diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.4.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.4.lyx')
| -rw-r--r-- | vol1/1.2.4.lyx | 2433 |
1 files changed, 2433 insertions, 0 deletions
diff --git a/vol1/1.2.4.lyx b/vol1/1.2.4.lyx new file mode 100644 index 0000000..ed3730a --- /dev/null +++ b/vol1/1.2.4.lyx @@ -0,0 +1,2433 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[00] +\end_layout + +\end_inset + +What are +\begin_inset Formula $\lfloor1.1\rfloor$ +\end_inset + +, + +\begin_inset Formula $\lfloor-1.1\rfloor$ +\end_inset + +, + +\begin_inset Formula $\lceil-1.1\rceil$ +\end_inset + +, + +\begin_inset Formula $\lfloor0.99999\rfloor$ +\end_inset + +, + and +\begin_inset Formula $\lfloor\lg35\rfloor$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\lfloor1.1\rfloor=1$ +\end_inset + +, + +\begin_inset Formula $\lfloor-1.1\rfloor=-2$ +\end_inset + +, + +\begin_inset Formula $\lceil-1.1\rceil=-1$ +\end_inset + +, + +\begin_inset Formula $\lfloor0.99999\rfloor=0$ +\end_inset + +, + +\begin_inset Formula $\lfloor\lg35\rfloor=5$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[01] +\end_layout + +\end_inset + +What is +\begin_inset Formula $\lceil\lfloor x\rfloor\rceil$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The same as +\begin_inset Formula $\lfloor x\rfloor$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[10] +\end_layout + +\end_inset + +Let +\begin_inset Formula $n$ +\end_inset + + be an integer, + and let +\begin_inset Formula $x$ +\end_inset + + be a real number. + Prove that +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lfloor x\rfloor<n$ +\end_inset + + if and only if +\begin_inset Formula $x<n$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $n\leq\lfloor x\rfloor$ +\end_inset + + if and only if +\begin_inset Formula $n\leq x$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lceil x\rceil\leq n$ +\end_inset + + if and only if +\begin_inset Formula $x\leq n$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $n<\lceil x\rceil$ +\end_inset + + if and only if +\begin_inset Formula $n<x$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lfloor x\rfloor=n$ +\end_inset + + if and only if +\begin_inset Formula $x-1<n\leq x$ +\end_inset + +, + and if and only if +\begin_inset Formula $n\leq x<n+1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\lceil x\rceil=n$ +\end_inset + + if and only if +\begin_inset Formula $x\leq n<x+1$ +\end_inset + +, + and if and only if +\begin_inset Formula $n-1<x\leq n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +By contraposition, + if +\begin_inset Formula $x\geq n$ +\end_inset + +, + then +\begin_inset Formula $n$ +\end_inset + + is an integer less than or equal to +\begin_inset Formula $x$ +\end_inset + + and so +\begin_inset Formula $\lfloor x\rfloor\geq n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $\lfloor x\rfloor\leq x<n$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +It's the contrapositive of the previous statement. +\end_layout + +\begin_layout Enumerate +Derived from the previous statement replacing +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $n$ +\end_inset + + with +\begin_inset Formula $-x$ +\end_inset + + and +\begin_inset Formula $-n$ +\end_inset + + and using that +\begin_inset Formula $\lfloor-x\rfloor=-\lceil x\rceil$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +It's the contrapositive of the previous statement. +\end_layout + +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Obviously +\begin_inset Formula $n=\lfloor x\rfloor\leq x$ +\end_inset + +, + and if +\begin_inset Formula $x-1\geq n$ +\end_inset + + then it would be +\begin_inset Formula $x\geq n+1\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $\lfloor x\rfloor\geq n+1>n\#$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Multiply the inequality by +\begin_inset Formula $-1$ +\end_inset + + and add +\begin_inset Formula $x+n$ +\end_inset + + to each member. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + +\begin_inset Formula $n\leq x$ +\end_inset + + and any +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + + with +\begin_inset Formula $m\leq x$ +\end_inset + + has +\begin_inset Formula $m<n+1$ +\end_inset + + and therefore +\begin_inset Formula $m\leq n$ +\end_inset + +, + so +\begin_inset Formula $n=\max\{m\in\mathbb{Z}\mid m\leq x\}=\lfloor x\rfloor$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Derived from the previous statement by replacing +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $n$ +\end_inset + + with +\begin_inset Formula $-x$ +\end_inset + + and +\begin_inset Formula $-n$ +\end_inset + + and using that +\begin_inset Formula $-\lceil x\rceil=\lfloor-x\rfloor$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M10] +\end_layout + +\end_inset + +Using the previous exercise, + prove that +\begin_inset Formula $\lfloor-x\rfloor=-\lceil x\rceil$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Since that would be circular reasoning (I did the previous exercise before reading the statement of this one), + we'll prove it directly. +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +\lfloor-x\rfloor=n & \iff\forall m\in\mathbb{Z},(m\leq-x\implies m\leq n)\\ + & \iff\forall m\in\mathbb{Z},(-m\geq x\implies-m\geq-n)\\ + & \iff\forall m\in\mathbb{Z},(m\geq x\implies m\geq-n)\iff-n=\lceil x\rceil\iff n=-\lceil x\rceil. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[20] +\end_layout + +\end_inset + +Which of the following equations are true for all positive real numbers +\begin_inset Formula $x$ +\end_inset + +? +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\lfloor \sqrt{\lfloor x\rfloor}\right\rfloor =\lfloor\sqrt{x}\rfloor$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\lceil \sqrt{\lceil x\rceil}\right\rceil =\lceil\sqrt{x}\rceil$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\left\lceil \sqrt{\lfloor x\rfloor}\right\rceil =\lceil\sqrt{x}\rceil$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +True, + if +\begin_inset Formula $n=\lfloor\sqrt{x}\rfloor$ +\end_inset + +, + then +\begin_inset Formula $n\leq\sqrt{x}<n+1$ +\end_inset + +, + so +\begin_inset Formula $n^{2}\leq\lfloor x\rfloor\leq x<(n+1)^{2}$ +\end_inset + + and so +\begin_inset Formula $n\leq\sqrt{\lfloor x\rfloor}<n+1$ +\end_inset + + and +\begin_inset Formula $n=\left\lfloor \sqrt{\lfloor x\rfloor}\right\rfloor $ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +True, + if +\begin_inset Formula $n=\lceil\sqrt{x}\rceil$ +\end_inset + +, + then +\begin_inset Formula $n-1<\sqrt{x}\leq n$ +\end_inset + + and +\begin_inset Formula $(n-1)^{2}<x\leq\lceil x\rceil\leq n$ +\end_inset + +, + so +\begin_inset Formula $n-1<\sqrt{\lceil x\rceil}\leq n$ +\end_inset + + and therefore +\begin_inset Formula $\left\lceil \sqrt{\lceil x\rceil}\right\rceil =n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +False, + for example +\begin_inset Formula $\left\lceil \sqrt{\lfloor\frac{9}{2}\rfloor}\right\rceil =\lceil\sqrt{4}\rceil=2$ +\end_inset + + but +\begin_inset Formula $\lceil\sqrt{\frac{9}{2}}\rceil=3$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc8[00] +\end_layout + +\end_inset + +What are +\begin_inset Formula $100\bmod3$ +\end_inset + +, + +\begin_inset Formula $100\bmod7$ +\end_inset + +, + +\begin_inset Formula $-100\bmod7$ +\end_inset + +, + +\begin_inset Formula $-100\bmod0$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $100\bmod3=1$ +\end_inset + +, + +\begin_inset Formula $100\bmod7=2$ +\end_inset + +, + +\begin_inset Formula $-100\bmod7=-2\bmod7=5$ +\end_inset + +, + +\begin_inset Formula $-100\bmod0=-100$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[05] +\end_layout + +\end_inset + +What are +\begin_inset Formula $5\bmod-3$ +\end_inset + +, + +\begin_inset Formula $18\bmod-3$ +\end_inset + +, + +\begin_inset Formula $-2\bmod-3$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $5\bmod-3=5-(-3)\lfloor\frac{5}{-3}\rfloor=5+3(-2)=5-6=-1$ +\end_inset + +, + +\begin_inset Formula $18\bmod-3=18-(-3)(-6)=0$ +\end_inset + +, + +\begin_inset Formula $-2\bmod-3=-2-(-3)\lfloor\frac{-2}{-3}\rfloor=-2$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[10] +\end_layout + +\end_inset + +What are +\begin_inset Formula $1.1\bmod1$ +\end_inset + +, + +\begin_inset Formula $0.11\bmod.1$ +\end_inset + +, + +\begin_inset Formula $0.11\bmod-.1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{eqnarray*} +1.1\bmod1 & = & 1.1-\lfloor1.1\rfloor=.1,\\ +0.11\bmod.1 & = & .11-.1\lfloor1.1\rfloor=.01,\\ +0.11\bmod-.1 & = & .11-(-.1)\lfloor-1.1\rfloor=-.09. +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc11[00] +\end_layout + +\end_inset + +What does +\begin_inset Quotes eld +\end_inset + + +\begin_inset Formula $x\equiv y\bmod0$ +\end_inset + + +\begin_inset Quotes erd +\end_inset + + mean by our conventions? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It means +\begin_inset Formula $x=x\bmod0=y\bmod0=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc12[00] +\end_layout + +\end_inset + +What integers are relatively prime to 1? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +All of them, + since +\begin_inset Formula $\gcd\{a,1\}=1$ +\end_inset + + for any +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc13[M00] +\end_layout + +\end_inset + +By convention, + we say that the greatest common divisor of 0 and +\begin_inset Formula $n$ +\end_inset + + is +\begin_inset Formula $|n|$ +\end_inset + +. + What integers are relatively prime to 0? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Only 1 and +\begin_inset Formula $-1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc14[12] +\end_layout + +\end_inset + +If +\begin_inset Formula $x\bmod3=2$ +\end_inset + + and +\begin_inset Formula $x\bmod5=3$ +\end_inset + +, + what is +\begin_inset Formula $x\bmod15$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +This is a simple Diophantine equation, + there exist +\begin_inset Formula $n,m\in\mathbb{Z}$ +\end_inset + + such that +\begin_inset Formula +\[ +x=3n+2=5m+3, +\] + +\end_inset + +so +\begin_inset Formula $3n-5m=1$ +\end_inset + + and one solution is +\begin_inset Formula $n=2$ +\end_inset + + and +\begin_inset Formula $m=1$ +\end_inset + +. + In this case +\begin_inset Formula $x\bmod15=(3n+2)\bmod15=8$ +\end_inset + +, + and the Chinese remainder theorem tells us that this is the only possibility. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc15[10] +\end_layout + +\end_inset + +Prove that +\begin_inset Formula $z(x\bmod y)=(zx)\bmod(zy)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $z=0$ +\end_inset + +, + then +\begin_inset Formula $z(x\bmod y)=0=0\bmod0=(zx)\bmod(zy)$ +\end_inset + +. + If +\begin_inset Formula $y=0$ +\end_inset + +, + +\begin_inset Formula $z(x\bmod y)=zx=(zx)\bmod(zy)$ +\end_inset + +. + If +\begin_inset Formula $y,z\neq0$ +\end_inset + +, +\begin_inset Formula +\[ +(zx)\bmod(zy)=zx-zy\left\lfloor \frac{zx}{zy}\right\rfloor =zx-zy\left\lfloor \frac{x}{y}\right\rfloor =z\left(x-y\left\lfloor \frac{x}{y}\right\rfloor \right)=z(x\bmod y). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc16[M10] +\end_layout + +\end_inset + +Assume that +\begin_inset Formula $y>0$ +\end_inset + +. + Show that if +\begin_inset Formula $(x-z)/y$ +\end_inset + + is an integer and if +\begin_inset Formula $0\leq z<y$ +\end_inset + +, + then +\begin_inset Formula $z=x\bmod y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +In this case, + there exists an integer +\begin_inset Formula $k$ +\end_inset + + such that +\begin_inset Formula $x-z=ky$ +\end_inset + +, + so +\begin_inset Formula $z=x-ky$ +\end_inset + + and we just have to show that +\begin_inset Formula $k=\lfloor\frac{x}{y}\rfloor$ +\end_inset + +. + But since +\begin_inset Formula $0\leq z<y$ +\end_inset + +, + +\begin_inset Formula $0\leq\frac{z}{y}<1$ +\end_inset + + and, + multiplying this formula by +\begin_inset Formula $-1$ +\end_inset + + and adding +\begin_inset Formula $\frac{x}{y}$ +\end_inset + +, + +\begin_inset Formula $\frac{x}{y}-1<\frac{x}{y}-\frac{z}{y}=k\leq\frac{x}{y}$ +\end_inset + +, + which means that +\begin_inset Formula $k=\lfloor\frac{x}{y}\rfloor$ +\end_inset + + by Exercise 3. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc19[M10] +\end_layout + +\end_inset + +( +\emph on +Law of inverses. +\emph default +) If +\begin_inset Formula $n\bot m$ +\end_inset + +, + there is an integer +\begin_inset Formula $n'$ +\end_inset + + such that +\begin_inset Formula $nn'\equiv1$ +\end_inset + + (modulo +\begin_inset Formula $m$ +\end_inset + +). + Prove this, + using the extension of Euclid's algorithm (Algorithm 1.2.1E). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We already know that the algorithm terminates and that returns +\begin_inset Formula $a,b\in\mathbb{Z}$ +\end_inset + + such that +\begin_inset Formula $am+bn=d\coloneqq\gcd\{n,m\}$ +\end_inset + +. + But in this case +\begin_inset Formula $d=1$ +\end_inset + +, + so +\begin_inset Formula $bn=d-am=1-am=1$ +\end_inset + + (modulo +\begin_inset Formula $m$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[M10] +\end_layout + +\end_inset + +Give an example to show that Law B is not always true if +\begin_inset Formula $a$ +\end_inset + + is not relatively prime to +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $a=b=3$ +\end_inset + +, + +\begin_inset Formula $x=2$ +\end_inset + +, + +\begin_inset Formula $y=4$ +\end_inset + +, + and +\begin_inset Formula $m=6$ +\end_inset + + in Law B, + then +\begin_inset Formula $ax=6\equiv12=by$ +\end_inset + + and +\begin_inset Formula $a=3=b$ +\end_inset + + but +\begin_inset Formula $x=2\not\equiv4=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc23[M10] +\end_layout + +\end_inset + +Give an example to show that Law D is not always true if +\begin_inset Formula $r$ +\end_inset + + is not relatively prime to +\begin_inset Formula $s$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $a=6$ +\end_inset + +, + +\begin_inset Formula $b=12$ +\end_inset + +, + +\begin_inset Formula $r=3$ +\end_inset + +, + and +\begin_inset Formula $s=6$ +\end_inset + +, + in Law D, + then +\begin_inset Formula $a=6\equiv12=b$ +\end_inset + + modulo +\begin_inset Formula $r=3$ +\end_inset + + and modulo +\begin_inset Formula $s=6$ +\end_inset + + but not modulo +\begin_inset Formula $rs=18$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc24[M20] +\end_layout + +\end_inset + +To what extent can Laws A, + B, + C, + and D be generalized to apply to arbitrary real numbers instead of integers? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let's check the laws one by one. +\end_layout + +\begin_layout Description +Law +\begin_inset space ~ +\end_inset + +A If +\begin_inset Formula $a,b,x,y,m\in\mathbb{R}$ +\end_inset + +, + if +\begin_inset Formula $m=0$ +\end_inset + + the law is trivial. + If not, + we have +\begin_inset Formula $a-m\lfloor\frac{a}{m}\rfloor=b-m\lfloor\frac{b}{m}\rfloor$ +\end_inset + + and +\begin_inset Formula $x-m\lfloor\frac{x}{m}\rfloor=y-m\lfloor\frac{y}{m}\rfloor$ +\end_inset + +, + and for addition +\begin_inset Formula +\begin{multline*} +a+x-m\left\lfloor \frac{a+x}{m}\right\rfloor =b+y-m\left\lfloor \frac{b+y}{m}\right\rfloor \iff\\ +\iff m\left(\left\lfloor \frac{a+x}{m}\right\rfloor -\left\lfloor \frac{b+y}{m}\right\rfloor \right)=\\ +=a+x-b-y=m\left(\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor -\left\lfloor \frac{b}{m}\right\rfloor -\left\lfloor \frac{y}{m}\right\rfloor \right)\iff\\ +\iff\left\lfloor \frac{a+x}{m}\right\rfloor -\left\lfloor \frac{a}{m}\right\rfloor -\left\lfloor \frac{x}{m}\right\rfloor =\left\lfloor \frac{b+y}{m}\right\rfloor -\left\lfloor \frac{b}{m}\right\rfloor -\left\lfloor \frac{y}{m}\right\rfloor . +\end{multline*} + +\end_inset + +Now, +\begin_inset Formula +\[ +\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \leq\frac{a+x}{m}<\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +2, +\] + +\end_inset + +so +\begin_inset Formula $\left\lfloor \frac{a+x}{m}\right\rfloor $ +\end_inset + + is either +\begin_inset Formula $\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor $ +\end_inset + + or +\begin_inset Formula $\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +1$ +\end_inset + +, + and similarly for +\begin_inset Formula $b$ +\end_inset + + and +\begin_inset Formula $y$ +\end_inset + +. + But +\begin_inset Formula +\begin{multline*} +\left\lfloor \frac{a+x}{m}\right\rfloor =\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \iff\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor \leq\frac{a+x}{m}<\left\lfloor \frac{a}{m}\right\rfloor +\left\lfloor \frac{x}{m}\right\rfloor +1\iff\\ +\iff a+x<m\left\lfloor \frac{a}{m}\right\rfloor +m\left\lfloor \frac{x}{m}\right\rfloor +m\iff\\ +\iff(a\bmod m)+(x\bmod m)=(b\bmod m)+(x\bmod m)<m\iff\\ +\iff\left\lfloor \frac{b+y}{m}\right\rfloor =\left\lfloor \frac{b}{m}\right\rfloor +\left\lfloor \frac{y}{m}\right\rfloor , +\end{multline*} + +\end_inset + +which proves the equality in the last line of the first formula. + For subtraction, + we have to see that +\begin_inset Formula $-x\equiv-y\bmod m$ +\end_inset + + and so +\begin_inset Formula $a-x=a+(-x)\equiv a+(-y)=a-y\pmod m$ +\end_inset + +. + If +\begin_inset Formula $x\bmod m=0$ +\end_inset + +, + then +\begin_inset Formula $\frac{x}{m}\in\mathbb{Z}$ +\end_inset + +, + so +\begin_inset Formula $-\frac{x}{m}\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $-x\bmod m=0$ +\end_inset + +, + and similarly +\begin_inset Formula $y\bmod m=0$ +\end_inset + + and so +\begin_inset Formula $-y\bmod m=0$ +\end_inset + +. + Otherwise +\begin_inset Formula $\frac{x}{m}\notin\mathbb{Z}$ +\end_inset + +, + so +\begin_inset Formula $\lceil\frac{x}{m}\rceil=\lfloor\frac{x}{m}\rfloor+1$ +\end_inset + +, + but by Exercise 4, + +\begin_inset Formula +\begin{align*} +-x\bmod m & =-x-m\left\lfloor \frac{-x}{m}\right\rfloor =-x+m\left\lceil \frac{x}{m}\right\rceil =-x+m\left\lfloor \frac{x}{m}\right\rfloor +m=\\ + & =m-(x\bmod m)=m-(y\bmod m)=-y\bmod m. +\end{align*} + +\end_inset + +For multiplication this doesn't hold; + for example, + if +\begin_inset Formula $m=2.5$ +\end_inset + +, + +\begin_inset Formula $a=0.5$ +\end_inset + +, + +\begin_inset Formula $b=-2$ +\end_inset + +, + and +\begin_inset Formula $x=y=2.2$ +\end_inset + +, + then +\begin_inset Formula $ax\bmod m=1.1\bmod2.5=1.1$ +\end_inset + + but +\begin_inset Formula $by\bmod m=-4.4\bmod2.5=0.6$ +\end_inset + +. +\end_layout + +\begin_layout Description +Law +\begin_inset space ~ +\end_inset + +B Obviously +\begin_inset Formula $a$ +\end_inset + + and +\begin_inset Formula $m$ +\end_inset + + must be integers, + otherwise the statement wouldn't make sense. + Even then, + however, + if +\begin_inset Formula $a=1$ +\end_inset + +, + +\begin_inset Formula $b=-2$ +\end_inset + +, + +\begin_inset Formula $x=\frac{4}{3}$ +\end_inset + +, + +\begin_inset Formula $y=\frac{7}{3}$ +\end_inset + +, + and +\begin_inset Formula $m=3$ +\end_inset + +, + then +\begin_inset Formula $ax=\frac{4}{3}\equiv-\frac{14}{3}=by$ +\end_inset + + and +\begin_inset Formula $a=1\equiv-2=b$ +\end_inset + +, + but +\begin_inset Formula $\frac{4}{3}\not\equiv\frac{7}{3}$ +\end_inset + +. +\end_layout + +\begin_layout Description +Law +\begin_inset space ~ +\end_inset + +C Using Exercise 15, + for +\begin_inset Formula $a,b,m,n\in\mathbb{R}$ +\end_inset + + with +\begin_inset Formula $n\neq0$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +a\equiv b\bmod m\iff a\bmod m=b\bmod m\iff\\ +\iff an\bmod mn=n(a\bmod m)=n(b\bmod m)=bn\bmod mn\iff\\ +\iff an\equiv bn\bmod mn. +\end{multline*} + +\end_inset + +Note that the second double implication would not hold in the left direction for +\begin_inset Formula $n=0$ +\end_inset + +. +\end_layout + +\begin_layout Description +Law +\begin_inset space ~ +\end_inset + +D Here +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + + must be integers. + Then, + if +\begin_inset Formula $a,b\in\mathbb{R}$ +\end_inset + + with +\begin_inset Formula $a\equiv b$ +\end_inset + + modulo +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + +, + if +\begin_inset Formula $r=0$ +\end_inset + + or +\begin_inset Formula $s=0$ +\end_inset + +, + the statement is obvious, + and otherwise +\begin_inset Formula $a-r\lfloor\frac{a}{r}\rfloor=b-r\lfloor\frac{b}{r}\rfloor$ +\end_inset + + and so +\begin_inset Formula $a-b=r(\lfloor\frac{a}{r}\rfloor-\lfloor\frac{b}{r}\rfloor)\eqqcolon d\in\mathbb{Z}$ +\end_inset + +. + By Law A, + since +\begin_inset Formula $a\equiv b$ +\end_inset + + and +\begin_inset Formula $b\equiv b$ +\end_inset + +, + +\begin_inset Formula $d=a-b\equiv b-b=0$ +\end_inset + + modulo both +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + +, + so from Law D for integers we have +\begin_inset Formula $a-b\equiv0$ +\end_inset + + modulo +\begin_inset Formula $rs$ +\end_inset + + (assuming +\begin_inset Formula $r\bot s$ +\end_inset + +) and so +\begin_inset Formula $a\equiv b$ +\end_inset + + modulo +\begin_inset Formula $rs$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Thus, + Law A holds for addition and subtraction, + Law C always holds, + and Law D holds if we still maintain +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc25[M02] +\end_layout + +\end_inset + +Show that, + according to Theorem F, + +\begin_inset Formula $a^{p-1}\bmod p=[a\text{ is not a multiple of }p]$ +\end_inset + +, + whenever +\begin_inset Formula $p$ +\end_inset + + is a prime number. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $a$ +\end_inset + + is a multiple of +\begin_inset Formula $p$ +\end_inset + +, + then so is +\begin_inset Formula $a^{p-1}$ +\end_inset + + and +\begin_inset Formula $a^{p-1}\bmod p=0$ +\end_inset + +. + Otherwise +\begin_inset Formula $a\bot p$ +\end_inset + +, + so we can cancel out in +\begin_inset Formula $a^{p}\equiv a\pmod p$ +\end_inset + + to get +\begin_inset Formula $a^{p-1}\equiv1\pmod p$ +\end_inset + + and so +\begin_inset Formula $a^{p-1}\bmod p=1\bmod p=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc28[M25] +\end_layout + +\end_inset + +Show that the method used to prove Theorem F can be used to prove the following extension, + called +\emph on +Euler's theorem +\emph default +: + +\begin_inset Formula $a^{\varphi(m)}\equiv1\pmod m$ +\end_inset + +, + for +\emph on +any +\emph default + positive integer +\begin_inset Formula $m$ +\end_inset + +, + when +\begin_inset Formula $a\bot m$ +\end_inset + +. + (In particular, + the number +\begin_inset Formula $n'$ +\end_inset + + in exercise 19 may be taken to be +\begin_inset Formula $n^{\varphi(m)-1}\bmod m$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +First, + +\begin_inset Formula $\gcd\{x,y\}\equiv\gcd\{x+ky,y\}$ +\end_inset + + for any +\begin_inset Formula $x,y,k\in\mathbb{Z}$ +\end_inset + +, + because if +\begin_inset Formula $z\mid x$ +\end_inset + + and +\begin_inset Formula $z\mid y$ +\end_inset + + then obviously +\begin_inset Formula $z\mid x+ky$ +\end_inset + + and if +\begin_inset Formula $z\mid x+ky$ +\end_inset + + and +\begin_inset Formula $z\mid y$ +\end_inset + + then +\begin_inset Formula $z\mid x$ +\end_inset + +, + so the set of common divisors is the same. + It's also clear that if +\begin_inset Formula $x\bot z$ +\end_inset + + and +\begin_inset Formula $y\bot z$ +\end_inset + + then +\begin_inset Formula $xy\bot z$ +\end_inset + +, + since neither +\begin_inset Formula $x$ +\end_inset + + nor +\begin_inset Formula $y$ +\end_inset + + has common divisors with +\begin_inset Formula $z$ +\end_inset + + and so neither does +\begin_inset Formula $xy$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +With these lemmas, + we are ready to prove the statement. + Let +\begin_inset Formula +\[ +\{x_{1},\dots,x_{\varphi(m)}\}\coloneqq\{x\in\{0,\dots,m-1\}\mid x\bot m\}, +\] + +\end_inset + + then the +\begin_inset Formula $x_{i}a\bmod m$ +\end_inset + + are all distinct, + for if +\begin_inset Formula $x_{i}a\bmod m=x_{j}a\bmod m$ +\end_inset + +, + since +\begin_inset Formula $a\bot m$ +\end_inset + +, + then +\begin_inset Formula $x_{i}=x_{i}\bmod m=x_{j}\bmod m=x_{j}$ +\end_inset + +. + Since +\begin_inset Formula $x_{i},a\bot m$ +\end_inset + +, + +\begin_inset Formula $x_{i}a\bot m$ +\end_inset + + and also +\begin_inset Formula $(x_{i}a\bmod m)\bot m$ +\end_inset + +, + so all the +\begin_inset Formula $x_{i}a\bmod m$ +\end_inset + + are different and relatively prime to +\begin_inset Formula $m$ +\end_inset + + and therefore +\begin_inset Formula $\{x_{i}a\bmod m\}_{i}=\{x_{i}\}_{i}$ +\end_inset + +. + Thus +\begin_inset Formula +\[ +\prod_{i}x_{i}\equiv\prod_{i}(x_{i}a\bmod m)\equiv\prod_{i}x_{i}a\equiv a^{\varphi(m)}\prod_{i}x_{i}\pmod m, +\] + +\end_inset + +and therefore using Law B with the fact that +\begin_inset Formula $\prod_{i}x_{i}\bot m$ +\end_inset + + gives us the result. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc34[M21] +\end_layout + +\end_inset + +What conditions on the real number +\begin_inset Formula $b>1$ +\end_inset + + are necessary and sufficient to guarantee that +\begin_inset Formula $\lfloor\log_{b}x\rfloor=\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ +\end_inset + + for all real +\begin_inset Formula $x\geq1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It happens if and only if +\begin_inset Formula $b\in\mathbb{Z}$ +\end_inset + +. + To prove this, + observe that, + since the logarithm in base +\begin_inset Formula $b>1$ +\end_inset + + is strictly increasing, + +\begin_inset Formula $\log_{b}\lfloor x\rfloor<\log_{b}x$ +\end_inset + +, + so +\begin_inset Formula $\lfloor\log_{b}x\rfloor\neq\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor $ +\end_inset + + if and only if +\begin_inset Formula $\left\lfloor \log_{b}\lfloor x\rfloor\right\rfloor <\lfloor\log_{b}x\rfloor$ +\end_inset + +, + that is, + if there exists an integer +\begin_inset Formula $k$ +\end_inset + + (namely +\begin_inset Formula $\lfloor\log_{b}x\rfloor$ +\end_inset + +) such that +\begin_inset Formula $\log_{b}\lfloor x\rfloor<k\leq\log_{b}x$ +\end_inset + +, + if and only if +\begin_inset Formula $\lfloor x\rfloor<b^{k}\leq x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +If +\begin_inset Formula $b\in\mathbb{Z}$ +\end_inset + +, + +\begin_inset Formula $b^{k}\in\mathbb{Z}$ +\end_inset + + as well, + so that would mean that +\begin_inset Formula $\lfloor x\rfloor+1\leq b^{k}\leq x\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +If +\begin_inset Formula $b\notin\mathbb{Z}$ +\end_inset + +, + we just have to set +\begin_inset Formula $x=b$ +\end_inset + + and +\begin_inset Formula $k=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc35[M20] +\end_layout + +\end_inset + +Given that +\begin_inset Formula $m$ +\end_inset + + and +\begin_inset Formula $n$ +\end_inset + + are integers and +\begin_inset Formula $n>0$ +\end_inset + +, + prove that +\begin_inset Formula +\[ +\lfloor(x+m)/n\rfloor=\left\lfloor (\lfloor x\rfloor+m)/n\right\rfloor +\] + +\end_inset + +for all real +\begin_inset Formula $x$ +\end_inset + +. + (When +\begin_inset Formula $m=0$ +\end_inset + +, + we have an important special case.) Does an analogous result hold for the ceiling function? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Clearly +\begin_inset Formula $\left\lfloor \frac{\lfloor x\rfloor+m}{n}\right\rfloor \leq\left\lfloor \frac{x+m}{n}\right\rfloor $ +\end_inset + +. + If this inequality were strict, + however, + there would be an integer +\begin_inset Formula $k$ +\end_inset + + such that +\begin_inset Formula $\frac{\lfloor x\rfloor+m}{n}<k\leq\frac{x+m}{n}$ +\end_inset + +, + and so +\begin_inset Formula $\lfloor x\rfloor<nk-m\leq x$ +\end_inset + +, + but this is impossible because +\begin_inset Formula $nk-m\in\mathbb{Z}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For the ceiling, + clearly +\begin_inset Formula $\left\lceil \frac{\lceil x\rceil+m}{n}\right\rceil \geq\left\lceil \frac{x+m}{n}\right\rceil $ +\end_inset + +, + but if this inequality were strict, + there would be an integer +\begin_inset Formula $k$ +\end_inset + + (namely +\begin_inset Formula $\left\lceil \frac{x+m}{n}\right\rceil $ +\end_inset + +) such that +\begin_inset Formula $\frac{x+m}{n}\leq k<\frac{\lceil x\rceil+m}{n}$ +\end_inset + +, + and so +\begin_inset Formula $x\leq nk-m<\lceil x\rceil$ +\end_inset + +, + an absurdity because +\begin_inset Formula $nk-m\in\mathbb{Z}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
