diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.5.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.5.lyx')
| -rw-r--r-- | vol1/1.2.5.lyx | 1097 |
1 files changed, 1097 insertions, 0 deletions
diff --git a/vol1/1.2.5.lyx b/vol1/1.2.5.lyx new file mode 100644 index 0000000..d379269 --- /dev/null +++ b/vol1/1.2.5.lyx @@ -0,0 +1,1097 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[00] +\end_layout + +\end_inset + +How many ways are there to shuffle a 52-card deck? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $52!=80658175170943878571660636856403766975289505440883277824000000000000$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[10] +\end_layout + +\end_inset + +In the notation of Eq. + (2), + show that +\begin_inset Formula $p_{n(n-1)}=p_{nn}$ +\end_inset + +, + and explain why this happens. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $p_{n(n-1)}=n(n-1)\cdots(n-(n-1)+1)=n(n-1)\cdots2=n(n-1)\cdots1=p_{nn}$ +\end_inset + +. + This is because +\begin_inset Formula $p_{n(n-1)}$ +\end_inset + + is the number of ways to take and arrange +\begin_inset Formula $n-1$ +\end_inset + + objects out +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $p_{nn}$ +\end_inset + + is the number of ways to take and arrange the +\begin_inset Formula $n$ +\end_inset + + objects, + which consists of first arranging +\begin_inset Formula $n-1$ +\end_inset + + objects out of the +\begin_inset Formula $n$ +\end_inset + + objects and then adding the one remaining. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[10] +\end_layout + +\end_inset + +What permutations of +\begin_inset Formula $\{1,2,3,4,5\}$ +\end_inset + + would be constructed from the permutation +\begin_inset Formula $3\,1\,2\,4$ +\end_inset + + using Methods 1 and 2, + respectively? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\series bold +Method 1: + +\series default + +\begin_inset Formula $5\,3\,1\,2\,4$ +\end_inset + +, + +\begin_inset Formula $3\,5\,1\,2\,4$ +\end_inset + +, + +\begin_inset Formula $3\,1\,5\,2\,4$ +\end_inset + +, + +\begin_inset Formula $3\,1\,2\,5\,4$ +\end_inset + +, + +\begin_inset Formula $3\,1\,2\,4\,5$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Method 2: + +\series default + +\begin_inset Formula $4\,2\,3\,5\,1$ +\end_inset + +, + +\begin_inset Formula $4\,1\,3\,5\,2$ +\end_inset + +, + +\begin_inset Formula $4\,1\,2\,5\,3$ +\end_inset + +, + +\begin_inset Formula $3\,1\,2\,5\,4$ +\end_inset + +, + +\begin_inset Formula $3\,1\,2\,4\,5$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[13] +\end_layout + +\end_inset + +Given the fact that +\begin_inset Formula $\log_{10}1000!=2567.60464...$ +\end_inset + +, + determine exactly how many decimal digits are present in the number +\begin_inset Formula $1000!$ +\end_inset + +. + What is the +\emph on +most significant +\emph default + digit? + What is the +\emph on +least significant +\emph default + digit? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Given a number +\begin_inset Formula $x$ +\end_inset + + with +\begin_inset Formula $n+1$ +\end_inset + + digits +\begin_inset Formula $x_{n}x_{n-1}\cdots x_{1}x_{0}$ +\end_inset + +, + we have +\begin_inset Formula $x_{n}10^{n}\leq x<(x_{n}+1)10^{n}$ +\end_inset + + and therefore +\begin_inset Formula $n+\log_{10}x_{n}\leq\log x<n+\log_{10}(x_{n}+1)$ +\end_inset + +, + with +\begin_inset Formula $0\leq\log_{10}X_{n}<\log_{10}(x_{n}+1)\leq1$ +\end_inset + +. + Thus, + +\begin_inset Formula $1000!$ +\end_inset + + has 2568 digits and the most significant digit is 4, + since +\begin_inset Formula $\log_{10}4=0.60205...$ +\end_inset + + and +\begin_inset Formula $\log_{10}5=0.69897...$ +\end_inset + +. + Furthermore, + since +\begin_inset Formula $10\mid1000!$ +\end_inset + +, + the least significant digit is 0. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[17] +\end_layout + +\end_inset + +Using Eq. + (8), + write +\begin_inset Formula $20!$ +\end_inset + + as a product of prime factors. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Numbers up to 20 have prime factors up to 20, + so the prime factors are 2, + 3, + 5, + 7, + 11, + 13, + 17, + and 19. + For the multiplicities, +\begin_inset Formula +\begin{align*} +\mu_{2} & =\sum_{k\geq1}\left\lfloor \frac{20}{2^{k}}\right\rfloor =10+5+2+1=18, & \mu_{11} & =\sum_{k\geq1}\left\lfloor \frac{20}{11^{k}}\right\rfloor =1,\\ +\mu_{3} & =\sum_{k\geq1}\left\lfloor \frac{20}{3^{k}}\right\rfloor =6+2=8, & \mu_{13} & =\sum_{k\geq1}\left\lfloor \frac{20}{13^{k}}\right\rfloor =1,\\ +\mu_{5} & =\sum_{k\geq1}\left\lfloor \frac{20}{5^{k}}\right\rfloor =4, & \mu_{17} & =\sum_{k\geq1}\left\lfloor \frac{20}{17^{k}}\right\rfloor =1,\\ +\mu_{7} & =\sum_{k\geq1}\left\lfloor \frac{20}{7^{k}}\right\rfloor =2, & \mu_{19} & =\sum_{k\geq1}\left\lfloor \frac{20}{19^{k}}\right\rfloor =1, +\end{align*} + +\end_inset + +so +\begin_inset Formula $20!=2^{18}3^{8}5^{4}7^{2}\cdot11\cdot13\cdot17\cdot19$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc7[M10] +\end_layout + +\end_inset + +Show that the +\begin_inset Quotes eld +\end_inset + +generalized termial +\begin_inset Quotes erd +\end_inset + + function in Eq. + (10) satisfies the identity +\begin_inset Formula $x?=x+(x-1)?$ +\end_inset + + for all real numbers +\begin_inset Formula $x$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $x+(x-1)?=x+\frac{1}{2}(x-1)x=\frac{1}{2}2x+\frac{1}{2}(x-1)x=\frac{1}{2}(x+1)x=x?$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[M10] +\end_layout + +\end_inset + +Determine the values of +\begin_inset Formula $\Gamma(\frac{1}{2})$ +\end_inset + + and +\begin_inset Formula $\Gamma(-\frac{1}{2})$ +\end_inset + +, + given that +\begin_inset Formula $(\frac{1}{2})!=\sqrt{\pi}/2$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +(\tfrac{1}{2})!=\tfrac{1}{2}\Gamma(\tfrac{1}{2}) & \implies\Gamma(\tfrac{1}{2})=2(\tfrac{1}{2})!=\sqrt{\pi},\\ +-\tfrac{1}{2}\Gamma(-\tfrac{1}{2})=\Gamma(\tfrac{1}{2}) & \implies\Gamma(-\tfrac{1}{2})=-2\Gamma(\tfrac{1}{2})=-2\sqrt{\pi}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[HM20] +\end_layout + +\end_inset + +Does the identity +\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ +\end_inset + + hold for all real numbers +\begin_inset Formula $x$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +No, + as it doesn't hold when +\begin_inset Formula $\Gamma(x)$ +\end_inset + + or +\begin_inset Formula $\Gamma(x+1)$ +\end_inset + + are not defined. + However, + when they are defined, +\begin_inset Formula +\begin{align*} +x\Gamma(x) & =x\lim_{m}\frac{m^{x}m!}{\prod_{i=0}^{m}(x+i)}=\lim_{m}\frac{m^{x}m!}{\prod_{i=1}^{m}(x+i)}=\lim_{m}\frac{(m+1)^{x}(m+1)!}{\prod_{i=1}^{m+1}(x+i)}=\\ + & =\lim_{m}\frac{(m+1)^{x+1}m!}{\prod_{i=0}^{m}(x+1+i)}=\lim_{m}\left(\frac{m^{x+1}m!}{\prod_{i=0}^{m}((x+1)+i)}\left(\frac{m+1}{m}\right)^{x+1}\right)=\Gamma(x+1)\cdot1. +\end{align*} + +\end_inset + +Note that, + if +\begin_inset Formula $x\in\mathbb{Z}^{-}$ +\end_inset + +, + then the terms from +\begin_inset Formula $m=-x$ +\end_inset + + onward are not defined, + so this is not the scenario we are dealing with. + For ant other value, + this holds. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc11[M15] +\end_layout + +\end_inset + +Let the representation of +\begin_inset Formula $n$ +\end_inset + + in the binary system be +\begin_inset Formula $n=2^{e_{1}}+2^{e_{2}}+\dots+2^{e_{r}}$ +\end_inset + +, + where +\begin_inset Formula $e_{1}>e_{2}>\dots>e_{r}\geq0$ +\end_inset + +. + Show that +\begin_inset Formula $n!$ +\end_inset + + is divisible by +\begin_inset Formula $2^{n-r}$ +\end_inset + + but not by +\begin_inset Formula $2^{n-r+1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +This is exactly to say that, + for +\begin_inset Formula $p=2$ +\end_inset + +, + +\begin_inset Formula $\mu=n-r$ +\end_inset + +. + But +\begin_inset Formula $r$ +\end_inset + + is the sum of all bits of +\begin_inset Formula $n$ +\end_inset + + in base 2, + so by Exercise 12, + +\begin_inset Formula $\mu=\frac{1}{2-1}(n-r)=n-r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc12[M22] +\end_layout + +\end_inset + +(A. + Legendre, + 1808.) Generalizing the result of the previous exercise, + let +\begin_inset Formula $p$ +\end_inset + + be a prime number, + and let the representation of +\begin_inset Formula $n$ +\end_inset + + in the +\begin_inset Formula $p$ +\end_inset + +-ary number system be +\begin_inset Formula $n=a_{k}p^{k}+a_{k-1}p^{k-1}+\dots+a_{1}p+a_{0}$ +\end_inset + +. + Express the number +\begin_inset Formula $\mu$ +\end_inset + + of Eq. + (8) in a simple formula involving +\begin_inset Formula $n$ +\end_inset + +, + +\begin_inset Formula $p$ +\end_inset + +, + and +\begin_inset Formula $a$ +\end_inset + +'s. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The question makes sense for +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + +. + Then, + given that the previous exercise showed that, + for +\begin_inset Formula $p=2$ +\end_inset + +, + +\begin_inset Formula $\mu=n-r$ +\end_inset + +, + where +\begin_inset Formula $r\coloneqq|\{k\in\mathbb{N}\mid a_{k}\neq0\}|=\sum_{k}a_{k}$ +\end_inset + +, + a guess is that +\begin_inset Formula $\mu=n-\sum_{k}a_{k}$ +\end_inset + + for any other positive prime integer +\begin_inset Formula $p$ +\end_inset + + as well, + that is, + +\begin_inset Formula $n-\mu=\sum_{k}a_{k}$ +\end_inset + +. + To prove this, +\begin_inset Formula +\[ +\mu=\sum_{j\geq1}\left\lfloor \frac{n}{p^{j}}\right\rfloor =\sum_{j=1}^{k}\sum_{i=j}^{k}a_{i}p^{i-j}=\sum_{1\leq j\leq i\leq k}a_{i}p^{i-j}=\sum_{i=1}^{k}a_{i}\left(\sum_{j=0}^{i-1}p^{j}\right)=\sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1}, +\] + +\end_inset + +where the latter identity is because of the cyclotomic formula. + Then, +\begin_inset Formula +\begin{align*} +\sum_{i=1}^{k}\frac{a_{i}(p^{i}-1)}{p-1} & =\frac{1}{p-1}\left(\sum_{i=1}^{k}a_{i}p^{i}-\sum_{i=1}^{k}a_{i}\right)=\frac{1}{p-1}\left((n-a_{0})-\sum_{i\geq1}a_{i}\right)\\ + & =\frac{1}{p-1}\left(n-\sum_{i\geq0}a_{i}\right). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[HM20] +\end_layout + +\end_inset + +Try to put yourself in Euler's place, + looking for a way to generalize +\begin_inset Formula $n!$ +\end_inset + + to noninteger values of +\begin_inset Formula $n$ +\end_inset + +. + Since +\begin_inset Formula $(n+\frac{1}{2})!/n!$ +\end_inset + + times +\begin_inset Formula $((n+\frac{1}{2})+\frac{1}{2})!/(n+\frac{1}{2})!$ +\end_inset + + equals +\begin_inset Formula $(n+1)!/n!=n+1$ +\end_inset + +, + it seems natural that +\begin_inset Formula $(n+\frac{1}{2})!/n!$ +\end_inset + + should be approximately +\begin_inset Formula $\sqrt{n}$ +\end_inset + +. + Similarly, + +\begin_inset Formula $(n+\frac{1}{3})!/n!$ +\end_inset + + should be +\begin_inset Formula $\approx\sqrt[3]{n}$ +\end_inset + +. + Invent a hypothesis about the ratio +\begin_inset Formula $(n+x)!/n!$ +\end_inset + + as +\begin_inset Formula $n$ +\end_inset + + approaches infinity. + Is your hypothesis correct when +\begin_inset Formula $x$ +\end_inset + + is an integer? + Does it tell anything about the appropriate value of +\begin_inset Formula $x!$ +\end_inset + + when +\begin_inset Formula $x$ +\end_inset + + is not an integer? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The previous examples show +\begin_inset Formula $\frac{(n+\frac{1}{m})!}{n!}\approx\sqrt[m]{n}=n^{\frac{1}{m}}$ +\end_inset + +, + which is to say that +\begin_inset Formula $\frac{(n+x)!}{n!}\approx n^{x}$ +\end_inset + + for +\begin_inset Formula $x=\frac{1}{m}$ +\end_inset + +. + As +\begin_inset Formula $n$ +\end_inset + + gets bigger, + the approximation should probably be more accurate for the same value of +\begin_inset Formula $x$ +\end_inset + +, + so we could see that +\begin_inset Formula $(n+x)!\approx n^{x}n!$ +\end_inset + +. + For a non-negative integer +\begin_inset Formula $x$ +\end_inset + +, + +\begin_inset Formula $(n+x)!=(n+1)\cdots(n+x)\cdot n!$ +\end_inset + +, + so as +\begin_inset Formula $n$ +\end_inset + + gets bigger the approximation is more and more precise, + and in fact, +\begin_inset Formula +\[ +\lim_{n}\frac{n^{x}n!}{(n+x)!}=\lim_{n}\frac{n^{x}}{(n+1)\cdots(n+x)}=\lim_{n}\prod_{k=1}^{x}\frac{n}{n+k}=1. +\] + +\end_inset + +Multiplying by +\begin_inset Formula $x!$ +\end_inset + +, +\begin_inset Formula +\[ +x!=\lim_{n}\frac{n^{x}x!n!}{(n+x)!}=\lim_{n}(n^{x}n!)\frac{x!}{(n+x)!}=\lim_{n}\frac{n^{x}n!}{(x+1)\cdots(x+n)}, +\] + +\end_inset + +which is Euler's factorial formula. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc24[HM21] +\end_layout + +\end_inset + +Prove the handy inequalities +\begin_inset Formula +\begin{align*} +\frac{n^{n}}{\text{e}^{n-1}} & \leq n!\leq\frac{n^{n+1}}{\text{e}^{n-1}}, & \text{integer }n & \geq1. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(Looking at the answers.) +\end_layout + +\end_inset + +We have +\begin_inset Formula +\begin{align*} +\frac{n^{n}}{n!} & =\prod_{k=1}^{n}\frac{n}{k}=\prod_{k=1}^{n-1}\frac{n}{k}=\prod_{k=1}^{n-1}\prod_{j=k}^{n-1}\frac{j+1}{j}=\prod_{1\leq k\leq j<n}\frac{j+1}{j}=\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\\ + & =\prod_{j=1}^{n-1}\left(1+\frac{1}{j}\right)^{j}\leq\prod_{j=1}^{n-1}\left(\text{e}^{1/j}\right)^{j}=\text{e}^{n-1}, +\end{align*} + +\end_inset + +where for the inequality we use that +\begin_inset Formula $1+x\leq\text{e}^{x}$ +\end_inset + + for all real +\begin_inset Formula $x$ +\end_inset + +. + Likewise, +\begin_inset Formula +\begin{align*} +\frac{n^{n+1}}{n!} & =n\frac{n^{n}}{n!}=n\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\prod_{j=1}^{n-1}\frac{j+1}{j}\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j}=\prod_{j=1}^{n-1}\left(\frac{j+1}{j}\right)^{j+1}=\\ + & =\prod_{j=2}^{n}\left(\frac{j}{j-1}\right)^{j}=\prod_{j=2}^{n}\left(1-\frac{1}{j}\right)^{-j}\geq\prod_{j=2}^{n}\left(\text{e}^{-1/j}\right)^{-j}=\text{e}^{n-1}. +\end{align*} + +\end_inset + + +\end_layout + +\end_body +\end_document |
