diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.6.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.6.lyx')
| -rw-r--r-- | vol1/1.2.6.lyx | 3599 |
1 files changed, 3599 insertions, 0 deletions
diff --git a/vol1/1.2.6.lyx b/vol1/1.2.6.lyx new file mode 100644 index 0000000..047325d --- /dev/null +++ b/vol1/1.2.6.lyx @@ -0,0 +1,3599 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\usepackage{amsmath} +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset FormulaMacro +\newcommand{\stirla}[2]{\genfrac[]{0pt}{}{#1}{#2}} +{\begin{bmatrix}{\textstyle #1}\\ +{\textstyle #2} +\end{bmatrix}} +\end_inset + + +\begin_inset FormulaMacro +\newcommand{\stirlb}[2]{\genfrac\{\}{0pt}{}{#1}{#2}} +{\begin{Bmatrix}{\textstyle #1}\\ +{\textstyle #2} +\end{Bmatrix}} +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[00] +\end_layout + +\end_inset + +How many combinations of +\begin_inset Formula $n$ +\end_inset + + things taken +\begin_inset Formula $n-1$ +\end_inset + + at a time are possible? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{n}{n-1}=\frac{n!}{1!(n-1)!}=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[00] +\end_layout + +\end_inset + +What is +\begin_inset Formula $\binom{0}{0}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{0}{0}=\frac{1!}{1!1!}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[00] +\end_layout + +\end_inset + +How many bridge hands (13 cards out of a 52-card deck) are possible? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $\binom{52}{13}=635013559600$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[10] +\end_layout + +\end_inset + +Give the answer to exercise 3 as a product of prime numbers. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $\binom{52}{13}=\frac{52!}{13!39!}$ +\end_inset + +. + Using Equation 1.2.5.8: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +52! & =2^{49}3^{23}5^{12}7^{8}11^{4}13^{4}17^{3}19^{2}23^{2}\cdot29\cdot31\cdot37\cdot41\cdot43\cdot47,\\ +39! & =2^{35}3^{18}5^{8}7^{5}11^{3}13^{3}17^{2}19^{2}\cdot23\cdot29\cdot31\cdot37\\ +13! & =2^{10}3^{5}5^{2}\cdot7\cdot11\cdot13\\ +\hline \binom{52}{13} & =2^{4}5^{2}7^{2}\cdot17\cdot23\cdot41\cdot43\cdot47. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[05] +\end_layout + +\end_inset + +Use Pascal's triangle to explain the fact that +\begin_inset Formula $11^{4}=14641$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $11^{4}=(10+1)^{4}=\binom{4}{0}10^{4}1^{0}+\binom{4}{1}10^{3}1^{1}+\binom{4}{2}10^{2}1^{2}+\binom{4}{3}10^{1}1^{3}+\binom{4}{4}10^{0}1^{4}=14641$ +\end_inset + +. + The pattern works for the number 11 in any given base until the number 10 or higher appears, + which in this case happens in the next row. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[10] +\end_layout + +\end_inset + +Pascal's triangle (Table 1) can be extended in all directions by use of the addition formula, + Eq. + (9). + Find the three rows that go on +\emph on +top +\emph default + of Table 1 (i.e. + for +\begin_inset Formula $r=-1$ +\end_inset + +, + +\begin_inset Formula $-2$ +\end_inset + +, + and +\begin_inset Formula $-3$ +\end_inset + +). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The table is based on the properties that +\begin_inset Formula $\binom{r}{k}=\binom{r-1}{k}+\binom{r-1}{k-1}$ +\end_inset + + and that +\begin_inset Formula $\binom{r}{k}=0$ +\end_inset + + for +\begin_inset Formula $k<0$ +\end_inset + +. + This implies that +\begin_inset Formula $\binom{r}{0}=1$ +\end_inset + + for any +\begin_inset Formula $r\in\mathbb{Z}$ +\end_inset + + (really for any +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + +) and that +\begin_inset Formula $\binom{r-1}{k}=\binom{r}{k}-\binom{r-1}{k-1}$ +\end_inset + + (the one below in the table minus the one on the left). +\end_layout + +\begin_layout Standard +\align center +\begin_inset Tabular +<lyxtabular version="3" rows="4" columns="11"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $r$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{0}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{1}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{4}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{5}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{6}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{7}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{8}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" bottomline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{r}{9}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-3$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-3$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $6$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-10$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $15$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-21$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $28$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-36$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $45$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-55$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-2$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-2$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $3$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-4$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $5$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-6$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $7$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-8$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $9$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-10$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" leftline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $-1$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc8[00] +\end_layout + +\end_inset + +What property of Pascal's triangle is reflected in the +\begin_inset Quotes eld +\end_inset + +symmetry condition, +\begin_inset Quotes erd +\end_inset + + Eq. + (6)? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The symmetry of each row +\begin_inset Formula $r$ +\end_inset + + with center in +\begin_inset Formula $k=\frac{r}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[01] +\end_layout + +\end_inset + +What is the value of +\begin_inset Formula $\binom{n}{n}$ +\end_inset + +? + (Consider all integers +\begin_inset Formula $n$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For +\begin_inset Formula $n\geq0$ +\end_inset + +, + +\begin_inset Formula $\binom{n}{n}=\frac{n!}{n!1!}=1$ +\end_inset + +. + For +\begin_inset Formula $n<0$ +\end_inset + +, + by definition +\begin_inset Formula $\binom{n}{n}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[M25] +\end_layout + +\end_inset + +If +\begin_inset Formula $p$ +\end_inset + + is prime, + show that: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \pmod p$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p}{k}\equiv0\pmod p$ +\end_inset + +, + for +\begin_inset Formula $1\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p-1}{k}\equiv(-1)^{k}\pmod p$ +\end_inset + +, + for +\begin_inset Formula $0\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p+1}{k}\equiv0\pmod p$ +\end_inset + +, + for +\begin_inset Formula $2\leq k\leq p-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +(É. + Lucas, + 1877.) +\begin_inset Formula +\[ +\binom{n}{k}\equiv\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}\binom{n\bmod p}{k\bmod p}\pmod p. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +If the representations of +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $k$ +\end_inset + + in the +\begin_inset Formula $p$ +\end_inset + +-ary number system are +\begin_inset Formula +\begin{eqnarray*} +\begin{array}{rlc} +n & = & a_{r}p^{r}+\dots+a_{1}p+a_{0},\\ +k & = & b_{r}p^{r}+\dots+b_{1}p+b_{0}, +\end{array} & \text{then} & \binom{n}{k}\equiv\binom{a_{r}}{b_{r}}\cdots\binom{a_{1}}{b_{1}}\binom{a_{0}}{b_{0}}\pmod p. +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We assume +\begin_inset Formula $n\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Using part 5, +\begin_inset Formula +\[ +\binom{n}{p}\equiv\binom{\lfloor n/p\rfloor}{\lfloor p/p\rfloor}\binom{n\bmod p}{p\bmod p}=\binom{\lfloor n/p\rfloor}{1}\binom{n\bmod p}{0}=\left\lfloor \frac{n}{p}\right\rfloor \cdot1. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Since we know +\begin_inset Formula $\binom{n}{p}=\frac{n(n-1)\cdots(n-p+1)}{1\cdot2\cdot\cdots\cdot p}\in\mathbb{Z}$ +\end_inset + + (because of the addition formula), + and since +\begin_inset Formula $p$ +\end_inset + + appears once in the denominator, + there must be a +\begin_inset Formula $k\in\{0,\dots,p-1\}$ +\end_inset + + such that +\begin_inset Formula $p\mid n-k$ +\end_inset + +, + and it obviously must be unique. + It's then easy to see that +\begin_inset Formula $\lfloor\frac{n}{p}\rfloor=\frac{n-k}{p}$ +\end_inset + +, + and so +\begin_inset Formula +\[ +\binom{n}{p}\equiv\left\lfloor \frac{n}{p}\right\rfloor \frac{n(n-1)\cdots(n-k+1)(n-k-1)\cdots(n-p+1)}{1\cdot2\cdots(p-1)}\pmod p. +\] + +\end_inset + +Let us call +\begin_inset Formula $b$ +\end_inset + + the numerator in the fraction of the above formula, + we just need to prove that +\begin_inset Formula $\frac{b}{(p-1)!}\equiv1\pmod p$ +\end_inset + +, + which by rule 1.2.4–C is equivalent to +\begin_inset Formula $b\equiv(p-1)!\bmod p!$ +\end_inset + +. + Since +\begin_inset Formula $b$ +\end_inset + + is a multiple of +\begin_inset Formula $(p-1)!$ +\end_inset + + (otherwise +\begin_inset Formula $\binom{n}{p}$ +\end_inset + + would be an integer), + +\begin_inset Formula $b\equiv0\equiv(p-1)!\bmod(p-1)!$ +\end_inset + +, + and since +\begin_inset Formula $\{(n-j)\bmod p\}_{0\leq j<p}^{j\neq k}=\{1,\dots,p-1\}$ +\end_inset + +, + we have +\begin_inset Formula +\[ +b=\prod_{\begin{subarray}{c} +0\leq j<p\\ +j\neq k +\end{subarray}}(n-j)\equiv\prod_{j=1}^{p-1}j=(p-1)!\pmod p. +\] + +\end_inset + +Therefore, + since +\begin_inset Formula $(p-1)!\bot p$ +\end_inset + +, + rule 1.2.4–D gives us the result. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\binom{p}{k}=\frac{p!}{k!(p-k)!}$ +\end_inset + +, + but neither +\begin_inset Formula $k!$ +\end_inset + + nor +\begin_inset Formula $(p-k)!$ +\end_inset + + divide +\begin_inset Formula $p$ +\end_inset + + while +\begin_inset Formula $p!$ +\end_inset + + does, + so +\begin_inset Formula $p\mid\binom{p}{k}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +We prove it by induction on +\begin_inset Formula $k$ +\end_inset + +. + For +\begin_inset Formula $k=0$ +\end_inset + +, + +\begin_inset Formula $\binom{p-1}{0}=1=(-1)^{0}$ +\end_inset + +, + so the equation holds. + For +\begin_inset Formula $1\leq k\leq p-1$ +\end_inset + +, + +\begin_inset Formula +\[ +\binom{p-1}{k}=\binom{p}{k}-\binom{p-1}{k-1}\equiv0-(-1)^{k-1}=(-1)^{k}\pmod p, +\] + +\end_inset + + where for the equivalence we use the previous part of the exercise and the induction hypothesis. +\end_layout + +\begin_layout Enumerate +Using part 2, +\begin_inset Formula +\[ +\binom{p+1}{k}=\binom{p}{k}+\binom{p}{k-1}\equiv0-0=0\pmod k. +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +If +\begin_inset Formula $k<0$ +\end_inset + +, + then +\begin_inset Formula $\binom{n}{k}=0$ +\end_inset + + and +\begin_inset Formula $\binom{\lfloor n/p\rfloor}{\lfloor k/p\rfloor}=0$ +\end_inset + +. + Now let's prove this for +\begin_inset Formula $k\geq0$ +\end_inset + +. + First, + note that, + if +\begin_inset Formula $a,b,c,d\in\mathbb{Z}$ +\end_inset + +, + +\begin_inset Formula $\frac{a}{b},\frac{c}{d}\in\mathbb{Z}$ +\end_inset + +, + and +\begin_inset Formula $a\equiv c$ +\end_inset + + and +\begin_inset Formula $0\not\equiv b\equiv d\pmod p$ +\end_inset + +, + then +\begin_inset Formula +\[ +\frac{a}{b}\equiv\frac{c}{d}\pmod p. +\] + +\end_inset + +Effectively, + let +\begin_inset Formula $a=jp+b$ +\end_inset + + +\begin_inset Formula $c=kp+d$ +\end_inset + + for some integers +\begin_inset Formula $j$ +\end_inset + + and +\begin_inset Formula $k$ +\end_inset + +, + then +\begin_inset Formula +\[ +\frac{a}{b}-\frac{c}{d}=\frac{ad-bc}{bd}=\frac{(jd-bk)p}{bd}, +\] + +\end_inset + +which is a multiple of +\begin_inset Formula $p$ +\end_inset + + because it's an integer and, + since +\begin_inset Formula $bd\nmid p$ +\end_inset + +, + it follows that +\begin_inset Formula $bd\mid jd-bk$ +\end_inset + +. + Now, + let +\begin_inset Formula $n\eqqcolon n'p+n_{0}$ +\end_inset + + and +\begin_inset Formula $k\eqqcolon k'p+k_{0}$ +\end_inset + + with +\begin_inset Formula $n',n_{0},k',k_{0}\in\mathbb{Z}$ +\end_inset + + and +\begin_inset Formula $0\leq n_{0},k_{0}<p$ +\end_inset + +. + Clearly +\begin_inset Formula $n_{0}\equiv n$ +\end_inset + + and +\begin_inset Formula $k_{0}\equiv k$ +\end_inset + + (modulo +\begin_inset Formula $p$ +\end_inset + +), + and then +\begin_inset Formula +\begin{align*} +\binom{n}{k} & =\prod_{j=1}^{k}\frac{n+1-j}{j}=\left(\prod_{j=1}^{pk'}\frac{n+1-j}{j}\right)\left(\prod_{j=1}^{k_{0}}\frac{pn'+n_{0}+1-pk'-j}{j+pk'}\right)\\ + & \equiv\left(\prod_{j=1}^{pk'}\frac{n+1-j}{j}\right)\left(\prod_{j=1}^{k_{0}}\frac{n_{0}+1-j}{j}\right)=\binom{n}{pk'}\binom{n_{0}}{k_{0}}\pmod p, +\end{align*} + +\end_inset + +where for the equivalence we used that both +\begin_inset Formula $\binom{n}{k}$ +\end_inset + + and +\begin_inset Formula $\binom{n}{pk'}\binom{n_{0}}{k_{0}}$ +\end_inset + + are integers. + Now we have to prove that +\begin_inset Formula $\binom{n}{pk'}\equiv\binom{n'}{k'}$ +\end_inset + +. + This coefficient can be factored as +\begin_inset Formula +\[ +\binom{n}{pk'}=\prod_{j=0}^{k'-1}\left(\prod_{i=1}^{p}\frac{n+1-jp-i}{jp+i}\right)=\prod_{j=0}^{k'-1}\prod_{i=1}^{p}\frac{(n'-j)p+n_{0}+1-i}{jp+i}. +\] + +\end_inset + +Each of the +\begin_inset Formula $k'$ +\end_inset + + groups of factors has exactly one factor whose numerator is a multiple of +\begin_inset Formula $p$ +\end_inset + + (when +\begin_inset Formula $i=s\coloneqq(n_{0}+1)\bmod p$ +\end_inset + +), + and one whose denominator is. + Canceling the +\begin_inset Formula $p$ +\end_inset + + in them and taking congruences on the other factors, + we get +\begin_inset Formula +\begin{align*} +\binom{n}{pk'} & \equiv\prod_{j=0}^{k'-1}\left(\frac{n'-j}{j+1}\frac{\prod_{\begin{subarray}{c} +1\leq i\leq p\\ +i\neq s +\end{subarray}}(n_{0}+1-i)}{(p-1)!}\right)=\prod_{j=0}^{k'-1}\left(\frac{n'-j}{j+1}\frac{(p-1)!}{(p-1)!}\right)=\\ + & =\prod_{j=1}^{k'}\frac{n'+1+j}{j}=\binom{n'}{k'}\pmod p. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Enumerate +From part 5 by induction on +\begin_inset Formula $r$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc11[M20] +\end_layout + +\end_inset + +(E. + Kummer, + 1852.) Let +\begin_inset Formula $p$ +\end_inset + + be prime. + Show that if +\begin_inset Formula $p^{n}$ +\end_inset + + divides +\begin_inset Formula +\[ +\binom{a+b}{a} +\] + +\end_inset + +but +\begin_inset Formula $p^{n+1}$ +\end_inset + + does not, + then +\begin_inset Formula $n$ +\end_inset + + is equal to the number of +\emph on +carries +\emph default + that occur when +\begin_inset Formula $a$ +\end_inset + + is added to +\begin_inset Formula $b$ +\end_inset + + in the +\begin_inset Formula $p$ +\end_inset + +-ary number system. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Because of the way the exercise is written, + we may assume that both +\begin_inset Formula $a$ +\end_inset + + and +\begin_inset Formula $b$ +\end_inset + + are natural numbers (non-negative integers), + and therefore +\begin_inset Formula $\binom{a+b}{a}=\frac{(a+b)!}{a!b!}$ +\end_inset + +. + Let +\begin_inset Formula $s_{a}$ +\end_inset + + be the sum of the digits of +\begin_inset Formula $a$ +\end_inset + + in base +\begin_inset Formula $p$ +\end_inset + + and let +\begin_inset Formula $\mu_{a}=\frac{a-s_{a}}{p-1}$ +\end_inset + + be the number of times +\begin_inset Formula $p$ +\end_inset + + appears in the prime factorization of +\begin_inset Formula $a$ +\end_inset + +, + by Exercise 1.2.5–12. + Define +\begin_inset Formula $s_{b}$ +\end_inset + +, + +\begin_inset Formula $\mu_{b}$ +\end_inset + +, + +\begin_inset Formula $s_{c}$ +\end_inset + +, + and +\begin_inset Formula $\mu_{c}$ +\end_inset + + in a similar manner, + with +\begin_inset Formula $c\coloneqq a+b$ +\end_inset + +. + Then the number of times +\begin_inset Formula $p$ +\end_inset + + appears in the prime factorization of +\begin_inset Formula $\binom{a+b}{a}$ +\end_inset + + is precisely +\begin_inset Formula +\[ +\mu_{c}-\mu_{a}-\mu_{b}=\frac{\cancel{c-a-b}-s_{c}+s_{a}+s_{b}}{p-1}, +\] + +\end_inset + +but +\begin_inset Formula $s_{c}$ +\end_inset + + is precisely the sum of +\begin_inset Formula $s_{a}$ +\end_inset + + plus +\begin_inset Formula $s_{b}$ +\end_inset + + except that, + every time we do a carry in the sum in base +\begin_inset Formula $p$ +\end_inset + +, + we have to subtract +\begin_inset Formula $p$ +\end_inset + + and add 1, + that is, + we subtract +\begin_inset Formula $p-1$ +\end_inset + +, + so +\begin_inset Formula $s_{a}+s_{b}-s_{c}$ +\end_inset + + is precisely +\begin_inset Formula $p-1$ +\end_inset + + times the number of carries and this proves the result. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc17[M18] +\end_layout + +\end_inset + +Prove the Chu-Vandermonde formula (21) from Eq. + (15), + using that +\begin_inset Formula $(1+x)^{r+s}=(1+x)^{r}(1+x)^{s}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $n$ +\end_inset + + is negative, + either +\begin_inset Formula $k$ +\end_inset + + or +\begin_inset Formula $n-k$ +\end_inset + + is negative for any +\begin_inset Formula $k$ +\end_inset + + so both sides of the equation are 0. + Otherwise, + for +\begin_inset Formula $x\in(-1,1)$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\sum_{n}\binom{r+s}{n}x^{n}=(1+x)^{r+s}=(1+x)^{r}(1+x)^{s}=\sum_{k}\binom{r}{k}x^{k}\sum_{m}\binom{s}{m}x^{m}=\\ +=\sum_{k}\binom{r}{k}x^{k}\sum_{n}\binom{s}{n-k}x^{n-k}=\sum_{n}\left(\sum_{k}\binom{r}{k}\binom{s}{n-k}\right)x^{n}. +\end{multline*} + +\end_inset + +If +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + + are integers, + the sums are finite and therefore we have polynomials in +\begin_inset Formula $x$ +\end_inset + + in both side, + but since they are both equal in a nonempty open interval, + the coefficients are all equal and we have proved the result. + If +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + + are not integers, + since +\begin_inset Formula +\[ +\binom{r+s}{n}-\sum_{k}\binom{r}{k}\binom{s}{n-k}=0 +\] + +\end_inset + +for all +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + +, + and the left hand side is a polynomial on +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + +, + it follows that the polynomial is 0 everywhere. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc21[05] +\end_layout + +\end_inset + +Both sides of Eq. + (25) are polynomials in +\begin_inset Formula $s$ +\end_inset + +; + why isn't that equation an identity in +\begin_inset Formula $s$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We know the equation to be valid for +\begin_inset Formula $n+1$ +\end_inset + + values of +\begin_inset Formula $s$ +\end_inset + +, + namely +\begin_inset Formula $0,1,\dots,n$ +\end_inset + +, + but while the polynomial on the left has degree +\begin_inset Formula $n$ +\end_inset + +, + the one on the right has degree +\begin_inset Formula $m+n+1\geq n+1$ +\end_inset + +, + so we cannot apply the reasoning below Eq. + (8). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc30[M24] +\end_layout + +\end_inset + +Show that there is a better way to solve Example 3 than the way used in the text, + by manipulating the sum so that Eq. + (26) applies. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +First, + we note that the terms are nonzero when +\begin_inset Formula $k\geq0$ +\end_inset + + and +\begin_inset Formula $m+2k\leq n+k$ +\end_inset + +, + which happens precisely when +\begin_inset Formula $0\leq k\leq n-m$ +\end_inset + +, + and in particular we may assume +\begin_inset Formula $n\geq m$ +\end_inset + + since otherwise the sum is 0. +\end_layout + +\begin_layout Standard +We start by negating the upper index (rule G) in the second factor and using symmetry (rule B) on the first, + and noting that all factors with negative +\begin_inset Formula $k$ +\end_inset + + are 0: +\begin_inset Formula +\[ +\sum_{k}\binom{n+k}{m+2k}\binom{2k}{k}\frac{(-1)^{k}}{k+1}=\sum_{k\geq0}\binom{n+k}{n-m-k}\binom{-k-1}{k}\frac{1}{k+1}. +\] + +\end_inset + +We have the left hand side of Eq. + (26) with +\begin_inset Formula $t\mapsto1$ +\end_inset + +, + +\begin_inset Formula $r\mapsto-1$ +\end_inset + +, + +\begin_inset Formula $n\mapsto n-m$ +\end_inset + +, + and +\begin_inset Formula $s\mapsto2n-m$ +\end_inset + +, + so this is equal to +\begin_inset Formula +\[ +\binom{-1+2n-m-n+m}{n-m}=\binom{n-1}{n-m}=\binom{n-1}{m-1}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc31[M20] +\end_layout + +\end_inset + +Evaluate +\begin_inset Formula +\[ +\sum_{k}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r+k}{m+n} +\] + +\end_inset + +in terms of +\begin_inset Formula $r$ +\end_inset + +, + +\begin_inset Formula $s$ +\end_inset + +, + +\begin_inset Formula $m$ +\end_inset + +, + and +\begin_inset Formula $n$ +\end_inset + +, + given that +\begin_inset Formula $m$ +\end_inset + + and +\begin_inset Formula $n$ +\end_inset + + are integers. + Begin by replacing +\begin_inset Formula +\begin{eqnarray*} +\binom{r+k}{m+n} & \text{ by } & \sum_{j}\binom{r}{m+n-j}\binom{k}{j}. +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We start assuming that +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + + are also integers. + The replacement suggested is given directly by Equation 21, + and we get +\begin_inset Formula +\begin{align*} +S & \coloneqq\sum_{k}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r+k}{m+n}\\ + & =\sum_{k}\sum_{j}\binom{m-r+s}{k}\binom{n+r-s}{n-k}\binom{r}{m+n-j}\binom{k}{j} & \text{Eq. (21)}\\ + & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\sum_{k}\binom{n+r-s}{n-k}\binom{m-r+s-j}{k-j} & \text{Eq. (20)}\\ + & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\sum_{k}\binom{n+r-s}{k+r-s}\binom{m-r+s-j}{k-j} & \text{Eq. (6)*}\\ + & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\binom{m+n-j}{n-j} & \text{Eq. (22)*}\\ + & =\sum_{j}\binom{r}{m+n-j}\binom{m-r+s}{j}\binom{m+n-j}{m} & \text{Eq. (6)**}\\ + & =\binom{r}{m}\sum_{j}\binom{m-r+s}{j}\binom{r-m}{n-j} & \text{Eq. (20)}\\ + & =\binom{r}{m}\binom{s}{n}. +\end{align*} + +\end_inset + + In (**), + we use that, + for nonzero addends, + +\begin_inset Formula $m+n-j\geq0$ +\end_inset + + and therefore we can apply Equation 6. + In (*), + we assume +\begin_inset Formula $s\leq m-r$ +\end_inset + +. + This is not important, + since, + by the reasoning about polynomials, + this has been proved for infinite values of +\begin_inset Formula $r$ +\end_inset + + and infinite values of +\begin_inset Formula $s$ +\end_inset + + and therefore applies to all +\begin_inset Formula $r$ +\end_inset + + and +\begin_inset Formula $s$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc36[M10] +\end_layout + +\end_inset + +What is the sum +\begin_inset Formula $\sum_{k}\binom{n}{k}$ +\end_inset + + of the numbers in each row of Pascal's triangle? + What is the sum of these numbers with alternating signs, + +\begin_inset Formula $\sum_{k}\binom{n}{k}(-1)^{k}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $n\geq0$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\sum_{k}\binom{n}{k}=\sum_{k}\binom{n}{k}1^{k}1^{n-k} & =(1+1)^{n}=2^{n},\\ +\sum_{k}\binom{n}{k}(-1)^{k}=\sum_{k}\binom{n}{k}(-1)^{k}1^{n-k} & =(1-1)^{n}=0^{n}=\delta_{n0}. +\end{align*} + +\end_inset + +If +\begin_inset Formula $n<0$ +\end_inset + + the value is generally undefined, + as evidenced by Exercise 6. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc37[M10] +\end_layout + +\end_inset + +From the answers to the preceding exercise, + deduce the value of the sum of every other entry in a row, + +\begin_inset Formula $\binom{n}{0}+\binom{n}{2}+\binom{n}{4}+\dots$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\sum_{k}\binom{n}{2k}=\sum_{k}\binom{n}{k}[k\text{ even}]=\sum_{k}\binom{n}{k}\frac{1+(-1)^{k}}{2}=\frac{2^{n}+\delta_{n0}}{2}=\left\{ \begin{array}{rl} +1, & n=0;\\ +2^{n-1}, & n>0. +\end{array}\right. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc39[M10] +\end_layout + +\end_inset + +What is the sum +\begin_inset Formula $\sum_{k}\stirla nk$ +\end_inset + + of the numbers in each row of Stirling's first triangle? + What is the sum of these numbers with alternating signs? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can use Equation 44: +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{multline*} +\sum_{k}\stirla nk=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk(-1)^{k}=(-1)^{n}(-1)^{\underline{n}}=\\ +=(-1)^{n}(-1)(-2)\cdots(-n)=n!, +\end{multline*} + +\end_inset + + +\begin_inset Formula +\[ +\sum_{k}\stirla nk(-1)^{k}=\sum_{k}\stirla nk(-1)^{-k}=(-1)^{-n}\sum_{k}(-1)^{n-k}\stirla nk1^{k}=(-1)^{n}1^{\underline{n}}=\delta_{n0}-\delta_{n1}. +\] + +\end_inset + +The first equation makes sense, + as it is the number of permutations of +\begin_inset Formula $n$ +\end_inset + + symbols irrespective of the number +\begin_inset Formula $k$ +\end_inset + + of cycles. + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc42[HM10] +\end_layout + +\end_inset + +Express the binomial coefficient +\begin_inset Formula $\binom{r}{k}$ +\end_inset + + in terms of the beta function defined above. + (This gives us a way to extend the definition to all real values of +\begin_inset Formula $k$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For integers +\begin_inset Formula $r\geq0$ +\end_inset + + and +\begin_inset Formula $k\neq0$ +\end_inset + +, + +\begin_inset Formula +\[ +\binom{r}{k}=\frac{r!}{k!(r-k)!}=\frac{\Gamma(r+1)}{\Gamma(k+1)\Gamma(r-k)}=\frac{\Gamma(r+1)}{k\Gamma(k)\Gamma(r-k+1)}=(kB(k,r-k+1))^{-1}. +\] + +\end_inset + +We can extend this function to the points where it is not defined by taking limits. +\end_layout + +\begin_layout Standard +We are not required to evaluate the domain of this function, + but we have to see that it matches our definition for +\begin_inset Formula $r\in\mathbb{R}$ +\end_inset + + and +\begin_inset Formula $k\in\mathbb{Z}$ +\end_inset + +. + For +\begin_inset Formula $k\in\mathbb{N}$ +\end_inset + +, + we first see that +\begin_inset Formula +\begin{multline*} +\lim_{(x,y)\to(r,k)}\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}=\lim_{(x,y)\to(r,k)}\frac{\lim_{m}\frac{m^{x-y}m!}{(x-y+1)\cdots(x-y+m)}}{\lim_{m}\frac{m^{x-k}m!}{(x-k+1)\cdots(x-k+m)}}=\\ +=\lim_{(x,y)\to(r,k)}\lim_{m}m^{k-y}\prod_{i=1}^{m}\frac{x+m-y}{x+m-k}=1, +\end{multline*} + +\end_inset + +where I don't remember enough of my calculus lessons to know why the last step is correct but it has to do with exchanging limits. + With this, + if we successively apply the fact that +\begin_inset Formula $\Gamma(x+1)=x\Gamma(x)$ +\end_inset + +, + +\begin_inset Formula +\begin{multline*} +\lim_{(x,y)\to(r,k)}\frac{\Gamma(x+1)}{y\Gamma(y)\Gamma(x-y+1)}=\lim_{(x,y)\to(r,k)}\frac{x(x-1)\cdots(x-k+1)}{y\Gamma(y)\frac{\Gamma(x-y+1)}{\Gamma(x-k+1)}}=\\ +=\frac{r(r-1)\cdots(r-k+1)}{k!}. +\end{multline*} + +\end_inset + +If +\begin_inset Formula $k\in\mathbb{Z}^{-}$ +\end_inset + +, + for +\begin_inset Formula $r\notin\mathbb{Z}^{-}$ +\end_inset + +, + +\begin_inset Formula $\Gamma(r+1)$ +\end_inset + + is bounded in an open set around +\begin_inset Formula $(r,k)$ +\end_inset + +, + and since +\begin_inset Formula $\Gamma$ +\end_inset + + is continuous and has no zeros, + the denominator tends to infinity, + so the corresponding limit correctly evaluates to 0. + If +\begin_inset Formula $k,r\in\mathbb{Z}^{-}$ +\end_inset + + I can't find if the value is defined, + but if it is then its value is 0. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc44[HM20] +\end_layout + +\end_inset + +Using the generalized binomial coefficient suggested in exercise 42, + show that +\begin_inset Formula +\[ +\binom{r}{1/2}=2^{2r+1}\bigg/\binom{2r}{r}\pi. +\] + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +From the definition, +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{1}{\frac{1}{2}B(\frac{1}{2},r+\frac{1}{2})}=\frac{2\Gamma(r+1)}{\Gamma(\frac{1}{2})\Gamma(r+\frac{1}{2})}. +\] + +\end_inset + +Now, + we know +\begin_inset Formula $\frac{\sqrt{\pi}}{2}=(\frac{1}{2})!=\frac{1}{2}\Gamma(\frac{1}{2})$ +\end_inset + +, + so +\begin_inset Formula $\Gamma(\frac{1}{2})=\sqrt{\pi}$ +\end_inset + + and +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{2r!}{\sqrt{\pi}(r-\frac{1}{2})(r-\frac{3}{2})\cdots(\frac{1}{2})\sqrt{\pi}}=\frac{2r!2^{r}}{\pi(2r-1)(2r-3)\cdots1}. +\] + +\end_inset + +We see that +\begin_inset Formula $(2r)!=((2r)(2r-2)\cdots2)((2r-1)(2r-3)\cdots1)$ +\end_inset + +. + We already have the second factor, + and the first one is precisely +\begin_inset Formula $2^{r}r!$ +\end_inset + +, + so we multiply both numerator and denominator by this factor to get that +\begin_inset Formula +\[ +\binom{r}{\frac{1}{2}}=\frac{2r!2^{r}2^{r}r!}{\pi(2r)!}=\frac{2^{2r+1}}{\binom{2r}{r}\pi}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc46[M21] +\end_layout + +\end_inset + +Using Stirling's approximation, + Eq. + 1.2.5–(7), + find an approximate value of +\begin_inset Formula $\binom{x+y}{y}$ +\end_inset + +, + assuming that both +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $y$ +\end_inset + + are large. + In particular, + find the approximate size of +\begin_inset Formula $\binom{2n}{n}$ +\end_inset + + when +\begin_inset Formula $n$ +\end_inset + + is large. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For large +\begin_inset Formula $x$ +\end_inset + + and +\begin_inset Formula $y$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\binom{x+y}{y}=\frac{(x+y)!}{x!y!}\approx\frac{\sqrt{2\pi(x+y)}\left(\frac{x+y}{\text{e}}\right)^{x+y}}{\sqrt{2\pi x}\sqrt{2\pi y}\left(\frac{x}{\text{e}}\right)^{x}\left(\frac{y}{\text{e}}\right)^{y}}=\sqrt{\frac{x+y}{2\pi xy}}\left(\frac{(x+y)^{x+y}}{x^{x}y^{y}}\right)=\\ +=\frac{(x+y)^{x+y+\nicefrac{1}{2}}}{\sqrt{2\pi}x^{x+\nicefrac{1}{2}}y^{y+\nicefrac{1}{2}}}=\sqrt{\frac{1}{2\pi}\left(\frac{1}{x}+\frac{1}{y}\right)}\left(1+\frac{y}{x}\right)^{x}\left(1+\frac{x}{y}\right)^{y}. +\end{multline*} + +\end_inset + +Then, + for large +\begin_inset Formula $n$ +\end_inset + +, +\begin_inset Formula +\[ +\binom{2n}{n}=\frac{(2n)^{2n+\nicefrac{1}{2}}}{\sqrt{2\pi}n^{2n+1}}=\frac{2^{2n}\sqrt{2}n^{2n}\sqrt{n}}{\sqrt{2\pi}n^{2n}n}=\frac{4^{n}}{\sqrt{\pi n}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc48[M25] +\end_layout + +\end_inset + +Show that +\begin_inset Formula +\[ +\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\frac{n!}{x(x+1)\cdots(x+n)}=\frac{1}{x\binom{n+x}{n}}, +\] + +\end_inset + +if the denominators are not zero. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The second equality is obvious. + For the first one, + since the way the formula is written assumes +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, + we can prove this by induction. + For +\begin_inset Formula $n=0$ +\end_inset + +, +\begin_inset Formula +\[ +\sum_{k\geq0}\binom{0}{k}\frac{(-1)^{k}}{k+x}=\frac{1}{x}=\frac{0!}{x}. +\] + +\end_inset + +For +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\sum_{k\geq0}\binom{n}{k}\frac{(-1)^{k}}{k+x}=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k-1}\frac{(-1)^{k}}{k+x}=\\ +=\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k}}{k+x}+\sum_{k\geq0}\binom{n-1}{k}\frac{(-1)^{k+1}}{k+1+x}=\frac{1}{x\binom{n-1+x}{n-1}}-\frac{1}{(x+1)\binom{n+x}{n-1}}=\\ +=\frac{(n-1)!}{x(x+1)\cdots(x+n-1)}-\frac{(n-1)!}{(x+1)(x+2)\cdots(x+n)}=\frac{(n-1)!((\cancel{x+}n)\cancel{-x})}{x(x+1)\cdots(x+n)}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc57[M22] +\end_layout + +\end_inset + +Show that the coefficient +\begin_inset Formula $a_{m}$ +\end_inset + + in Stirling's attempt at generalizing the factorial function, + Eq. + 1.2.5–(12), + is +\begin_inset Formula +\[ +\frac{(-1)^{m}}{m!}\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k. +\] + +\end_inset + +Also find +\begin_inset Formula $q$ +\end_inset + +-nomial generalizations of the fundamental identities (17) and (21). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The sum in Stirling's attempt is +\begin_inset Formula +\begin{eqnarray*} +S_{n} & = & \sum_{k\geq0}a_{k+1}\prod_{j=0}^{k}(n-j)=\sum_{m\geq1}a_{m}\prod_{j=0}^{m-1}(n-j)\\ + & = & \sum_{m\geq1}\frac{(-1)^{m}}{m!}\left(\sum_{k\geq1}(-1)^{k}\binom{m-1}{k-1}\ln k\right)\prod_{j=0}^{m-1}(n-j)\\ + & = & \sum_{k\geq1}\left(\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\right)\ln k. +\end{eqnarray*} + +\end_inset + +There are several things happening in the last line. + First, + note that both sums are bounded, + for +\begin_inset Formula $m$ +\end_inset + + must be at most +\begin_inset Formula $n$ +\end_inset + + because otherwise the product would contain a factor +\begin_inset Formula $n-n=0$ +\end_inset + +, + and +\begin_inset Formula $k$ +\end_inset + + must be lower than +\begin_inset Formula $m$ +\end_inset + +, + and therefore lower than +\begin_inset Formula $n$ +\end_inset + +, + because otherwise the factor +\begin_inset Formula $\binom{m-1}{k-1}$ +\end_inset + + would be 0. + This allows us to swap the sums and extract a factor that only depends on +\begin_inset Formula $k$ +\end_inset + +. + Moreover, +\begin_inset Formula +\[ +\frac{\prod_{j=0}^{m-1}(n-j)}{m!}=\frac{\prod_{j=1}^{m}(n-j+1)}{\prod_{j=1}^{m}j}=\binom{n}{m}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Let +\begin_inset Formula $A_{k}$ +\end_inset + + be the value of the inner sum for a given +\begin_inset Formula $k$ +\end_inset + +, + we know that +\begin_inset Formula $A_{k}=0$ +\end_inset + + for +\begin_inset Formula $k>n$ +\end_inset + +, + and if we prove that +\begin_inset Formula $A_{k}=1$ +\end_inset + + for +\begin_inset Formula $k\leq n$ +\end_inset + +, + we would have +\begin_inset Formula +\[ +S_{n}=\sum_{k=1}^{n}\ln k=\ln\prod_{k=1}^{n}k=\ln n! +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Now, + we have +\begin_inset Formula +\begin{align*} +A_{k} & =\sum_{m\geq1}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}\\ + & =\sum_{m}(-1)^{m+k}\binom{n}{m}\binom{m-1}{k-1}-(-1)^{k}\binom{-1}{k-1} & (*)\\ + & =\sum_{m}(-1)^{n-m-k}\binom{n}{n-m}\binom{n-m-1}{k-1}+1 & (**)\\ + & =-\sum_{m}(-1)^{n-m}\binom{n}{m}\binom{k-1-n+m}{k-1}+1 & \text{Rules B, G}\\ + & =-\binom{k-1-n}{k-1-n}+1=1, & \text{Eq. (23)} +\end{align*} + +\end_inset + +where in +\begin_inset Formula $(*)$ +\end_inset + + we expand the domain of +\begin_inset Formula $m$ +\end_inset + + to all integers and subtract the case when +\begin_inset Formula $m=0$ +\end_inset + + to compensate for that (this is the only nonzero term that wasn't considered already) and in +\begin_inset Formula $(**)$ +\end_inset + + we change +\begin_inset Formula $m$ +\end_inset + + to +\begin_inset Formula $n-m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For the second part of the exercise, + we start by writing the identities (17) and (21) in +\begin_inset Formula $q$ +\end_inset + +-nomial notation. + For (17), + this would be +\begin_inset Formula +\begin{eqnarray*} +\binom{r}{k,r-k}=(-1)^{k}\binom{k-r-1}{k,-r-1}, & \text{ or } & \binom{a+b}{a,b}=(-1)^{a}\binom{-b-1}{a,-(a+b)-1}. +\end{eqnarray*} + +\end_inset + +That is, + this allows us to change the sum on top to something resembling just one of the numbers that were on the bottom part. + To generalize this, +\begin_inset Formula +\begin{align*} +\binom{k_{1}+\dots+k_{m}}{k_{1},\dots,k_{m}} & =\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m}}{k_{1}+\dots+k_{m-1}}\\ + & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{k_{1}+k_{2}}{k_{1}}\cdots\binom{k_{1}+\dots+k_{m-1}}{k_{1}+\dots+k_{m-2}}\binom{-k_{m}-1}{k_{1}+\dots+k_{m-1}}\\ + & =(-1)^{k_{1}+\dots+k_{m-1}}\binom{-k_{m}-1}{k_{1},\dots,k_{m-1},-(k_{1}+\dots+k_{m})-1}. +\end{align*} + +\end_inset + +We are abusing notation here, + since the book only defines multinomial coefficients for +\begin_inset Formula $k_{i}\geq0$ +\end_inset + +, + but we can define them for any +\begin_inset Formula $k_{i}\in\mathbb{Z}$ +\end_inset + + by using the property that relates them to binomial coefficients, + at the cost of symmetry with respect to the order of the +\begin_inset Formula $k_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +For (21), + this would be +\begin_inset Formula +\[ +\sum_{k}\binom{r}{k,r-k}\binom{s}{n-k,s-n+k}=\binom{r+s}{n,r+s-n}. +\] + +\end_inset + +That is, + in this case we would add up all the numbers on each component. + This clearly holds if we place +\begin_inset Formula $k,r-k$ +\end_inset + + and +\begin_inset Formula $n-k,s-n+k$ +\end_inset + + as the two last components of the multinomial coefficient. + There must be a better (less silly) generalization but I've already spent way too much time in this exercise. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc60[M23] +\end_layout + +\end_inset + +We have seen that +\begin_inset Formula $\binom{n}{k}$ +\end_inset + + is the number of combinations of +\begin_inset Formula $n$ +\end_inset + + things, + +\begin_inset Formula $k$ +\end_inset + + at a time, + namely the number of ways to choose +\begin_inset Formula $k$ +\end_inset + + different things out of a set of +\begin_inset Formula $n$ +\end_inset + +. + The +\emph on +combinations with repetitions +\emph default + are similar to ordinary combinations, + except that we may choose each object any number of times. + Thus, + the list (1) would be extended to include also +\begin_inset Formula $aaa$ +\end_inset + +, + +\begin_inset Formula $aab$ +\end_inset + +, + +\begin_inset Formula $aac$ +\end_inset + +, + +\begin_inset Formula $aad$ +\end_inset + +, + +\begin_inset Formula $aae$ +\end_inset + +, + +\begin_inset Formula $abb$ +\end_inset + +, + etc., + if we were considering combinations with repetition. + How many +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $n$ +\end_inset + + objects are there, + if repetition is allowed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can draw a bijection between +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $\{1,\dots,n\}$ +\end_inset + + with repetition and +\begin_inset Formula $k$ +\end_inset + +-combinations of +\begin_inset Formula $\{1,\dots,n+k-1\}$ +\end_inset + + without repetition by the following assignment: +\begin_inset Formula +\begin{eqnarray*} +1\leq a_{1}\leq a_{2}\leq\dots\leq a_{k}\leq n & \mapsto & 1\leq a_{1}<a_{2}+1<\dots<a_{k}+k-1\leq n+k-1\\ +1\leq b_{1}\leq b_{2}-1\leq\dots\leq b_{k}-k+1\leq n & \mapsfrom & 1\leq b_{1}<b_{2}<\dots<b_{k}\leq n+k-1 +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Thus the answer is +\begin_inset Formula +\[ +\binom{n+k-1}{k}=(-1)^{k}\binom{-n}{k}=\frac{n^{\overline{k}}}{k!}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc62[M23] +\end_layout + +\end_inset + +The text gives formulas for sums involving a product of two binomial coefficients. + Of the sums involving a product of three binomial coefficients, + the following one and the identity of exercise 31 seem to be the most useful: +\begin_inset Formula +\begin{align*} +\sum_{k}(-1)^{k}\binom{l+m}{l+k}\binom{m+n}{m+k}\binom{n+l}{n+k} & =\frac{(l+m+n)!}{l!m!n!}, & \text{integer }l,m,n & \geq0. +\end{align*} + +\end_inset + +(The sum includes both positive and negative values of +\begin_inset Formula $k$ +\end_inset + +.) Prove this identity. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(Looking at the solution.) +\end_layout + +\end_inset + +We may assume that +\begin_inset Formula $l\leq m,n$ +\end_inset + +, + since we can always rename coefficients to make it this way. + Then the application of the identity in exercise 31 is actually from right to left: + we add a new variable +\begin_inset Formula $j$ +\end_inset + +, + change the last factor +\begin_inset Formula $\binom{n+l}{n+k}$ +\end_inset + + to +\begin_inset Formula $\binom{n+k}{l-k}$ +\end_inset + + by symmetry, + and apply the aforementioned exercise to the last two factors to get that +\begin_inset Formula +\[ +S\coloneqq\sum_{k}(-1)^{k}\binom{l+m}{l+k}\binom{m+n}{m+k}\binom{n+l}{n+k}=\sum_{j,k}(-1)^{k}\binom{l+m}{k+l}\binom{k+l}{j}\binom{m-k}{l-k-j}\binom{m+n+j}{m+l}. +\] + +\end_inset + +Using that in general +\begin_inset Formula $\binom{n}{k}=0$ +\end_inset + + for +\begin_inset Formula $n\geq0$ +\end_inset + + and +\begin_inset Formula $k\notin\{0,\dots,n\}$ +\end_inset + +, + nonzero addends here must follow +\begin_inset Formula +\begin{align*} +-l & \leq k\leq m, & -m & \leq k\leq n, & -n & \leq k\leq l, & 0 & \leq j\leq l+k, & l-m & \leq j\leq l-k; +\end{align*} + +\end_inset + +that is, + +\begin_inset Formula $\vert k\vert\leq\min\{m,n,l\}$ +\end_inset + + and +\begin_inset Formula $\max\{l-m,0\}\leq j\leq l-\vert k\vert$ +\end_inset + +, + which simplifies to +\begin_inset Formula $\vert k\vert\leq l$ +\end_inset + + and +\begin_inset Formula $0\leq j\leq l-\vert k\vert$ +\end_inset + + using the conditions at the beginning and then to only +\begin_inset Formula $0\leq j\leq l-\vert k\vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +This means that, + in all the binomial coefficients in the right hand side of the above equation, + the upper and lower parts are non-negative, + so we can substitute them to fractions of coefficients and, + after canceling out, + we get +\begin_inset Formula +\begin{align*} +S & =\sum_{0\leq j\leq l-\vert k\vert}(-1)^{k}\frac{(m+n+j)!}{j!(l+k-j)!(l-k-j)!(m-l+j)!(n-l+j)!}\\ + & =\sum_{0\leq j\leq l}\sum_{\vert k\vert\leq l-j}(-1)^{k}\binom{2l-2j}{l+k-j}\frac{(m+n+j)!}{(2l-2j)!j!(m-l+j)!(n-l+j)!}, +\end{align*} + +\end_inset + +but then the sum of +\begin_inset Formula $(-1)^{k}\binom{2l-2j}{l+k-j}$ +\end_inset + + across all +\begin_inset Formula $k$ +\end_inset + + is 0 unless +\begin_inset Formula $j=l$ +\end_inset + +, + so we just take the term with +\begin_inset Formula $j=l$ +\end_inset + + and +\begin_inset Formula $k=0$ +\end_inset + + to get +\begin_inset Formula +\[ +S=(-1)^{0}\binom{2l-2l}{l+0-l}\frac{(m+n+l)!}{(2l-2l)!l!(m-l+l)!(n-l+l)!}=\frac{(l+m+n)!}{l!m!n!}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc64[M20] +\end_layout + +\end_inset + +Show that +\begin_inset Formula $\stirlb nm$ +\end_inset + + is the number of ways to partition a set of +\begin_inset Formula $n$ +\end_inset + + elements into +\begin_inset Formula $m$ +\end_inset + + nonempty disjoint subsets. + For example, + the set +\begin_inset Formula $\{1,2,3,4\}$ +\end_inset + + can be partitioned into two subsets in +\begin_inset Formula $\stirlb 42=7$ +\end_inset + + ways: + +\begin_inset Formula $\{1,2,3\}\{4\}$ +\end_inset + +; + +\begin_inset Formula $\{1,2,4\}\{3\}$ +\end_inset + +; + +\begin_inset Formula $\{1,3,4\}\{2\}$ +\end_inset + +; + +\begin_inset Formula $\{2,3,4\}\{1\}$ +\end_inset + +; + +\begin_inset Formula $\{1,2\}\{3,4\}$ +\end_inset + +; + +\begin_inset Formula $\{1,3\}\{2,4\}$ +\end_inset + +; + +\begin_inset Formula $\{1,4\}\{2,3\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $n,m\in\mathbb{N}$ +\end_inset + +, + we prove this by induction in +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $m$ +\end_inset + +. + For +\begin_inset Formula $n=0$ +\end_inset + +, + there is +\begin_inset Formula $1=\stirlb 00$ +\end_inset + + way to partition +\begin_inset Formula $\emptyset$ +\end_inset + + into 0 nonempty disjoint subsets and +\begin_inset Formula $0=\stirlb 0m$ +\end_inset + + ways to partition it into +\begin_inset Formula $m\geq1$ +\end_inset + + nonempty subsets, + which matches Equation 48. + For +\begin_inset Formula $m=0$ +\end_inset + + and +\begin_inset Formula $n\geq1$ +\end_inset + +, + there are +\begin_inset Formula $0=\stirlb n0$ +\end_inset + + ways to divide a set of +\begin_inset Formula $n$ +\end_inset + + elements into 0 nonempty subsets. + +\end_layout + +\begin_layout Standard +Now, + for the induction step, + if +\begin_inset Formula $n\geq1$ +\end_inset + + and +\begin_inset Formula $m\geq1$ +\end_inset + +, + a partition of a set like +\begin_inset Formula $\{1,\dots,n\}$ +\end_inset + + into nonempty subsets can be thought of as a partition of +\begin_inset Formula $\{1,\dots,n-1\}$ +\end_inset + + to which +\begin_inset Formula $n$ +\end_inset + + has been added either to one of the elements of a partition or in a separate singleton set. + If the partition of +\begin_inset Formula $\{1,\dots,n\}$ +\end_inset + + has +\begin_inset Formula $m$ +\end_inset + + nonempty subsets, + for the first option we might add +\begin_inset Formula $n$ +\end_inset + + to any of the subsets of a partition of +\begin_inset Formula $\{1,\dots,n-1\}$ +\end_inset + + with +\begin_inset Formula $m$ +\end_inset + + subsets, + and for the second one, + we would need a partition of +\begin_inset Formula $\{1,\dots,n-1\}$ +\end_inset + + with +\begin_inset Formula $m-1$ +\end_inset + + subsets. + Thus we would need +\begin_inset Formula +\[ +\stirlb nm=m\stirlb{n-1}m+\stirlb{n-1}{m-1}, +\] + +\end_inset + +but this is precisely Equation 46. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc67[M20] +\end_layout + +\end_inset + +We often need to know that binomial coefficients aren't too large. + Prove the easy-to-remember upper bound +\begin_inset Formula +\begin{align*} +\binom{n}{k} & \leq\left(\frac{n\text{e}}{k}\right)^{k}, & \text{when }n\geq k & \geq0. +\end{align*} + +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +From Exercise 1.2.5–21, + if +\begin_inset Formula $k\geq1$ +\end_inset + +, + then +\begin_inset Formula $k!\geq\frac{k^{k}}{\text{e}^{k-1}}$ +\end_inset + +, + so +\begin_inset Formula +\[ +\binom{n}{k}=\frac{n(n-1)\cdots(n-k+1)}{k!}\leq\frac{n(n-1)\cdots(n-k+1)}{\frac{k^{k}}{\text{e}^{k-1}}}\leq\frac{n^{k}\text{e}^{k-1}}{k^{k}}\leq\left(\frac{n\text{e}}{k}\right)^{k}. +\] + +\end_inset + +For +\begin_inset Formula $k=0$ +\end_inset + +, +\begin_inset Formula +\[ +\lim_{k\to0}\left(\frac{n\text{e}}{k}\right)^{k}=\lim_{k\to\infty}\sqrt[k]{n\text{e}k}=1=\binom{n}{0}. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
