diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.2.7.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.2.7.lyx')
| -rw-r--r-- | vol1/1.2.7.lyx | 572 |
1 files changed, 572 insertions, 0 deletions
diff --git a/vol1/1.2.7.lyx b/vol1/1.2.7.lyx new file mode 100644 index 0000000..f110304 --- /dev/null +++ b/vol1/1.2.7.lyx @@ -0,0 +1,572 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\usepackage{amsmath} +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[01] +\end_layout + +\end_inset + +What are +\begin_inset Formula $H_{0}$ +\end_inset + +, + +\begin_inset Formula $H_{1}$ +\end_inset + +, + and +\begin_inset Formula $H_{2}$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $H_{0}=0$ +\end_inset + +, + +\begin_inset Formula $H_{1}=1$ +\end_inset + +, + +\begin_inset Formula $H_{2}=\frac{3}{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[10] +\end_layout + +\end_inset + +Decide which of the following statements are true for all positive integers +\begin_inset Formula $n$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{n}<\ln n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{n}>\ln n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H_{n}>\ln n+\gamma$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +False, + since +\begin_inset Formula $H_{2}=\frac{3}{2}>1>\ln2$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +True, + because the next one is true. +\end_layout + +\begin_layout Enumerate +True. + If this wasn't true for some number +\begin_inset Formula $n$ +\end_inset + +, + then it would be +\begin_inset Formula +\[ +0\geq H_{n}-(\ln n+\gamma)>\frac{1}{2n}-\frac{1}{12n^{2}}+\frac{1}{12n^{4}}-\frac{1}{252n^{6}}, +\] + +\end_inset + +but +\begin_inset Formula $\frac{1}{2n}>\frac{1}{12n^{2}}$ +\end_inset + + and +\begin_inset Formula $\frac{1}{12n^{4}}>\frac{1}{252n^{6}}$ +\end_inset + + for any +\begin_inset Formula $n\geq1\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc9[M18] +\end_layout + +\end_inset + +Theorem A applies only when +\begin_inset Formula $x>0$ +\end_inset + +; + what is the value of the sum considered when +\begin_inset Formula $x=-1$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Using Equation 1.2.6(18) in +\begin_inset Formula $(*)$ +\end_inset + + and Exercise 1.2.6–48 in +\begin_inset Formula $(**)$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\sum_{k=1}^{n}\binom{n}{k}(-1)^{k}H_{k}=\sum_{1\leq j\leq k\leq n}\binom{n}{k}(-1)^{k}\frac{1}{j}=\sum_{j=1}^{n}\frac{1}{j}\sum_{k=j}^{n}\binom{n}{k}(-1)^{k}=\\ +=(-1)^{n}\sum_{j=1}^{n}\frac{1}{j}\sum_{k=0}^{n-j}\binom{n}{k}(-1)^{k}\overset{(*)}{=}(-1)^{\cancel{n}}\sum_{j=1}^{n}\frac{1}{j}(-1)^{\cancel{n}-j}\binom{n-1}{n-j}=\\ +=\sum_{j=0}^{n}\frac{1}{j+1}(-1)^{-j-1}\binom{n-1}{n-j-1}=-\sum_{j=0}^{n-1}\frac{(-1)^{j}}{j+1}\binom{n-1}{j}\overset{(**)}{=}\frac{1}{\binom{n}{n-1}}=-\frac{1}{n}. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc11[M21] +\end_layout + +\end_inset + +Using summation by parts, + evaluate +\begin_inset Formula +\[ +\sum_{1<k\leq n}\frac{1}{k(k-1)}H_{k}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula +\[ +\frac{1}{k(k-1)}H_{k}=\left(\frac{1}{k-1}-\frac{1}{k}\right)H_{k}=\frac{1}{k-1}\left(H_{k-1}+\frac{1}{k}\right)-\frac{1}{k}H_{k}, +\] + +\end_inset + +so +\begin_inset Formula +\begin{multline*} +\sum_{k=2}^{n}\frac{H_{k}}{k(k-1)}=\sum_{k=2}^{n}\left(\frac{1}{k-1}\left(H_{k-1}+\frac{1}{k}\right)-\frac{1}{k}H_{k}\right)=1-\frac{1}{n}H_{n}+\sum_{k=2}^{n}\frac{1}{k(k-1)}=\\ +=1-\frac{H_{n}}{n}+\sum_{k=2}^{n}\left(\frac{1}{k-1}-\frac{1}{k}\right)=1-\frac{H_{n}}{n}+H_{n-1}-H_{n}+1=\\ +=1-\frac{1}{n}H_{n}\cancel{+H_{n}}-\frac{1}{n}\cancel{-H_{n}}+1=2-\frac{1}{n}(1+H_{n}). +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc12[M10] +\end_layout + +\end_inset + +Evaluate +\begin_inset Formula $H_{\infty}^{(1000)}$ +\end_inset + + correct to at least 100 decimal places. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +H_{\infty}^{(1000)}=\sum_{k\geq1}\frac{1}{k^{1000}}=1\pm0.5\cdot10^{-100}, +\] + +\end_inset + +since +\begin_inset Formula $2^{1000}$ +\end_inset + + has way more than 100 digits. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc15[M23] +\end_layout + +\end_inset + +Express +\begin_inset Formula $\sum_{k=1}^{n}H_{k}^{2}$ +\end_inset + + in terms of +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $H_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +\sum_{k=1}^{n}H_{k}^{2} & =\sum_{1\leq j\leq k\leq n}\frac{1}{j}H_{k}=\sum_{j=1}^{n}\frac{1}{j}\sum_{k=j}^{n}H_{k}=\sum_{j=1}^{n}\frac{1}{j}\left(\sum_{k=1}^{n}H_{k}-\sum_{k=1}^{j-1}H_{k}\right)\\ + & =\sum_{j=1}^{n}\frac{1}{j}\left((n+1)H_{n}-n-jH_{j-1}+j-1\right)\\ + & =\sum_{j=1}^{n}\left(\frac{1}{j}\left((n+1)H_{n}-n-1\right)-H_{j-1}+1\right)\\ + & =\left((n+1)H_{n}-n-1\right)H_{n}-(nH_{n-1}-n+1)+n\\ + & =(n+1)H_{n}^{2}-(n+1)H_{n}-nH_{n}+n+n\\ + & =(n+1)H_{n}^{2}-(2n+1)H_{n}+2n. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc23[HM20] +\end_layout + +\end_inset + +By considering the function +\begin_inset Formula $\Gamma'(x)/\Gamma(x)$ +\end_inset + +, + generalize +\begin_inset Formula $H_{n}$ +\end_inset + + to noninteger values of +\begin_inset Formula $n$ +\end_inset + +. + You may use the fact that +\begin_inset Formula $\Gamma'(1)=-\gamma$ +\end_inset + +, + anticipating the next exercise. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula +\begin{multline*} +\Gamma'(x)=\lim_{m}\left(\frac{\ln m\cdot m^{x}m!}{x(x+1)\cdots(x+m)}-\frac{m^{x}m!\sum_{k=0}^{m}\frac{x(x+1)\cdots(x+m)}{(x+k)}}{(x(x+1)\cdots(x+m))^{2}}\right)=\\ +=\Gamma(x)\lim_{m}\left(\ln m-\sum_{k=0}^{m}\frac{1}{x+k}\right)=\Gamma(x)(\ln m-H_{k+m}+H_{k-1}). +\end{multline*} + +\end_inset + +The fact given in the exercise tells us that +\begin_inset Formula +\[ +-\gamma=\Gamma'(1)=\Gamma(1)\lim_{m}(\ln m-H_{m+1}), +\] + +\end_inset + +so for +\begin_inset Formula $n\in\mathbb{Z}^{>0}$ +\end_inset + +, +\begin_inset Formula +\[ +\frac{\Gamma'(n)}{\Gamma(n)}=\lim_{m}(\ln m-H_{n+m}+H_{n-1})=H_{n-1}-\gamma, +\] + +\end_inset + +and we can define +\begin_inset Formula +\[ +H_{x}\coloneqq\frac{\Gamma'(x+1)}{\Gamma(x+1)}+\gamma +\] + +\end_inset + +for any +\begin_inset Formula $x\in\mathbb{C}$ +\end_inset + + where this expression is defined or can be extended by continuity. +\end_layout + +\end_body +\end_document |
