diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/1.3.3.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/1.3.3.lyx')
| -rw-r--r-- | vol1/1.3.3.lyx | 1630 |
1 files changed, 1630 insertions, 0 deletions
diff --git a/vol1/1.3.3.lyx b/vol1/1.3.3.lyx new file mode 100644 index 0000000..db7c653 --- /dev/null +++ b/vol1/1.3.3.lyx @@ -0,0 +1,1630 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[02] +\end_layout + +\end_inset + +Consider the transformation of +\begin_inset Formula $\{0,1,2,3,4,5,6\}$ +\end_inset + + that replaces +\begin_inset Formula $x$ +\end_inset + + by +\begin_inset Formula $2x\bmod7$ +\end_inset + +. + Show that this transformation is a permutation, + and write it in cycle form. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Being a permutation follows from the fact that +\begin_inset Formula $\mathbb{Z}_{7}$ +\end_inset + + is a field. + In cycle form, + this would be +\begin_inset Formula $(1\,2\,4)(3\,6\,5)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc2[10] +\end_layout + +\end_inset + +The text shows how we might set +\begin_inset Formula $(a,b,c,d,e,f)\to(c,d,f,b,e,a)$ +\end_inset + + by using a series of replacement operations ( +\begin_inset Formula $x\gets y$ +\end_inset + +) and one auxiliary variable +\begin_inset Formula $t$ +\end_inset + +. + Show how to do the job by using a series of +\emph on +exchange +\emph default + operations ( +\begin_inset Formula $x\leftrightarrow y$ +\end_inset + +) and no auxiliary variables. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Since the permutation such that +\begin_inset Formula $(a,b,c,d,e,f)\to(c,d,f,b,e,a)$ +\end_inset + + such that +\begin_inset Formula $x_{i}\to\sigma(x_{i})$ +\end_inset + + is +\begin_inset Formula $(a\,c\,f)(b\,d)$ +\end_inset + +, + we could use +\begin_inset Formula $a\leftrightarrow c,c\leftrightarrow f,b\leftrightarrow d$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc3[03] +\end_layout + +\end_inset + +Compute the product +\begin_inset Formula ${\small \begin{pmatrix}a & b & c & d & e & f\\ +b & d & c & a & f & e +\end{pmatrix}}\times{\small \begin{pmatrix}a & b & c & d & e & f\\ +c & d & f & b & e & a +\end{pmatrix}}$ +\end_inset + +, + and express the answer in two-line notation. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\begin{pmatrix}a & b & c & d & e & f\\ +d & b & f & c & a & e +\end{pmatrix}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[10] +\end_layout + +\end_inset + +Express +\begin_inset Formula $(a\,b\,d)(e\,f)(a\,c\,f)(b\,d)$ +\end_inset + + as a product of disjoint cycles. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $(a\,d\,c\,f\,e)$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[M10] +\end_layout + +\end_inset + +Equation (3) shows several equivalent ways to express the same permutation in cycle form. + How many different ways of writing that permutation are possible, + if all singleton cycles are suppressed? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +There are 2 cycles which can be ordered in +\begin_inset Formula $2!=2$ +\end_inset + + different ways, + and since an +\begin_inset Formula $m$ +\end_inset + +-cycle can be written in +\begin_inset Formula $m$ +\end_inset + + different ways, + there are +\begin_inset Formula $2!\cdot2\cdot3=12$ +\end_inset + + possible ways to write the permutation in cycle form. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc7[10] +\end_layout + +\end_inset + +If Program A is presented with the input (6), + what are the quantities +\begin_inset Formula $X$ +\end_inset + +, + +\begin_inset Formula $Y$ +\end_inset + +, + +\begin_inset Formula $M$ +\end_inset + +, + +\begin_inset Formula $N$ +\end_inset + +, + +\begin_inset Formula $U$ +\end_inset + +, + and +\begin_inset Formula $V$ +\end_inset + + of (19)? + What is the time required by Program A, + excluding input-output? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $X$ +\end_inset + + is the number of cards of input, + namely +\begin_inset Formula $\lceil30/24\rceil=2$ +\end_inset + + if no space is added; + then +\begin_inset Formula $Y=29$ +\end_inset + +. + +\begin_inset Formula $M=5$ +\end_inset + +, + the number of cycles in input, + and +\begin_inset Formula $N=7$ +\end_inset + +, + the number of different elements. + Then, + since the output is +\begin_inset Formula $(a\,d\,g)(c\,e\,b)(f)$ +\end_inset + +, + +\begin_inset Formula $U=3$ +\end_inset + +, + the number of cycles in the output, + and +\begin_inset Formula $V=1$ +\end_inset + +, + the number of singleton cycles. +\end_layout + +\begin_layout Standard +Then the time required, + excluding input-output, + is +\begin_inset Formula +\begin{multline*} +112NX+304X-2M-Y+11U+2V-11=\\ +=112\cdot7\cdot2+304\cdot2-2\cdot5-29+11\cdot3+2\cdot1-11=2161u. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc8[23] +\end_layout + +\end_inset + +Would it be feasible to modify Algorithm B to go from left to right instead of from right to left through the input? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Yes, + if we're allowed to use an extra step for inverting the result. + For this algorithm, + we use an auxiliary table +\begin_inset Formula $U[1],\dots,U[n]$ +\end_inset + + where we obtain the inverse of the permutation. + We calculate it by noticing that +\begin_inset Formula $(a_{11}\,\dots\,a_{1m_{1}})\cdots(a_{k1}\,\cdots\,a_{km_{k}})=((a_{km_{k}}\,\dots\,a_{k1})\cdots(a_{1m_{1}}\,\dots\,a_{11}))^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout + +\series bold +B1. +\end_layout + +\end_inset + +[Initialize.] Set +\begin_inset Formula $U[k]\to k$ +\end_inset + + for +\begin_inset Formula $1\leq k\leq n$ +\end_inset + +. + Also, + prepare to scan the input from left to right. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout + +\series bold +B2. +\end_layout + +\end_inset + +[Next element.] Examine the next element of the input. + If the input has been exhausted, + go to step B5. + If the element is a `(', + set +\begin_inset Formula $Z\gets0$ +\end_inset + + and repeat step B2; + if it is a `)', + go to B4. + Otherwise the element is +\begin_inset Formula $x_{i}$ +\end_inset + + for some +\begin_inset Formula $i$ +\end_inset + +, + go on to B'3. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout + +\series bold +B3. +\end_layout + +\end_inset + +[Change +\begin_inset Formula $U[i]$ +\end_inset + +.] Exchange +\begin_inset Formula $Z\leftrightarrow U[i]$ +\end_inset + +. + If this makes +\begin_inset Formula $U[i]=0$ +\end_inset + +, + set +\begin_inset Formula $j\gets i$ +\end_inset + +. + Return to step B2. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout + +\series bold +B4. +\end_layout + +\end_inset + +[Change +\begin_inset Formula $U[j]$ +\end_inset + +.] Set +\begin_inset Formula $U[j]\gets Z$ +\end_inset + +. + Return to step B2. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout + +\series bold +B5. +\end_layout + +\end_inset + +[Invert permutation.] For +\begin_inset Formula $1\leq k\leq n$ +\end_inset + +, + set +\begin_inset Formula $T[U[i]]\gets i$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc9[10] +\end_layout + +\end_inset + +Both Programs A and B accept the same input and give the answer in essentially the same form. + Is the output +\emph on +exactly +\emph default + the same under both programs? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +No. + For example, + for input (6), + Program A produces +\begin_inset Formula $(a\,d\,g)(c\,e\,b)(f)$ +\end_inset + + while Program B produces +\begin_inset Formula $(a\,d\,g)(b\,c\,e)(f)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc13[M24] +\end_layout + +\end_inset + +Prove that Algorithm J is valid. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We prove it by induction. + Let +\begin_inset Formula $\sigma$ +\end_inset + + be the original permutation, + it's enough to show that, + when entering step J2, + or when exiting step J5, + for each +\begin_inset Formula $j\in\{1,\dots,n\}$ +\end_inset + +, + if +\begin_inset Formula $\sigma^{-1}(j)>m$ +\end_inset + +, + +\begin_inset Formula $X[j]=\sigma^{-1}(j)$ +\end_inset + +, + and otherwise +\begin_inset Formula $X[j]=-\sigma^{k+1}(j)$ +\end_inset + + where +\begin_inset Formula $k$ +\end_inset + + is the least nonnegative integer with +\begin_inset Formula $\sigma^{k}(j)\leq m$ +\end_inset + + (if there were no such number, + since +\begin_inset Formula $\sigma^{-1}(j)=\sigma^{p}(j)$ +\end_inset + + for some +\begin_inset Formula $p\geq0$ +\end_inset + +, + then it would be +\begin_inset Formula $\sigma^{-1}(j)>m$ +\end_inset + +). + +\end_layout + +\begin_layout Standard +If we enter J2 from J1, + every +\begin_inset Formula $X[j]<0$ +\end_inset + +, + every +\begin_inset Formula $j\leq m=n$ +\end_inset + +, + so +\begin_inset Formula $k=1$ +\end_inset + + and what we have to prove is that +\begin_inset Formula $X[j]=-\sigma(j)$ +\end_inset + +, + which obviously holds. + Now, + provided that this holds when we enter J2, + we have to show that it holds when we reach J5 and the proof is complete. +\end_layout + +\begin_layout Standard +After steps J2 and J3, + obviously the condition still holds. + After these steps, + +\begin_inset Formula $i=-\sigma(m)$ +\end_inset + + and +\begin_inset Formula $j$ +\end_inset + + is such that +\begin_inset Formula $i=X[j]$ +\end_inset + +. + We prove this by induction, + showing that, + after +\begin_inset Formula $k\geq1$ +\end_inset + + steps, + +\begin_inset Formula $i$ +\end_inset + + is either +\begin_inset Formula $-\sigma(m)<0$ +\end_inset + + or +\begin_inset Formula $\sigma^{-k}(m)>0$ +\end_inset + +, + and in the latter case, + +\begin_inset Formula $\sigma^{-k}(m),\sigma^{-k+1}(m),\dots,\sigma^{-1}(m)>m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +After one iteration, + +\begin_inset Formula $i=X[m]$ +\end_inset + +; + if +\begin_inset Formula $i>0$ +\end_inset + +, + +\begin_inset Formula $i=\sigma^{-1}(m)>m$ +\end_inset + +; + otherwise +\begin_inset Formula $i=-\sigma^{p+1}(m)$ +\end_inset + +, + where +\begin_inset Formula $p$ +\end_inset + + is the least nonnegative integer with +\begin_inset Formula $\sigma^{p}(m)\leq m$ +\end_inset + +, + but since +\begin_inset Formula $p=0$ +\end_inset + +, + +\begin_inset Formula $i=-\sigma(m)$ +\end_inset + +. + Now assume that this still holds after +\begin_inset Formula $k$ +\end_inset + + iterations, + and that +\begin_inset Formula $i>0$ +\end_inset + + so there's a +\begin_inset Formula $(k+1)$ +\end_inset + +-th iteration. + Then +\begin_inset Formula $j=\sigma^{-k}(m)>0$ +\end_inset + + and we assign +\begin_inset Formula $X[j]$ +\end_inset + + to +\begin_inset Formula $i$ +\end_inset + +. + If +\begin_inset Formula $i>0$ +\end_inset + +, + +\begin_inset Formula $i=\sigma^{-1}(\sigma^{-k}(m))=\sigma^{-k-1}(m)>m$ +\end_inset + +; + otherwise +\begin_inset Formula $i=-\sigma^{p+1}(\sigma^{-k}(m))$ +\end_inset + +, + where +\begin_inset Formula $p$ +\end_inset + + is the least nonnegative integer with +\begin_inset Formula $\sigma^{p-k}(m)\leq m$ +\end_inset + +, + but +\begin_inset Formula $\sigma^{-k}(m),\dots,\sigma^{-1}(m)>m$ +\end_inset + + and +\begin_inset Formula $\sigma^{0}(m)=m$ +\end_inset + +, + so +\begin_inset Formula $p=k$ +\end_inset + + and +\begin_inset Formula $i=-\sigma^{k+1}(\sigma^{-k}(m))=-\sigma(m)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Now, + at the beginning of step J4, + +\begin_inset Formula $i=-\sigma(m)$ +\end_inset + + and +\begin_inset Formula $j$ +\end_inset + + is such that, + if +\begin_inset Formula $k$ +\end_inset + + is the least nonnegative integer with +\begin_inset Formula $\sigma^{k}(j)\leq m$ +\end_inset + +, + then +\begin_inset Formula $\sigma^{k+1}(j)=\sigma(m)$ +\end_inset + +. + Then the new value of +\begin_inset Formula $X[j]$ +\end_inset + + is +\begin_inset Formula $X[-i]=X[\sigma(m)]=-\sigma^{p+1}(m)$ +\end_inset + +, + where +\begin_inset Formula $p$ +\end_inset + + is the least positive integer with +\begin_inset Formula $\sigma^{p}(m)\leq m$ +\end_inset + +, + the new value of +\begin_inset Formula $X[-i]=X[\sigma(m)]$ +\end_inset + + is +\begin_inset Formula $m=\sigma^{-1}(\sigma(m))$ +\end_inset + + and the new value of +\begin_inset Formula $m$ +\end_inset + + is +\begin_inset Formula $m-1$ +\end_inset + +. + Since +\begin_inset Formula $\sigma^{-1}(\sigma(m))>m-1$ +\end_inset + +, + the condition holds for +\begin_inset Formula $X[\sigma(m)]=X[-i]$ +\end_inset + +:. + Also, + +\begin_inset Formula $X[j]=-\sigma^{p+1}(m)=-\sigma^{p+k+1}(j)$ +\end_inset + +, + +\begin_inset Formula $j,\sigma(j),\dots,\sigma^{k-1}(j),\sigma^{k}(j)=m,\sigma^{k+1}(j)=\sigma(m),\dots,\sigma^{p+k}(j)=\sigma^{p-1}(m)>m-1$ +\end_inset + +, + and because +\begin_inset Formula $\sigma^{p+k+1}(j)=\sigma^{p}(m)\leq m$ +\end_inset + +, + and +\begin_inset Formula $\sigma^{p}(m)\neq m$ +\end_inset + + because otherwise it would be either +\begin_inset Formula $p\leq k$ +\end_inset + + and +\begin_inset Formula $\sigma^{k-p}(j)=m\#$ +\end_inset + +, + or +\begin_inset Formula $p>k$ +\end_inset + + and +\begin_inset Formula $\sigma^{p}(j)=\sigma^{p-k}(m)=j\leq m\#$ +\end_inset + +, + then we have +\begin_inset Formula $\sigma^{p+k+1}(j)=\sigma^{p}(m)\leq m-1$ +\end_inset + +, + and the condition holds for +\begin_inset Formula $X[j]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Now the only thing left to prove is that step J3 always ends, + for which it suffices to prove that the cycle that +\begin_inset Formula $m$ +\end_inset + + is in contains an element +\begin_inset Formula $t$ +\end_inset + + with +\begin_inset Formula $X[t]<0$ +\end_inset + +, + which happens if and only if it contains a +\begin_inset Formula $t$ +\end_inset + + with +\begin_inset Formula $\sigma^{-1}(t)\leq m$ +\end_inset + +, + if and only if there's an element not greater than +\begin_inset Formula $m$ +\end_inset + +, + but +\begin_inset Formula $m$ +\end_inset + + is such an element. +\end_layout + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 26, + 34 +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc26[M24] +\end_layout + +\end_inset + +Extend the principle of inclusion and exclusion to obtain a formula for the number of elements that are in exactly +\begin_inset Formula $r$ +\end_inset + + of the subsets +\begin_inset Formula $S_{1},S_{2},\dots,S_{M}$ +\end_inset + +. + (The text considers only the case +\begin_inset Formula $r=0$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +For the sake of abbreviation, + let +\begin_inset Formula $E_{r}$ +\end_inset + + be the number of elements that are exactly in +\begin_inset Formula $r$ +\end_inset + + of the subsets and let +\begin_inset Formula +\[ +T_{r}\coloneqq\sum_{1\leq j_{1}<\dots<j_{r}\leq M}|S_{j_{1}}\cap\dots\cap S_{j_{r}}|, +\] + +\end_inset + +so that +\begin_inset Formula $T_{0}=N$ +\end_inset + + (we use the convention that the intersection of no subsets is the intended +\begin_inset Quotes eld +\end_inset + +domain +\begin_inset Quotes erd +\end_inset + + set), + +\begin_inset Formula $T_{M}=|S_{1}\cap\dots\cap S_{M}|$ +\end_inset + +, + and for +\begin_inset Formula $r>M$ +\end_inset + +, + +\begin_inset Formula $T_{r}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Obviously +\begin_inset Formula $E_{r}=0$ +\end_inset + + for +\begin_inset Formula $r>M$ +\end_inset + +, + and +\begin_inset Formula $E_{M}=T_{M}$ +\end_inset + +. + After calculating +\begin_inset Formula $E_{M-1}$ +\end_inset + + and +\begin_inset Formula $E_{M-2}$ +\end_inset + +, + we formulate the hypothesis that +\begin_inset Formula +\[ +E_{r}=\sum_{k=r}^{M}(-1)^{k-r}\binom{k}{r}T_{k} +\] + +\end_inset + +for +\begin_inset Formula $0\leq r\leq M$ +\end_inset + +, + which matches what we know about +\begin_inset Formula $E_{M}$ +\end_inset + + and +\begin_inset Formula $E_{0}$ +\end_inset + +. + We prove this by induction from +\begin_inset Formula $r=M$ +\end_inset + + to 0. + We have already established the base case. + For +\begin_inset Formula $r<M$ +\end_inset + +, + we start by pointing out that, + for +\begin_inset Formula $r\leq k\leq M$ +\end_inset + +, + +\begin_inset Formula $T_{r}$ +\end_inset + + counts the elements that appear exactly +\begin_inset Formula $k$ +\end_inset + + times a total of +\begin_inset Formula $\binom{k}{r}$ +\end_inset + + times, + corresponding to choosing the +\begin_inset Formula $r$ +\end_inset + + indexes from those +\begin_inset Formula $k$ +\end_inset + + indexes that contain the element. + Thus +\begin_inset Formula $T_{r}=\sum_{k=r}^{M}\binom{k}{r}E_{k}$ +\end_inset + +, + so +\begin_inset Formula +\begin{align*} +E_{r} & =T_{r}-\sum_{k=r+1}^{M}\binom{k}{r}E_{k}=T_{r}-\sum_{k=r+1}^{M}\binom{k}{r}\sum_{j=k}^{M}(-1)^{j-k}\binom{j}{k}T_{j}\\ + & =T_{r}-\sum_{j=r+1}^{M}\left(\sum_{k=r+1}^{j}(-1)^{j-k}\binom{j}{k}\binom{k}{r}\right)T_{j}, +\end{align*} + +\end_inset + +but by Eq. + 1.2.6–(23), +\begin_inset Formula +\[ +\sum_{k=r+1}^{j}(-1)^{j-k}\binom{j}{k}\binom{k}{r}=\sum_{k=r}^{j}(-1)^{j-k}\binom{j}{k}\binom{k}{r}-(-1)^{j-r}\binom{j}{r}=\cancel{\binom{0}{r-j}}^{=0}-(-1)^{j-r}\binom{j}{r}, +\] + +\end_inset + +and so +\begin_inset Formula +\[ +E_{r}=T_{r}+\sum_{j=r+1}^{M}(-1)^{j-r}\binom{j}{r}T_{j}=\sum_{j=r}^{M}(-1)^{j-r}\binom{j}{r}T_{j}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc34[M25] +\end_layout + +\end_inset + +( +\emph on +Transposing blocks of data. +\emph default +) One of the most common permutations needed in practice is the change from +\begin_inset Formula $\alpha\beta$ +\end_inset + + to +\begin_inset Formula $\beta\alpha$ +\end_inset + +, + where +\begin_inset Formula $\alpha$ +\end_inset + + and +\begin_inset Formula $\beta$ +\end_inset + + are substrings of an array. + In other words, + if +\begin_inset Formula $x_{0}x_{1}\dots x_{m-1}=\alpha$ +\end_inset + + and +\begin_inset Formula $x_{m}x_{m+1}\dots x_{m+n-1}=\beta$ +\end_inset + +, + we want to change the array +\begin_inset Formula $x_{0}x_{1}\dots x_{m+n-1}=\alpha\beta$ +\end_inset + + to the array +\begin_inset Formula $x_{m}x_{m+1}\dots x_{m+n-1}x_{0}x_{1}\dots x_{m-1}=\beta\alpha$ +\end_inset + +; + each element +\begin_inset Formula $x_{k}$ +\end_inset + + should be replaced by +\begin_inset Formula $x_{p(k)}$ +\end_inset + + for +\begin_inset Formula $0\leq k<m+n$ +\end_inset + +, + where +\begin_inset Formula $p(k)=(k+m)\bmod(m+n)$ +\end_inset + +. + Show that every such +\begin_inset Quotes eld +\end_inset + +cyclic-shift +\begin_inset Quotes erd +\end_inset + + permutation has a simple cycle structure, + and exploit that structure to device a simple algorithm for the desired rearrangement. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $d\coloneqq\gcd\{m,n\}$ +\end_inset + +, + then +\begin_inset Formula $p=C_{0}C_{1}\cdots C_{d-1}$ +\end_inset + + where +\begin_inset Formula +\[ +C_{j}\coloneqq(j\,(m+j)\,(2m+j)\,\dots\,((\tfrac{n}{d}-1)m+j))\pmod n. +\] + +\end_inset + +Effectively, + each of the cycles above contains only elements with the same value modulo +\begin_inset Formula $d$ +\end_inset + +, + so the cycles are disjoint, + and for any +\begin_inset Formula $k\in\{0,\dots,n-1\}$ +\end_inset + +, + let +\begin_inset Formula $p$ +\end_inset + + and +\begin_inset Formula $q$ +\end_inset + + be the quotient and remainder of +\begin_inset Formula $k/d$ +\end_inset + + and +\begin_inset Formula $am+bn=d$ +\end_inset + + be a Bézout identity, + then +\begin_inset Formula +\[ +k=pd+q=pam+pbn+q\equiv pam+q\equiv(pa\bmod n/d)m\pmod n. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +We can use this in the following algorithm. +\end_layout + +\begin_layout Standard + +\series bold +Algorithm T. + +\series default + ( +\emph on +Transpose blocks of data. +\emph default +) +\end_layout + +\begin_layout Enumerate +[Initialize.] Set +\begin_inset Formula $d\gets m$ +\end_inset + +, + +\begin_inset Formula $N\gets m+n$ +\end_inset + +, + and +\begin_inset Formula $j\gets-1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +[Calculate +\begin_inset Formula $d$ +\end_inset + +.] Set +\begin_inset Formula $n\gets n\bmod d$ +\end_inset + +. + If +\begin_inset Formula $n\neq0$ +\end_inset + +, + set +\begin_inset Formula $d\leftrightarrow n$ +\end_inset + + and repeat this step. +\end_layout + +\begin_layout Enumerate +[Set up cycle.] Increment +\begin_inset Formula $j$ +\end_inset + + by 1. + If +\begin_inset Formula $j=d$ +\end_inset + +, + terminate the algorithm. + Otherwise set +\begin_inset Formula $k\gets j$ +\end_inset + + and +\begin_inset Formula $s\gets x_{j}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +[Iterate.] Set +\begin_inset Formula $l\gets(k+m)\bmod(m+n)$ +\end_inset + +. + If +\begin_inset Formula $l=j$ +\end_inset + +, + set +\begin_inset Formula $x_{k}\gets s$ +\end_inset + + and go to the previous step. + Otherwise set +\begin_inset Formula $x_{k}\gets x_{l}$ +\end_inset + +, + +\begin_inset Formula $k\gets l$ +\end_inset + +, + and repeat this step. +\end_layout + +\end_body +\end_document |
