333334,444445,555556,666667,777778,888889$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc7[M23] +\end_layout + +\end_inset + +The period of a congruential sequence need not start with +\begin_inset Formula $X_{0}$ +\end_inset + +, + but we can always find indices +\begin_inset Formula $\mu\geq0$ +\end_inset + + and +\begin_inset Formula $\lambda>0$ +\end_inset + + such that +\begin_inset Formula $X_{n+\lambda}=X_{n}$ +\end_inset + + whenever +\begin_inset Formula $n\geq\mu$ +\end_inset + +, + and for which +\begin_inset Formula $\mu$ +\end_inset + + and +\begin_inset Formula $\lambda$ +\end_inset + + are the smallest possible values with this property. + (See exercises 3.1–6 and 3.2.1–1.) If +\begin_inset Formula $\mu_{j}$ +\end_inset + + and +\begin_inset Formula $\lambda_{j}$ +\end_inset + + are the indices corresponding to the sequences +\begin_inset Formula +\[ +(X_{0}\bmod p_{j}^{e_{j}},a\bmod p_{j}^{e_{j}},c\bmod p_{j}^{e_{j}},p_{j}^{e_{j}}), +\] + +\end_inset + +and if +\begin_inset Formula $\mu$ +\end_inset + + and +\begin_inset Formula $\lambda$ +\end_inset + + correspond to the composite sequence +\begin_inset Formula $(X_{0},a,c,p_{1}^{e_{1}}\cdots p_{t}^{e_{t}})$ +\end_inset + +, + Lemma Q states that +\begin_inset Formula $\lambda$ +\end_inset + + is the least common multiple of +\begin_inset Formula $\lambda_{1},\dots,\lambda_{t}$ +\end_inset + +. + What is the value of +\begin_inset Formula $\mu$ +\end_inset + + in terms of the values of +\begin_inset Formula $\mu_{1},\dots,\mu_{t}$ +\end_inset + +? + What is the maximum possible value of +\begin_inset Formula $\mu$ +\end_inset + + obtainable by varying +\begin_inset Formula $X_{0}$ +\end_inset + +, + +\begin_inset Formula $a$ +\end_inset + +, + and +\begin_inset Formula $c$ +\end_inset + +, + when +\begin_inset Formula $m=p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$ +\end_inset + + is fixed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Since the +\begin_inset Formula $j$ +\end_inset + +th sequence has values +\begin_inset Formula $X_{n}\bmod p_{j}^{e_{j}}$ +\end_inset + +, + and the +\begin_inset Formula $X_{n}$ +\end_inset + + are uniquely determined by such values for all +\begin_inset Formula $j$ +\end_inset + +, + +\begin_inset Formula $(X_{n})_{n}$ +\end_inset + + enters into a loop whenever all the +\begin_inset Formula $X_{n}\bmod p_{j}^{e_{j}}$ +\end_inset + + have entered into a loop, + that is, + +\begin_inset Formula $\mu=\max_{j}\mu_{j}$ +\end_inset + +. + We are left to see what is the maximum +\begin_inset Formula $\mu$ +\end_inset + + when +\begin_inset Formula $m=p^{e}$ +\end_inset + + for some prime number +\begin_inset Formula $p$ +\end_inset + + and positive integer +\begin_inset Formula $e$ +\end_inset + + (for +\begin_inset Formula $m=1$ +\end_inset + +, + +\begin_inset Formula $\mu=0$ +\end_inset + +). + In this case, + +\begin_inset Formula $\mu$ +\end_inset + + is the lowest number such that +\begin_inset Formula +\[ +X_{\mu}=X_{\mu+\lambda}\equiv X_{\mu}a^{\lambda}+\frac{a^{\lambda}-1}{a-1}c\pmod{p^{e}}, +\] + +\end_inset + +if and only if +\begin_inset Formula $X_{\mu}(1-a^{\lambda})\equiv\frac{a^{\lambda}-1}{a-1}c\pmod{p^{e}}$ +\end_inset + +, + so for +\begin_inset Formula $\mu>0$ +\end_inset + +, + +\begin_inset Formula $\mu-1$ +\end_inset + + must be a number such that +\begin_inset Formula +\begin{align*} +X_{\mu-1}(1-a^{\lambda}) & \not\equiv\frac{a^{\lambda}-1}{a-1}c, & aX_{\mu-1}(1-a^{\lambda}) & \equiv a\frac{a^{\lambda}-1}{a-1}c & & \pmod{p^{e}}, +\end{align*} + +\end_inset + +where the first equation comes from changing +\begin_inset Formula $\mu$ +\end_inset + + to +\begin_inset Formula $\mu-1$ +\end_inset + + above and the second one from changing +\begin_inset Formula $X_{\mu}$ +\end_inset + + to +\begin_inset Formula $aX_{\mu-1}+c$ +\end_inset + + and rearranging terms. + This means that +\begin_inset Formula $a$ +\end_inset + + must be a multiple of +\begin_inset Formula $p$ +\end_inset + +. + Then, +\begin_inset Formula +\begin{align*} +X_{e} & \equiv X_{0}a^{e}+\frac{a^{e}-1}{a-1}c\equiv(a^{e-1}+a^{e-2}+\dots+a+1)c, & \pmod{p^{e}},\\ +X_{e+\lambda} & \equiv X_{0}a^{e+\lambda}+\frac{a^{e+\lambda}-1}{a-1}c\equiv(a^{e-1}+a^{e-2}+\dots+a+1)c, & \pmod{p^{e}}, +\end{align*} + +\end_inset + +since +\begin_inset Formula $a^{e}\equiv0$ +\end_inset + +, + so +\begin_inset Formula $\mu\leq e$ +\end_inset + +. + The value +\begin_inset Formula $\mu=e$ +\end_inset + + is reached when +\begin_inset Formula $(X_{0},a,c)=(1,p,0)$ +\end_inset + +. + Summing up, + the maximum for +\begin_inset Formula $m=p_{1}^{e_{1}}\cdots p_{t}^{e_{t}}$ +\end_inset + + is +\begin_inset Formula $\max\{e_{1},\dots,e_{t}\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc9[M22] +\end_layout + +\end_inset + +(W. + E. + Thompson.) When +\begin_inset Formula $c=0$ +\end_inset + + and +\begin_inset Formula $m=2^{e}\geq16$ +\end_inset + +, + Theorems B and C say that the period has length +\begin_inset Formula $2^{e-2}$ +\end_inset + + if and only if the multiplier +\begin_inset Formula $a$ +\end_inset + + satisfies +\begin_inset Formula $a\bmod8=3$ +\end_inset + + or +\begin_inset Formula $a\bmod8=5$ +\end_inset + +. + Show that every such sequence is essentially a linear congruential sequence with +\begin_inset Formula $m=2^{e-2}$ +\end_inset + +, + having +\emph on +full +\emph default + period, + in the following sense: +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $X_{n+1}=(4c+1)X_{n}\bmod2^{e}$ +\end_inset + +, + and +\begin_inset Formula $X_{n}=4Y_{n}+1$ +\end_inset + +, + then +\begin_inset Formula +\[ +Y_{n+1}=((4c+1)Y_{n}+c)\bmod2^{e-2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $X_{n+1}=(4c-1)X_{n}\bmod2^{e}$ +\end_inset + +, + and +\begin_inset Formula $X_{n}=((-1)^{n}(4Y_{n}+1))\bmod2^{e}$ +\end_inset + +, + then +\begin_inset Formula +\[ +Y_{n+1}=((1-4c)Y_{n}-c)\bmod2^{e-2}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We start with +\begin_inset Formula $(Y_{n})_{n}$ +\end_inset + + as defined and see that +\begin_inset Formula $(X_{n})_{n}$ +\end_inset + + calculated from there matches the initial definition of +\begin_inset Formula $(X_{n})_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula $Y_{n}=\left((4c+1)^{n}Y_{0}+\frac{(4c+1)^{n}-1}{4\cancel{c}}\cancel{c}\right)\bmod2^{e-2}$ +\end_inset + +, + so +\begin_inset Formula +\[ +4Y_{n}+1\equiv(4Y_{0}+1)(4c+1)^{n}\equiv(4c+1)^{n}X_{0}\equiv X_{n}\pmod{2^{e}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula $Y_{n}=\left((1-4c)^{n}Y_{0}-\frac{(1-4c)^{n}-1}{-4c}c\right)\bmod2^{e-2}$ +\end_inset + +, + so +\begin_inset Formula +\begin{multline*} +(-1)^{n}(4Y_{n}+1)\equiv(-1)^{n}\left(4(1-4c)^{n}Y_{0}+(1-4c)^{n}\right)=(4Y_{0}+1)(4c-1)^{n}=\\ +=(4c-1)^{n}X_{0}\equiv X_{n+1}\pmod{2^{e}}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc16[M24] +\end_layout + +\end_inset + + +\emph on +(Existence of primitive roots.) +\emph default + Let +\begin_inset Formula $p$ +\end_inset + + be a prime number. +\end_layout + +\begin_layout Enumerate +Consider the polynomial +\begin_inset Formula $f(x)=x^{n}+c_{1}x^{n-1}+\dots+c_{n}$ +\end_inset + +, + where the +\begin_inset Formula $c$ +\end_inset + +'s are integers. + Given that +\begin_inset Formula $a$ +\end_inset + + is an integer for which +\begin_inset Formula $f(a)\equiv0\pmod p$ +\end_inset + +, + show that there exists a polynomial +\begin_inset Formula +\[ +q(x)=x^{n-1}+q_{1}x^{n-2}+\dots+q_{n-1} +\] + +\end_inset + +with integer coefficients such that +\begin_inset Formula $f(x)\equiv(x-a)q(x)\pmod p$ +\end_inset + + for all integers +\begin_inset Formula $x$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Let +\begin_inset Formula $f(x)$ +\end_inset + + be a polynomial as in (1). + Show that +\begin_inset Formula $f(x)$ +\end_inset + + has at most +\begin_inset Formula $n$ +\end_inset + + distinct +\begin_inset Quotes eld +\end_inset + +roots +\begin_inset Quotes erd +\end_inset + + modulo +\begin_inset Formula $p$ +\end_inset + +; + that is, + there are at most +\begin_inset Formula $n$ +\end_inset + + integers +\begin_inset Formula $a$ +\end_inset + +, + with +\begin_inset Formula $0\leq a<p$ +\end_inset + +, + such that +\begin_inset Formula $f(a)\equiv0\pmod p$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Because of exercise 15(2), + the polynomial +\begin_inset Formula $f(x)=x^{\lambda(p)}-1$ +\end_inset + + has +\begin_inset Formula $p-1$ +\end_inset + + distinct roots; + hence there is an integer +\begin_inset Formula $a$ +\end_inset + + with order +\begin_inset Formula $p-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +It suffices to prove that, + for +\begin_inset Formula $f\in\mathbb{Z}_{p}[X]$ +\end_inset + + and +\begin_inset Formula $a\in\mathbb{Z}_{p}$ +\end_inset + + with +\begin_inset Formula $f(a)=0$ +\end_inset + +, + there exists +\begin_inset Formula $q\in\mathbb{Z}_{p}[X]$ +\end_inset + + such that +\begin_inset Formula $f(x)\equiv(x-a)q(x)$ +\end_inset + +, + since then, + for +\begin_inset Formula $f$ +\end_inset + + to have degree +\begin_inset Formula $n$ +\end_inset + + and leading coefficient 1, + +\begin_inset Formula $q$ +\end_inset + + must have degree +\begin_inset Formula $n-1$ +\end_inset + + and leading coefficient +\begin_inset Formula $q$ +\end_inset + +. + This is immediate for +\begin_inset Formula $f=0$ +\end_inset + +, + so we prove it by induction on the degree +\begin_inset Formula $n\geq0$ +\end_inset + + of +\begin_inset Formula $f$ +\end_inset + +. + If +\begin_inset Formula $n=0$ +\end_inset + +, + +\begin_inset Formula $f(a)=c_{0}\neq0\#$ +\end_inset + +, + so this follows trivially. + If +\begin_inset Formula $n>0$ +\end_inset + +, + let +\begin_inset Formula $g(x)\coloneqq f(x)-c_{0}(x-a)x^{n-1}$ +\end_inset + + is a polynomial of degree +\begin_inset Formula $n-1$ +\end_inset + + such that +\begin_inset Formula $g(a)=f(a)=0$ +\end_inset + +, + so by induction there exists +\begin_inset Formula $r\in\mathbb{Z}_{p}(x)$ +\end_inset + + with +\begin_inset Formula $g(x)=(x-a)r(x)$ +\end_inset + +. + But then +\begin_inset Formula $f(x)=g(x)+c_{0}(x-a)x^{n-1}=(x-a)(r(x)+c_{0}x^{n-1})$ +\end_inset + +. + Note that this proof is valid even when changing +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + to any other domain. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $a$ +\end_inset + + and +\begin_inset Formula $b$ +\end_inset + + are different roots of +\begin_inset Formula $f$ +\end_inset + +, + then +\begin_inset Formula $f(x)=(x-a)q(x)$ +\end_inset + + for some +\begin_inset Formula $q\in\mathbb{Z}_{p}[X]$ +\end_inset + +, + and +\begin_inset Formula $b$ +\end_inset + + is still a root of +\begin_inset Formula $q$ +\end_inset + + as, + if it wasn't, + it wouldn't be a root of +\begin_inset Formula $f$ +\end_inset + + either. + Therefore, + by induction, + a polynomial +\begin_inset Formula $f\in\mathbb{Z}_{p}[X]\setminus0$ +\end_inset + + with +\begin_inset Formula $n$ +\end_inset + + different roots has at least degree +\begin_inset Formula $n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Yes. + Trivial. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc20[M24] +\end_layout + +\end_inset + +(G. + Marsaglia.) The purpose of this exercise is to study the period length of an +\emph on +arbitrary +\emph default + linear congruential sequence. + Let +\begin_inset Formula $Y_{n}=1+a+\dots+a^{n-1}$ +\end_inset + +, + so that +\begin_inset Formula $X_{n}=(AY_{n}+X_{0})\bmod m$ +\end_inset + + for some constant +\begin_inset Formula $A$ +\end_inset + + by Eq. + 3.2.1–(8). +\end_layout + +\begin_layout Enumerate +Prove that the period length of +\begin_inset Formula $\langle X_{n}\rangle$ +\end_inset + + is the period length of +\begin_inset Formula $\langle Y_{n}\bmod m'\rangle$ +\end_inset + +, + where +\begin_inset Formula $m'=m/\gcd(A,m)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Prove that the period length of +\begin_inset Formula $\langle Y_{n}\bmod p^{e}\rangle$ +\end_inset + + satisfies the following when +\begin_inset Formula $p$ +\end_inset + + is prime: +\end_layout + +\begin_deeper +\begin_layout Enumerate +If +\begin_inset Formula $a\bmod p=0$ +\end_inset + +, + it is 1. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $a\bmod p=1$ +\end_inset + +, + it is +\begin_inset Formula $p^{e}$ +\end_inset + +, + except when +\begin_inset Formula $p=2$ +\end_inset + + and +\begin_inset Formula $e\geq2$ +\end_inset + + and +\begin_inset Formula $a\bmod4=3$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $p=2$ +\end_inset + +, + +\begin_inset Formula $e\geq2$ +\end_inset + +, + and +\begin_inset Formula $a\bmod4=3$ +\end_inset + +, + it is twice the order of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $p^{e}$ +\end_inset + + (see exercise 11), + unless +\begin_inset Formula $a\equiv-1\pmod{2^{e}}$ +\end_inset + + when it is 2. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $a\bmod p>1$ +\end_inset + +, + it is the order of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $p^{e}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +X_{n}=X_{n+m}\iff AY_{n}\equiv AY_{n+m}\pmod m\iff Y_{n}\equiv Y_{n+m}\pmod{m'}. +\] + +\end_inset + +Note that +\begin_inset Formula $\langle Y_{n}\bmod t\rangle$ +\end_inset + +, + +\begin_inset Formula $t\in\mathbb{Z}^{+}$ +\end_inset + +, + is the linear congruential sequence with +\begin_inset Formula $Y_{0}=0$ +\end_inset + +, + +\begin_inset Formula $c=1$ +\end_inset + +, + +\begin_inset Formula $a=a$ +\end_inset + +, + and +\begin_inset Formula $m=t$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +For +\begin_inset Formula $n\geq e-1$ +\end_inset + +, + +\begin_inset Formula $Y_{n}=(1+a+a^{2}+\dots+a^{e-1})\bmod p$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Then we're in the conditions of Theorem A. +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $e=2$ +\end_inset + +, + then +\begin_inset Formula $a\equiv-1\pmod 4$ +\end_inset + + and this part doesn't apply, + so we assume +\begin_inset Formula $e>2$ +\end_inset + +. + Let +\begin_inset Formula $\lambda$ +\end_inset + + be the order of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $2^{e}$ +\end_inset + +, + obviously +\begin_inset Formula $\lambda>1$ +\end_inset + +, + so +\begin_inset Formula +\begin{multline*} +Y_{k}=1+a+\dots+a^{k-1}=\frac{a^{k}-1}{a-1}\equiv Y_{0}=0\pmod{2^{e}}\iff\\ +\iff a^{k}-1\equiv0\pmod{2^{e}(a-1)}\iff2^{e}(a-1)\mid a^{k}-1. +\end{multline*} + +\end_inset + +The order +\begin_inset Formula $\lambda$ +\end_inset + + of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $2^{e}$ +\end_inset + + is the smallest number such that +\begin_inset Formula $2^{e}\mid a^{k}-1$ +\end_inset + +, + and in fact +\begin_inset Formula +\[ +2^{e}\mid a^{k}-1\iff a^{k}\equiv1\pmod{2^{e}}\iff\lambda\mid k. +\] + +\end_inset + +Exercise 11 gives us an unique +\begin_inset Formula $f>1$ +\end_inset + + such that +\begin_inset Formula $a\bmod2^{f+1}=2^{f}\pm1$ +\end_inset + +, + and then says that +\begin_inset Formula $\lambda=2^{e-f}$ +\end_inset + +. + This can be used to prove that +\begin_inset Formula $a^{\lambda}-1$ +\end_inset + + is not a multiple of +\begin_inset Formula $2^{e}(a-1)$ +\end_inset + +, + as if this were the case, + then +\begin_inset Formula $a^{\lambda-1}$ +\end_inset + + would be a multiple of +\begin_inset Formula $2^{e+1}$ +\end_inset + + because +\begin_inset Formula $a-1$ +\end_inset + + is even, + but by Exercise 11 the order of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $e+1$ +\end_inset + + is +\begin_inset Formula $2^{e+1-f}>\lambda\#$ +\end_inset + +. + However, + since +\begin_inset Formula $a^{\lambda}-1$ +\end_inset + + is a multiple of both +\begin_inset Formula $2^{e}$ +\end_inset + + and +\begin_inset Formula $a^{\lambda}-1$ +\end_inset + +, + it is a multiple of +\begin_inset Formula $\text{lcm}\{2^{e},a^{\lambda}-1\}=\frac{2^{e}(a^{\lambda}-1)}{2}$ +\end_inset + + and therefore +\begin_inset Formula $a^{2\lambda}-1=(a^{\lambda}-1)(a^{\lambda}+1)=(a^{\lambda}-1)^{2}+2(a^{\lambda}-1)$ +\end_inset + + is a multiple of +\begin_inset Formula $2^{e}(a^{\lambda}-1)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Like before, + +\begin_inset Formula $Y_{k}\equiv0\pmod{2^{e}}\iff p^{e}(a-1)\mid a^{k}-1$ +\end_inset + +. + This time, + however, + +\begin_inset Formula $\gcd\{a-1,p^{e}\}=1$ +\end_inset + +, + so +\begin_inset Formula $p^{e}(a-1)\mid a^{k}-1\iff p^{e},a-1\mid a^{k}-1\iff p^{e}\mid a^{k}-1$ +\end_inset + +, + and the lowest +\begin_inset Formula $k$ +\end_inset + + for which this happens is precisely the order of +\begin_inset Formula $a$ +\end_inset + + modulo +\begin_inset Formula $p^{e}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[M25] +\end_layout + +\end_inset + +Discuss the problem of finding moduli +\begin_inset Formula $m=b^{k}\pm b^{l}\pm1$ +\end_inset + + so that the subtract-with-borrow and add-with-carry generators of exercise 3.2.1.1–14 will have very long periods. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +First we would need the prime factorization of +\begin_inset Formula $m$ +\end_inset + +, + which is not easily characterized from +\begin_inset Formula $b$ +\end_inset + +, + +\begin_inset Formula $k$ +\end_inset + +, + and +\begin_inset Formula $l$ +\end_inset + +. + Once we have that we may apply Theorems A–C. + The solution in the book suggests looking for +\begin_inset Formula $m$ +\end_inset + + to be prime. +\end_layout + +\end_body +\end_document @@ -1904,6 +1904,29 @@ A10+R25 Choice of multiplier \end_layout +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "3.2.1.2.lyx" +literal "false" + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\family typewriter +A10+R25 +\end_layout + +\end_inset + + +\end_layout + \begin_layout Subsubsection Potency \end_layout |
