diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.11.2.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.11.2.lyx')
| -rw-r--r-- | vol1/1.2.11.2.lyx | 440 |
1 files changed, 440 insertions, 0 deletions
diff --git a/vol1/1.2.11.2.lyx b/vol1/1.2.11.2.lyx new file mode 100644 index 0000000..cd12585 --- /dev/null +++ b/vol1/1.2.11.2.lyx @@ -0,0 +1,440 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children no +\language american +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content true +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[HM20] +\end_layout + +\end_inset + +( +\emph on +Sums of powers. +\emph default +) When +\begin_inset Formula $f(x)=x^{m}$ +\end_inset + +, + the high-order derivatives of +\begin_inset Formula $f$ +\end_inset + + are all zero, + so Euler's summation formula gives an +\emph on +exact +\emph default + value for the sum +\begin_inset Formula +\[ +S_{m}(n)=\sum_{0\leq k<n}k^{m} +\] + +\end_inset + +in terms of Bernoulli numbers. + (It was the study of +\begin_inset Formula $S_{m}(n)$ +\end_inset + + for +\begin_inset Formula $m=1,2,3,\dots$ +\end_inset + + that led Bernoulli and Seki to discover those numbers in the first place.) Express +\begin_inset Formula $S_{m}(n)$ +\end_inset + + in terms of Bernoulli +\emph on +polynomials +\emph default +. + Check your answer for +\begin_inset Formula $m=0$ +\end_inset + +, + 1, + and 2. + (Note that the desired sum is performed for +\begin_inset Formula $0\leq k<n$ +\end_inset + + instead of +\begin_inset Formula $1\leq k<n$ +\end_inset + +; + Euler's summation formula may be applied with 0 replacing 1 throughout.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For +\begin_inset Formula $k\geq0$ +\end_inset + +, + we have +\begin_inset Formula $f^{(k)}(x)=m^{\underline{k}}x^{m-k}$ +\end_inset + +. + If +\begin_inset Formula $k<m$ +\end_inset + +, + this is nonzero except that +\begin_inset Formula $f^{(k)}(0)=0$ +\end_inset + +; + if +\begin_inset Formula $k=m$ +\end_inset + +, + +\begin_inset Formula $f^{(m)}(x)\equiv1$ +\end_inset + +, + and if +\begin_inset Formula $k>m$ +\end_inset + +, + +\begin_inset Formula $f^{(k)}(x)\equiv0$ +\end_inset + +. + Using Euler's summation formula, + when +\begin_inset Formula $m\geq1$ +\end_inset + +, +\begin_inset Formula +\[ +S_{m}(n)=\sum_{0\leq k<n}k^{m}=\int_{0}^{n}x^{m}\text{d}x+\sum_{k=1}^{m}\frac{B_{k}}{k!}m^{\underline{k-1}}n^{m-k+1}=\frac{n^{m+1}}{m+1}+\sum_{k=1}^{m}\frac{B_{k}}{m-k+1}\binom{m}{k}n^{m-k+1}. +\] + +\end_inset + +Then, +\begin_inset Formula +\[ +S'_{m}(n)=n^{m}+\sum_{k=1}^{m}B_{k}\binom{m}{k}n^{m-k}=\sum_{k}B_{k}\binom{m}{k}n^{m-k}=B_{m}(x), +\] + +\end_inset + +which means that +\begin_inset Formula +\[ +\int_{0}^{n}B_{m}=(S_{m}(n)-S_{m}(0))=S_{m}(n) +\] + +\end_inset + + and therefore, +\begin_inset Formula +\[ +S_{m}(n)=\int_{0}^{n}B_{m}. +\] + +\end_inset + +Now we check the solution, + and in particular we check that this works for +\begin_inset Formula $m=0$ +\end_inset + + as well: +\begin_inset Formula +\begin{align*} +\int_{0}^{n}B_{0} & =\int_{0}^{n}\text{d}x=n-0=n, & S_{0}(n) & =\sum_{0\leq k<n}1=n;\\ +\int_{0}^{n}B_{1} & =\int_{0}^{n}(x-\tfrac{1}{2})\text{d}x=\frac{n^{2}-n}{2}, & S_{1}(n) & =\sum_{0\leq k<n}k=\frac{n(n-1)}{2};\\ +\int_{0}^{n}B_{2} & =\int_{0}^{n}(x^{2}-x+\tfrac{1}{6})\text{d}x=\frac{2n^{3}-3n^{2}+n}{6}, +\end{align*} + +\end_inset + +and we check the last result we use induction. + For +\begin_inset Formula $n=0$ +\end_inset + +, + +\begin_inset Formula $S_{2}(0)=0$ +\end_inset + +. + For +\begin_inset Formula $n\geq0$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +S_{2}(n) & =\frac{1}{6}\left(2(n-1)^{3}-3(n-1)^{2}+(n-1)\right)+(n-1)^{2}\\ + & =\frac{1}{6}\left(2n^{3}\cancel{-6n^{2}}\cancel{+6n}\cancel{-2}-3n^{2}\cancel{+6n}\cancel{-3}+n\cancel{-1}\cancel{+6n^{2}}\cancel{-12n}\cancel{+6}\right)=\int_{0}^{n}B_{2}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc9[M25] +\end_layout + +\end_inset + +Find the asymptotic value of +\begin_inset Formula $\binom{2n}{n}$ +\end_inset + + with a relative error of +\begin_inset Formula $O(n^{-3})$ +\end_inset + +, + in two ways: +\end_layout + +\begin_layout Enumerate +via Stirling's approximation; +\end_layout + +\begin_layout Enumerate +via exercise 1.2.6–47 and Eq. + 1.2.11.1–(16). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +We have, +\begin_inset Formula +\[ +\binom{2n}{n}=\frac{(2n)!}{n!^{2}}, +\] + +\end_inset + +so +\begin_inset Formula +\begin{multline*} +\ln\binom{2n}{n}=\ln(2n)!-2\ln(n!)=\\ +=(2n+\tfrac{1}{2})\ln(2n)-2n+\sigma+\frac{1}{24n}-(2n+1)\ln n+2n-2\sigma-\frac{1}{6n}+O(n^{-3})=\\ +=(2n+\tfrac{1}{2})(\ln n+\ln2)-(2n+1)\ln n-\sigma-\frac{1}{8n}+O(n^{-3})=\\ +=(2n+\tfrac{1}{2})\ln2-\frac{\ln n}{2}-\sigma-\frac{1}{8n}+O(n^{-3}), +\end{multline*} + +\end_inset + +and therefore +\begin_inset Formula +\[ +\binom{2n}{n}=\exp(\cdots)=\frac{2^{2n}}{\sqrt{\pi n}}\left(1-\frac{1}{8n}+\frac{1}{128n^{2}}+O(n^{3})\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution.) +\end_layout + +\end_inset + +Exercise 1.2.6–47, + when +\begin_inset Formula $r=-1/2$ +\end_inset + +, + the first identity simplifies to +\begin_inset Formula +\[ +(-1)^{k}\binom{-\frac{1}{2}}{k}=(-1)^{k}\binom{-k-1}{k}\Bigg/4^{k}=\binom{2k}{k}\Bigg/4^{k}. +\] + +\end_inset + +Thus, + using Eq. + 1.2.6–(21), +\begin_inset Formula +\begin{multline*} +\binom{2n}{n}=4^{n}(-1)^{n}\binom{-\frac{1}{2}}{n}=4^{n}\binom{n-\frac{1}{2}}{n}=4^{n}\frac{\Gamma(n+\frac{1}{2})}{\Gamma(n+1)\Gamma(\frac{1}{2})}=4^{k}\frac{\Gamma(n+\frac{1}{2})}{n\Gamma(n)\sqrt{\pi}}=\\ +=\frac{4^{n}n^{\overline{1/2}}}{n\sqrt{\pi}}=\frac{2^{2n}}{n\sqrt{\pi}}\left(\stirla{1/2}{1/2}n^{1/2}+\stirla{1/2}{-1/2}n^{-1/2}+\stirla{1/2}{-3/2}n^{-3/2}+O(n^{-5/2})\right). +\end{multline*} + +\end_inset + +Using Eqs. + 1.2.6–(48), + (49), + and (57), +\begin_inset Formula +\begin{align*} +\stirla{1/2}{1/2} & =1,\\ +\stirla{1/2}{-1/2} & =\binom{1/2}{2}=\frac{\frac{1}{2}(-\frac{1}{2})}{2}=-\frac{1}{8},\\ +\stirla{1/2}{-3/2} & =\binom{1/2}{4}+2\binom{3/2}{4}=\frac{-\frac{15}{16}}{24}+2\frac{\frac{9}{16}}{24}=\frac{3}{16\cdot24}=\frac{1}{128}, +\end{align*} + +\end_inset + +so in the end, +\begin_inset Formula +\[ +\binom{2n}{n}=\frac{2^{2n}}{\sqrt{\pi n}}\left(1-\frac{1}{8n}+\frac{1}{128n^{2}}+O(n^{-3})\right). +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
