diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.3.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.3.lyx')
| -rw-r--r-- | vol1/1.2.3.lyx | 1732 |
1 files changed, 1732 insertions, 0 deletions
diff --git a/vol1/1.2.3.lyx b/vol1/1.2.3.lyx new file mode 100644 index 0000000..0648fc2 --- /dev/null +++ b/vol1/1.2.3.lyx @@ -0,0 +1,1732 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc1[10] +\end_layout + +\end_inset + +The text says that +\begin_inset Formula $a_{1}+a_{2}+\dots+a_{0}=0$ +\end_inset + +. + What then, + is +\begin_inset Formula $a_{2}+\dots+a_{0}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We could set that to be +\begin_inset Formula $-a_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[01] +\end_layout + +\end_inset + +What does the notation +\begin_inset Formula $\sum_{1\leq j\leq n}a_{j}$ +\end_inset + + mean, + if +\begin_inset Formula $n=3.14$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $a_{1}+a_{2}+a_{3}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc3[13] +\end_layout + +\end_inset + +Without using the +\begin_inset Formula $\sum$ +\end_inset + +-notation, + write out the equivalent of +\begin_inset Formula +\[ +\sum_{0\leq n\leq5}\frac{1}{2n+1}, +\] + +\end_inset + +and also the equivalent of +\begin_inset Formula +\[ +\sum_{0\leq n^{2}\leq5}\frac{1}{2n^{2}+1}. +\] + +\end_inset + +Explain why the two results are different, + in spite of rule (b). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +\sum_{0\leq n\leq5}\frac{1}{2n+1} & = & \frac{1}{1}+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\frac{1}{9}+\frac{1}{11},\\ +\sum_{0\leq n^{2}\leq5}\frac{1}{2n^{2}+1} & = & \frac{1}{9}+\frac{1}{3}+\frac{1}{1}+\frac{1}{3}+\frac{1}{9}, +\end{eqnarray*} + +\end_inset + +as the integers with +\begin_inset Formula $0\leq n^{2}\leq5$ +\end_inset + + are +\begin_inset Formula $\{-2,-1,0,1,2\}$ +\end_inset + +. + Rule (b) states that a permutation of the integers satisfying the condition doesn't alter the result, + but because +\begin_inset Formula $n\mapsto n^{2}$ +\end_inset + + is not a permutation of such +\emph on +integers +\emph default +, + the rule doesn't apply. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[10] +\end_layout + +\end_inset + +Without using the +\begin_inset Formula $\sum$ +\end_inset + +-notation, + write out the equivalent of each side of Eq. + (10) as a sum of sums for the case +\begin_inset Formula $n=3$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $a_{11}+a_{21}+a_{22}+a_{31}+a_{32}+a_{33}=a_{11}+a_{21}+a_{31}+a_{22}+a_{32}+a_{33}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[HM20] +\end_layout + +\end_inset + +Prove that rule (a) is valid for arbitrary infinite series, + provided that the series converge. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Since infinite series are defined for cases where the total number of nonzero elements is at most countable, + we might assume that the series are indexed by positive integers. + Thus, + we'd have to prove that +\begin_inset Formula +\[ +\left(\sum_{i=1}^{\infty}a_{i}\right)\left(\sum_{j=1}^{\infty}b_{j}\right)=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{i}b_{j}, +\] + +\end_inset + +assuming that the relevant series converge. + We have +\end_layout + +\begin_layout Standard +\begin_inset Formula +\[ +\left(\sum_{i=0}^{\infty}a_{i}\right)\left(\sum_{j=0}^{\infty}b_{j}\right)=\sum_{i=0}^{\infty}\left(a_{i}\sum_{j=0}^{\infty}b_{j}\right)=\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}b_{j}, +\] + +\end_inset + +by entering the second series as a constant into the first series (because it converges) and then entering the element of the first series, + considered as a constant, + into the inner series. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc9[05] +\end_layout + +\end_inset + +Is the derivation of Eq. + (14) valid even if +\begin_inset Formula $n=-1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The result is +\begin_inset Formula +\[ +\sum_{0\leq j\leq-1}ax^{j}=0=a\left(\frac{1-x^{0}}{1-x}\right), +\] + +\end_inset + +which is correct. + However, + the derivation is not correct as the rule (d) cannot be applied, + because the applications in the derivation assume +\begin_inset Formula $n\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc10[05] +\end_layout + +\end_inset + +Is the derivation of Eq. + (14) valid even if +\begin_inset Formula $n=-2$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +No (see previous exercise). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc11[03] +\end_layout + +\end_inset + +What should the right-hand side of Eq. + (14) be if +\begin_inset Formula $x=1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Mere substitution in the original formula yields an undefined result, + but it's clear that +\begin_inset Formula +\[ +\sum_{0\leq j\leq n}a\cdot1^{j}=\sum_{0\leq j\leq n}a=(n+1)a. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc12[10] +\end_layout + +\end_inset + +What is +\begin_inset Formula $1+\frac{1}{7}+\frac{1}{49}+\frac{1}{343}+\dots+\left(\frac{1}{7}\right)^{n}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +By Eq. + (14), + this is +\begin_inset Formula +\[ +\sum_{k=0}^{n}\left(\frac{1}{7}\right)^{k}=\left(\frac{1-\left(\frac{1}{7}\right)^{n+1}}{1-\frac{1}{7}}\right)=\frac{1-\left(\frac{1}{7}\right)^{n+1}}{\frac{6}{7}}=\frac{7}{6}\left(1-\frac{1}{7^{n+1}}\right). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc13[10] +\end_layout + +\end_inset + +Using Eq. + (15) and assuming that +\begin_inset Formula $m\leq n$ +\end_inset + +, + evaluate +\begin_inset Formula $\sum_{j=m}^{n}j$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{multline*} +\sum_{m\leq j\leq n}j=\sum_{m\leq j+m\leq n}(j+m)=\sum_{0\leq j\leq n-m}(m+j)=\\ +=m(n-m+1)+\frac{1}{2}(n-m)(n-m+1)=\frac{1}{2}(n(n+1)-m(m-1)). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc14[11] +\end_layout + +\end_inset + +Using the result of the previous exercise, + evaluate +\begin_inset Formula $\sum_{j=m}^{n}\sum_{k=r}^{s}jk$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{multline*} +\sum_{j=m}^{n}\sum_{k=r}^{s}jk=\left(\sum_{j=m}^{n}j\right)\left(\sum_{k=r}^{s}k\right)=\\ +=\frac{1}{4}(n(n+1)-m(m-1))(s(s+1)-r(r-1)). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc15[M22] +\end_layout + +\end_inset + +Compute the sum +\begin_inset Formula $1\times2+2\times2^{2}+3\times2^{3}+\dots+n\times2^{n}$ +\end_inset + + for small values of +\begin_inset Formula $n$ +\end_inset + +. + Do you see the pattern developing in these numbers? + If not, + discover it by manipulations similar to those leading up to Eq. + (14). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $\tau(n)$ +\end_inset + + be such a such sum +\begin_inset Formula +\begin{align*} +\tau(1) & =2, & \tau(2) & =2+8=10, & \tau(3) & =10+24=34,\\ +\tau(4) & =34+64=98, & \tau(5) & =98+160=258, & & \dots +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Now, +\begin_inset Formula +\begin{align*} +\tau(n) & =\sum_{1\leq k\leq n}k2^{k} & & \text{by definition}\\ + & =\sum_{0\leq k\leq n-1}(k+1)2^{k+1} & & \text{by rule (b)}\\ + & =2\sum_{0\leq k\leq n-1}(k+1)2^{k} & & \text{by a special case of (a)}\\ + & =2\left(\sum_{0\leq k\leq n-1}k2^{k}+\sum_{0\leq k\leq n-1}2^{k}\right) & & \text{by rule (c)}\\ + & =2\left(\sum_{0\leq k\leq n}k2^{k}-n2^{n}+(2^{n}-1)\right) & & \text{by rule (d) and Eq. (14)}\\ + & =2\left(\sum_{1\leq k\leq n}k2^{k}-n2^{n}+(2^{n}-1)\right) & & \text{by rule (d)} +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +This means +\begin_inset Formula $\tau(n)=2(\tau(n)-n2^{n}+2^{n}-1)=2\tau(n)-n2^{n+1}+2^{n+1}-2$ +\end_inset + +, + so +\begin_inset Formula +\[ +\tau(n)=n2^{n+1}-2^{n+1}+2=(n-1)2^{n+1}+2. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc17[M00] +\end_layout + +\end_inset + +Let +\begin_inset Formula $S$ +\end_inset + + be a set of integers. + What is +\begin_inset Formula $\sum_{j\in S}1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $|S|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc20[25] +\end_layout + +\end_inset + +Dr. + I. + J. + Matrix has observed a remarkable sequence of formulas: +\begin_inset Formula +\begin{align*} +9\times1+2 & =11, & 9\times12+3 & =111,\\ +9\times123+4 & =1111, & 9\times1234+5 & =11111. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Write the good doctor's great discovery in terms of the +\begin_inset Formula $\sum$ +\end_inset + +-notation. +\end_layout + +\begin_layout Enumerate +Your answer to part (a) undoubtedly involves the number 10 as base of the decimal system; + generalize this formula so that you get a formula that will perhaps work in any base +\begin_inset Formula $b$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Prove your formula from part (b) by using formulas derived in the text or in exercise 16 above. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +For +\begin_inset Formula $n\geq1$ +\end_inset + +, + +\begin_inset Formula +\[ +9\sum_{j=0}^{n-1}10^{j}(n-j)+n+1=\sum_{j=0}^{n}10^{j}. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +(b-1)\sum_{j=0}^{n-1}b^{j}(n-j)+n+1=\sum_{j=0}^{n}b^{j}. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula +\begin{eqnarray*} +\sum_{j=0}^{n-1}b^{j}(n-j) & = & n\sum_{j=0}^{n-1}b^{j}-\sum_{j=0}^{n-1}jb^{j}\\ + & = & n\frac{1-b^{n}}{1-b}-\frac{(n-1)b^{n+1}-nb^{n}+b}{(b-1)^{2}}\\ + & = & n\frac{b^{n}-1}{b-1}-\frac{(n-1)b^{n+1}-nb^{n}+b}{(b-1)^{2}}, +\end{eqnarray*} + +\end_inset + +so +\begin_inset Formula +\begin{align*} + & (b-1)\sum_{j=0}^{n-1}b^{j}(n-j)+n+1\\ + & =n(b^{n}-1)-\frac{(n-1)b^{n+1}-nb^{n}+b}{b-1}+n+1\\ + & =\frac{n(b^{n}-1)(b-1)-(n-1)b^{n+1}+nb^{n}-b+n(b-1)+b-1}{b-1}\\ + & =\frac{nb^{n+1}-nb^{n}-nb+n-nb^{n+1}+b^{n+1}+nb^{n}-b+nb-n+b-1}{b-1}\\ + & =\frac{b^{n+1}-1}{b-1}=\frac{1-b^{n+1}}{b-1}=\sum_{j=0}^{n}b^{j}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc21[M25] +\end_layout + +\end_inset + +Derive rule (d) from (8) and (17). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{multline*} +\sum_{R(j)}a_{j}+\sum_{S(j)}a_{j}=\sum_{j}a_{j}[R(j)]+\sum_{j}a_{j}[S(j)]=\sum_{j}a_{j}([R(j)]+[S(j)])=\\ +\sum_{j}a_{j}([R(j)\lor S(j)]+[R(j)\land S(j)])=\sum_{R(j)\lor S(j)}a_{j}+\sum_{R(j)\land S(j)}a_{j}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[20] +\end_layout + +\end_inset + +State the appropriate analogs of Eqs. + (5), + (7), + (8), + and (11) for +\emph on +products +\emph default + instead of sums. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +\prod_{R(i)}a_{i} & =\prod_{R(j)}a_{j}=\prod_{R(p(j))}a_{p(j)}, & \prod_{R(i)}\prod_{S(j)}a_{ij} & =\prod_{S(j)}\prod_{R(i)}a_{ij},\\ +\prod_{R(i)}b_{i}c_{i} & =\prod_{R(i)}b_{i}+\prod_{R(i)}c_{i}, & \prod_{R(j)}a_{j}\prod_{S(j)}a_{j} & =\prod_{R(j)\lor S(j)}a_{j}\prod_{R(j)\land S(j)}a_{j}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc23[10] +\end_layout + +\end_inset + +Explain why it is a good idea to define +\begin_inset Formula $\sum_{R(j)}a_{j}$ +\end_inset + + and +\begin_inset Formula $\prod_{R(j)}a_{j}$ +\end_inset + + as zero and one, + respectively, + when no integers satisfy +\begin_inset Formula $R(j)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Zero and one are the neutral terms for sum and product, + respectively, + so by defining it this way, + rule (d) (among others) applies independently of whether there are integers satisfying the properties or not. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc25[15] +\end_layout + +\end_inset + +Consider the following derivation; + is anything amiss? +\begin_inset Formula +\[ +\left(\sum_{i=1}^{n}a_{i}\right)\left(\sum_{j=1}^{n}\frac{1}{a_{j}}\right)=\sum_{1\leq i\leq n}\sum_{1\leq j\leq n}\frac{a_{i}}{a_{j}}=\sum_{1\leq i\leq n}\sum_{1\leq i\leq n}\frac{a_{i}}{a_{i}}=\sum_{i=1}^{n}1=n. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +First, + the change of variable on the second equality is invalid since it changes to a bound variable, + not to a free variable. + Second, + it then converts the double summation into a single summation, + which is invalid too. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc29[M30] +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Express +\begin_inset Formula $\sum_{i=0}^{n}\sum_{j=0}^{i}\sum_{k=0}^{j}a_{i}a_{j}a_{k}$ +\end_inset + + in terms of the multiple-sum notation explained at the end of the section. +\end_layout + +\begin_layout Enumerate +Express the same sum in terms of +\begin_inset Formula $\sum_{i=0}^{n}a_{i}$ +\end_inset + +, + +\begin_inset Formula $\sum_{i=0}^{n}a_{i}^{2}$ +\end_inset + +, + and +\begin_inset Formula $\sum_{i=0}^{n}a_{i}^{3}$ +\end_inset + + [see Eq. + (13)]. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\sum_{0\leq k\leq j\leq i\leq n}a_{i}a_{j}a_{k}. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\noindent +We have +\begin_inset Formula +\begin{align*} +S & :=\sum_{i=0}^{n}\sum_{j=0}^{i}\sum_{k=0}^{j}a_{i}a_{j}a_{k}=\sum_{i=0}^{n}\sum_{j=0}^{i}\sum_{k=j}^{i}a_{i}a_{j}a_{k}\\ + & =\sum_{i=0}^{n}\sum_{j=i}^{n}\sum_{k=0}^{i}a_{i}a_{j}a_{k}=\sum_{i=0}^{n}\sum_{j=0}^{i}\sum_{k=i}^{n}a_{i}a_{j}a_{k}\\ + & =\sum_{i=0}^{n}\sum_{j=i}^{n}\sum_{k=i}^{j}a_{i}a_{j}a_{k}=\sum_{i=0}^{n}\sum_{j=i}^{n}\sum_{k=j}^{n}a_{i}a_{j}a_{k}. +\end{align*} + +\end_inset + +Thus, +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +bgroup +\backslash +small +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +6S & = & \sum_{i=0}^{n}\sum_{j=0}^{i}\left(\sum_{k=0}^{j}a_{i}a_{j}a_{k}+\sum_{k=j}^{i}a_{i}a_{j}a_{k}+\sum_{k=i}^{n}a_{i}a_{j}a_{k}\right)\\ + & & +\sum_{i=0}^{n}\sum_{j=i}^{n}\left(\sum_{k=0}^{i}a_{i}a_{j}a_{k}+\sum_{k=i}^{j}a_{i}a_{j}a_{k}+\sum_{i=j}^{n}a_{i}a_{j}a_{k}\right)\\ + & = & \sum_{i=0}^{n}\left(\sum_{j=0}^{i}\left(\sum_{k=0}^{n}a_{i}a_{j}a_{k}+a_{i}a_{j}^{2}+a_{i}^{2}a_{j}\right)+\sum_{j=i}^{n}\left(\sum_{k=0}^{n}a_{i}a_{j}a_{k}+a_{i}a_{j}^{2}+a_{j}^{2}a_{i}\right)\right)\\ + & = & \sum_{i=0}^{n}\left(\sum_{j=0}^{n}\left(\sum_{k=0}^{n}a_{i}a_{j}a_{k}+a_{i}a_{j}^{2}+a_{i}^{2}a_{j}\right)+\sum_{k=0}^{n}a_{i}^{2}a_{k}+a_{i}^{3}+a_{i}^{3}\right)\\ + & = & \sum_{i=0}^{n}\sum_{j=0}^{n}\sum_{k=0}^{n}a_{i}a_{j}a_{k}+\sum_{i=0}^{n}\sum_{j=0}^{n}a_{i}a_{j}^{2}+\sum_{i=0}^{n}\sum_{j=0}^{n}a_{i}^{2}a_{j}+\sum_{i=0}^{n}\sum_{k=0}^{n}a_{i}^{2}a_{k}+2\sum_{i=0}^{n}a_{i}^{3}\\ + & = & \left(\sum_{i=0}^{n}a_{i}\right)^{3}+\left(\sum_{i=0}^{n}a_{i}\right)\left(\sum_{i=0}^{n}a_{i}^{2}\right)+\left(\sum_{i=0}^{n}a_{i}^{2}\right)\left(\sum_{i=0}^{n}a_{i}\right)\\ + & & +\left(\sum_{i=0}^{n}a_{i}^{2}\right)\left(\sum_{i=0}^{n}a_{i}\right)+2\sum_{i=0}^{n}a_{i}^{3}\\ + & = & \left(\sum_{i=0}^{n}a_{i}\right)^{3}+3\left(\sum_{i=0}^{n}a_{i}\right)\left(\sum_{i=0}^{n}a_{i}^{2}\right)+2\left(\sum_{i=0}^{n}a_{i}^{3}\right). +\end{eqnarray*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +egroup +\end_layout + +\end_inset + +This means +\begin_inset Formula +\[ +S=\frac{1}{6}\left(\sum_{i=0}^{n}a_{i}\right)^{3}+\frac{1}{2}\left(\sum_{i=0}^{n}a_{i}\right)\left(\sum_{i=0}^{n}a_{i}^{2}\right)+\frac{1}{3}\left(\sum_{i=0}^{n}a_{i}^{3}\right). +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc30[M23] +\end_layout + +\end_inset + +(J. + Binet, + 1812.) Without using induction, + prove the identity +\begin_inset Formula +\[ +\left(\sum_{j=1}^{n}a_{j}x_{j}\right)\left(\sum_{j=1}^{n}b_{j}y_{j}\right)=\left(\sum_{j=1}^{n}a_{j}y_{j}\right)\left(\sum_{j=1}^{n}b_{j}x_{j}\right)+\sum_{1\leq j<k\leq n}(a_{j}b_{k}-a_{k}b_{j})(x_{j}y_{k}-x_{k}y_{j}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +\left(\sum_{j=1}^{n}a_{j}x_{j}\right)\left(\sum_{j=1}^{n}b_{j}y_{j}\right) & = & \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}x_{i}y_{j}\\ + & = & \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}(x_{j}y_{i}-x_{j}y_{i}+x_{i}y_{j})\\ + & = & \sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}x_{j}y_{i}+\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i})\\ + & = & \left(\sum_{j=1}^{n}a_{j}y_{j}\right)\left(\sum_{j=1}^{n}b_{j}x_{j}\right)+\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i}), +\end{eqnarray*} + +\end_inset + +but +\begin_inset Formula +\begin{eqnarray*} +\sum_{i=1}^{n}\sum_{j=1}^{n}a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i}) & = & \sum_{1\leq j<i\leq n}a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i})+\sum_{1\leq i<j\leq n}a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i})\\ + & = & \sum_{1\leq i<j\leq n}(a_{j}b_{i}(x_{j}y_{i}-x_{i}y_{j})+a_{i}b_{j}(x_{i}y_{j}-x_{j}y_{i}))\\ + & = & \sum_{1\leq j<k\leq n}(a_{j}b_{k}-a_{k}b_{j})(x_{j}y_{k}-x_{k}y_{j}). +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc33[M30] +\end_layout + +\end_inset + +One evening Dr. + Matrix discovered some formulas that might even be classed as more remarkable than those of exercise 20: +\end_layout + +\begin_layout Plain Layout +\begin_inset Formula +\begin{align*} +\frac{1}{(a-b)(a-c)}+\frac{1}{(b-a)(b-c)}+\frac{1}{(c-a)(c-b)} & =0,\\ +\frac{a}{(a-b)(a-c)}+\frac{b}{(b-a)(b-c)}+\frac{c}{(c-a)(c-b)} & =0,\\ +\frac{a^{2}}{(a-b)(a-c)}+\frac{b^{2}}{(b-a)(b-c)}+\frac{c^{2}}{(c-a)(c-b)} & =1,\\ +\frac{a^{3}}{(a-b)(a-c)}+\frac{b^{3}}{(b-a)(b-c)}+\frac{c^{3}}{(c-a)(c-b)} & =a+b+c. +\end{align*} + +\end_inset + +Prove that these formulas are a special case of a general law; + let +\begin_inset Formula $x_{1},x_{2},\dots,x_{n}$ +\end_inset + + be distinct numbers, + and show that +\begin_inset Formula +\[ +\sum_{j=1}^{n}\Bigg(x_{j}^{r}\Bigg/\prod_{\begin{subarray}{c} +1\leq k\leq n\\ +k\neq j +\end{subarray}}(x_{j}-x_{k})\Bigg)=\begin{cases} +0, & \text{if }0\leq r<n-1;\\ +1, & \text{if }r=n-1;\\ +{\textstyle \sum_{j=1}^{n}x_{j}}, & \text{if }r=n. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc37[M24] +\end_layout + +\end_inset + +Show that the determinant of Vandermonde's matrix is +\begin_inset Formula +\[ +\prod_{1\leq j\leq n}x_{j}\prod_{1\leq i<j\leq n}(x_{j}-x_{i}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We show this by induction. + For +\begin_inset Formula $n=1$ +\end_inset + +, + this is obvious. + For +\begin_inset Formula $n>1$ +\end_inset + +, + assuming this holds for +\begin_inset Formula $n-1$ +\end_inset + +, + subtracting from each row the previous one multiplied by +\begin_inset Formula $x_{1}$ +\end_inset + +, + expanding by cofactors, + factoring out, + and applying the induction hypothesis, + we have +\begin_inset Formula +\begin{eqnarray*} +\left|\begin{array}{cccc} +x_{1} & x_{2} & \cdots & x_{n}\\ +x_{1}^{2} & x_{2}^{2} & \cdots & x_{n}^{2}\\ +\vdots & \vdots & & \vdots\\ +x_{1}^{n} & x_{2}^{n} & \cdots & x_{n}^{n} +\end{array}\right| & = & \left|\begin{array}{cccc} +x_{1} & x_{2} & \cdots & x_{n}\\ +0 & x_{2}(x_{2}-x_{1}) & \cdots & x_{n}(x_{n}-x_{1})\\ +\vdots & \vdots & & \vdots\\ +0 & x_{2}^{n-1}(x_{2}-x_{1}) & \cdots & x_{n}^{n-1}(x_{n}-x_{1}) +\end{array}\right|\\ + & = & x_{1}\left|\begin{array}{ccc} +x_{2}(x_{2}-x_{1}) & \cdots & x_{n}(x_{n}-x_{1})\\ +\vdots & & \vdots\\ +x_{2}^{n-1}(x_{2}-x_{1}) & \cdots & x_{n}^{n-1}(x_{n}-x_{1}) +\end{array}\right|\\ + & = & x_{1}(x_{2}-x_{1})\cdots(x_{n}-x_{1})\left|\begin{array}{ccc} +x_{2} & \cdots & x_{n}\\ +\vdots & & \vdots\\ +x_{2}^{n-1} & \cdots & x_{n}^{n-1} +\end{array}\right|\\ + & = & x_{1}\prod_{2\leq j\leq n}(x_{j}-x_{1})\prod_{2\leq j\leq n}x_{j}\prod_{2\leq i<j\leq n}(x_{j}-x_{i})\\ + & = & \prod_{1\leq j\leq n}x_{j}\prod_{1\leq i<j\leq n}(x_{j}-x_{i}). +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc38[M25] +\end_layout + +\end_inset + +Show that the determinant of Cauchy's matrix is +\begin_inset Formula +\[ +\prod_{1\leq i<j\leq n}(x_{j}-x_{i})(y_{j}-y_{i})\Bigg/\prod_{1\leq i,j\leq n}(x_{i}+y_{j}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We prove it by induction. + For +\begin_inset Formula $n=1$ +\end_inset + +, + this is obvious. + Now assume +\begin_inset Formula $n>1$ +\end_inset + + and that the hypothesis holds for +\begin_inset Formula $n-1$ +\end_inset + +. + Multiplying each row +\begin_inset Formula $i$ +\end_inset + + by +\begin_inset Formula $\frac{x_{1}+y_{1}}{x_{i}+y_{1}}$ +\end_inset + + times the first row, + we get +\begin_inset Formula +\begin{multline*} +\left|\begin{array}{cccc} +\frac{1}{x_{1}+y_{1}} & \frac{1}{x_{1}+y_{2}} & \cdots & \frac{1}{x_{1}+y_{n}}\\ +\frac{1}{x_{2}+y_{1}} & \frac{1}{x_{2}+y_{2}} & \cdots & \frac{1}{x_{2}+y_{n}}\\ +\vdots & \vdots & & \vdots\\ +\frac{1}{x_{n}+y_{1}} & \frac{1}{x_{n}+y_{2}} & \cdots & \frac{1}{x_{n}+y_{n}} +\end{array}\right|=\\ +=\left|\begin{array}{cccc} +\frac{1}{x_{1}+y_{1}} & \frac{1}{x_{1}+y_{2}} & \cdots & \frac{1}{x_{1}+y_{n}}\\ +0 & \frac{1}{x_{2}+y_{2}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{2})(x_{2}+y_{1})} & \cdots & \frac{1}{x_{2}+y_{n}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{n})(x_{2}+y_{1})}\\ +\vdots & \vdots & & \vdots\\ +0 & \frac{1}{x_{n}+y_{2}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{2})(x_{n}+y_{1})} & \cdots & \frac{1}{x_{n}+y_{n}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{n})(x_{n}+y_{1})} +\end{array}\right|=\\ +=\frac{1}{x_{1}+y_{1}}\left|\begin{array}{ccc} +\frac{1}{x_{2}+y_{2}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{2})(x_{2}+y_{1})} & \cdots & \frac{1}{x_{2}+y_{n}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{n})(x_{2}+y_{1})}\\ +\vdots & & \vdots\\ +\frac{1}{x_{n}+y_{2}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{2})(x_{n}+y_{1})} & \cdots & \frac{1}{x_{n}+y_{n}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{n})(x_{n}+y_{1})} +\end{array}\right|. +\end{multline*} + +\end_inset + +Now, +\begin_inset Formula +\begin{multline*} +\frac{1}{x_{i}+y_{j}}-\frac{x_{1}+y_{1}}{(x_{1}+y_{j})(x_{i}+y_{1})}=\frac{(x_{1}+y_{j})(x_{i}+y_{1})-(x_{1}+y_{1})(x_{i}+y_{j})}{(x_{i}+y_{j})(x_{1}+y_{j})(x_{i}+y_{1})}=\\ +=\frac{1}{x_{i}+y_{j}}\frac{x_{1}y_{1}+x_{i}y_{j}-x_{1}y_{j}-x_{i}y_{1}}{(x_{1}+y_{j})(x_{i}+y_{1})}=\frac{1}{x_{i}+y_{j}}\frac{(x_{i}-x_{1})(y_{j}-y_{1})}{(x_{1}+y_{j})(x_{i}+y_{1})}, +\end{multline*} + +\end_inset + +so +\begin_inset Formula +\begin{multline*} +\left|\begin{array}{cccc} +\frac{1}{x_{1}+y_{1}} & \frac{1}{x_{1}+y_{2}} & \cdots & \frac{1}{x_{1}+y_{n}}\\ +\frac{1}{x_{2}+y_{1}} & \frac{1}{x_{2}+y_{2}} & \cdots & \frac{1}{x_{2}+y_{n}}\\ +\vdots & \vdots & & \vdots\\ +\frac{1}{x_{n}+y_{1}} & \frac{1}{x_{n}+y_{2}} & \cdots & \frac{1}{x_{n}+y_{n}} +\end{array}\right|=\\ +=\frac{1}{x_{1}+y_{1}}\left|\begin{array}{ccc} +\frac{1}{x_{2}+y_{2}}\frac{(x_{2}-x_{1})(y_{2}-y_{1})}{(x_{1}+y_{2})(x_{2}+y_{1})} & \cdots & \frac{1}{x_{2}+y_{n}}\frac{(x_{2}-x_{1})(y_{n}-y_{1})}{(x_{1}+y_{n})(x_{2}+y_{1})}\\ +\vdots & & \vdots\\ +\frac{1}{x_{n}+y_{2}}\frac{(x_{n}-x_{1})(y_{2}-y_{1})}{(x_{1}+y_{2})(x_{n}+y_{1})} & \cdots & \frac{1}{x_{n}+y_{n}}\frac{(x_{n}-x_{1})(y_{n}-y_{1})}{(x_{1}+y_{n})(x_{n}+y_{1})} +\end{array}\right|=\\ +=\frac{1}{x_{1}+y_{1}}\prod_{i=2}^{n}\frac{x_{i}-x_{1}}{x_{i}+y_{1}}\prod_{j=2}^{n}\frac{y_{j}-y_{1}}{x_{1}+y_{j}}\left|\begin{array}{ccc} +\frac{1}{x_{2}+y_{2}} & \cdots & \frac{1}{x_{2}+y_{n}}\\ +\vdots & & \vdots\\ +\frac{1}{x_{n}+y_{2}} & \cdots & \frac{1}{x_{n}+y_{n}} +\end{array}\right|=\\ +=\frac{\prod_{j=2}^{n}(x_{j}-x_{1})(y_{j}-y_{1})}{(x_{1}+y_{1})\prod_{i=2}^{n}(x_{j}+y_{1})\prod_{j=2}^{n}(x_{1}+y_{j})}\frac{\prod_{2\leq i<j\leq n}(x_{j}-x_{i})(y_{j}-y_{i})}{\prod_{2\leq i,j\leq n}(x_{i}+y_{j})}=\\ +=\prod_{1\leq i<j\leq n}(x_{j}-x_{i})(y_{j}-y_{i})\Bigg/\prod_{1\leq i,j\leq n}(x_{i}+y_{j}). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc45[M25] +\end_layout + +\end_inset + +A +\emph on +Hilbert matrix +\emph default +, + sometimes called an +\begin_inset Formula $n\times n$ +\end_inset + + segment of +\emph on +the +\emph default + (infinite) Hilbert matrix, + is a matrix for which +\begin_inset Formula $a_{ij}=1/(i+j-1)$ +\end_inset + +. + Show that this is a special case of Cauchy's matrix, + find its inverse, + show that each element of the inverse is an integer and show that the sum of all elements of the inverse is +\begin_inset Formula $n^{2}$ +\end_inset + +. + The solution to this problem requires an elementary knowledge of factorial and binomial coefficients, + which are discussed in sections 1.2.5 and 1.2.6. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Clearly this is the Cauchy's matrix +\begin_inset Formula $a_{ij}=1/(x_{i}+y_{j})$ +\end_inset + + where +\begin_inset Formula $x_{i}=i$ +\end_inset + + and +\begin_inset Formula $y_{j}=j-1$ +\end_inset + +. + Then the elements of the inverse, + by exercise 41, + are given by +\begin_inset Formula +\begin{align*} +b_{ij} & =\left(\prod_{1\leq k\leq n}(x_{j}+y_{k})(x_{k}+y_{i})\right)\Bigg/(x_{j}+y_{i})\Bigg(\prod_{\begin{subarray}{c} +1\leq k\leq n\\ +k\neq j +\end{subarray}}(x_{j}-x_{k})\Bigg)\Bigg(\prod_{\begin{subarray}{c} +1\leq k\leq n\\ +k\neq i +\end{subarray}}(y_{i}-y_{k})\Bigg)\\ + & =\left(\prod_{k}(j+k-1)(i+k-1)\right)\Bigg/(i+j-1)\Bigg(\prod_{k\neq j}(j-k)\Bigg)\Bigg(\prod_{k\neq i}(i-k)\Bigg)\\ + & =\frac{(j+n-1)!(i+n-1)!}{(j-1)!(i-1)!}\bigg/(i+j-1)(-1)^{i+j}(n-j)!(j-1)!(n-i)!(i-1)!\\ + & =(-1)^{i+j}\frac{(j+n-1)!(i+n-1)!}{(i+j-1)(n-j)!(n-i)!(j-1)!^{2}(i-1)!^{2}}. +\end{align*} + +\end_inset + +We have used that +\begin_inset Formula +\begin{multline*} +\prod_{k\neq j}(j-k)=(-1)^{n}\prod_{k\neq j}(k-j)=(-1)^{n}\prod_{j<k\leq n}(k-j)\prod_{1\leq k<j}(k-j)=\\ +=(-1)^{n+j}(n-j)!(j-1)!, +\end{multline*} + +\end_inset + +and the same happens to +\begin_inset Formula $i$ +\end_inset + +. + Then, +\begin_inset Formula +\begin{align*} +b_{ij} & =\frac{(-1)^{i+j}ij}{i+j-1}\frac{(i+n-1)!(j+n-1)!}{i!(i-1)!(n-i)!j!(j-1)!(n-j)!}\\ + & =\frac{(-1)^{i+j}ij}{i+j-1}\binom{n}{i}\frac{(i+n-1)!}{n!(i-1)!}\binom{n}{j}\frac{(j+n-1)!}{n!}\\ + & =\frac{(-1)^{i+j}ij}{i+j-1}\binom{n}{i}\binom{i+n-1}{n}\binom{n}{j}\binom{j+n-1}{n}\\ + & =\frac{(-1)^{i+j}ij}{i+j-1}\binom{n}{i}\binom{-i}{n}\binom{n}{j}\binom{-j}{n}\\ + & =\frac{(-1)^{i+j}ij}{i+j-1}\binom{-j}{i}\binom{-j-i}{n-i}\binom{-i}{n}\binom{n}{j}\\ + & =\frac{(-1)^{i+j}ij}{i+j-1}\binom{i+j-1}{i}\binom{n+j-1}{n-i}\binom{n+i-1}{n}\binom{n}{j}\\ + & =(-1)^{i+j}\binom{i+j-2}{i-1}\binom{i+n-1}{i-1}\binom{j+n-1}{n-1}\binom{n}{j}\in\mathbb{Z}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Finally, + from exercise 44, +\begin_inset Formula +\[ +\sum_{i,j}b_{ij}=\sum_{i=1}^{n}i+\sum_{j=1}^{n}(j-1)=\frac{n(n+1)}{2}+\frac{n(n-1)}{2}=n^{2}. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
