diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/2.3.4.1.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/2.3.4.1.lyx')
| -rw-r--r-- | vol1/2.3.4.1.lyx | 760 |
1 files changed, 760 insertions, 0 deletions
diff --git a/vol1/2.3.4.1.lyx b/vol1/2.3.4.1.lyx new file mode 100644 index 0000000..0eeec27 --- /dev/null +++ b/vol1/2.3.4.1.lyx @@ -0,0 +1,760 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M20] +\end_layout + +\end_inset + +Let +\begin_inset Formula $G'$ +\end_inset + + be a finite free tree in which arrows have been drawn on its edges +\begin_inset Formula $e_{1},\dots,e_{n-1}$ +\end_inset + +; + let +\begin_inset Formula $E_{1},\dots,E_{n-1}$ +\end_inset + + be numbers satisfying Kirchhoff's law (1) in +\begin_inset Formula $G'$ +\end_inset + +. + Show that +\begin_inset Formula $E_{1}=\dots=E_{n-1}=0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We prove this by induction on +\begin_inset Formula $n$ +\end_inset + +. + For +\begin_inset Formula $n=1$ +\end_inset + + it is trivial. + For +\begin_inset Formula $n>1$ +\end_inset + +, + there always exists a node of degree 1 (in an oriented tree, + this would be a leaf). + Let +\begin_inset Formula $e_{r}$ +\end_inset + + be the only edge connected to that node, + clearly +\begin_inset Formula $E_{r}=0$ +\end_inset + +, + so removing +\begin_inset Formula $e_{r}$ +\end_inset + + leaves us with an isolated node and a free tree of degree 0 which follows Kirchhoff's law and has +\begin_inset Formula $n-1$ +\end_inset + + nodes, + but then by the induction hypothesis all the other +\begin_inset Formula $E_{k}$ +\end_inset + + are also 0. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc8[M25] +\end_layout + +\end_inset + +When applying Kirchhoff's first law to program flow charts, + we usually are interested only in the +\emph on +vertex flows +\emph default + (the number of times each box of the flow chart is performed), + not the edge flows analyzed in the text. + For example, + in the graph of exercise 7, + the vertex flows are +\begin_inset Formula $A=E_{2}+E_{4}$ +\end_inset + +, + +\begin_inset Formula $B=E_{5}$ +\end_inset + +, + +\begin_inset Formula $C=E_{3}+E_{7}+E_{8}$ +\end_inset + +, + +\begin_inset Formula $D=E_{6}+E_{9}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +If we group some vertices together, + treating them as one +\begin_inset Quotes eld +\end_inset + +supervertex, +\begin_inset Quotes erd +\end_inset + + we can combine edge flows that correspond to the same vertex flow. + For example, + edges +\begin_inset Formula $e_{2}$ +\end_inset + + and +\begin_inset Formula $e_{4}$ +\end_inset + + can be combined in the flow chart above if we also put +\begin_inset Formula $B$ +\end_inset + + with +\begin_inset Formula $D$ +\end_inset + +: +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{center} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture}[node distance=2cm] +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[circle,draw](Start){Start}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[rectangle,draw,right of=Start](A){$A$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[rectangle,draw,right of=A](BD){$B,D$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[rectangle,draw,right of=BD](C){$C$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[circle,draw,right of=C](Stop){Stop}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (Start) -- node[above]{$e_1$} (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (A) -- node[below]{$e_2+e_4$} (BD); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=2pt}] (BD)--node[above]{$e_5$}(C); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=-2pt}] (C)--node[below]{$e_7$}(BD); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) -- node[above]{$e_8$} (Stop); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (BD) to[bend right] node[below]{$e_9$} (Stop); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (BD) to[loop below] node[left]{$e_6$} (BD); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (C) to[bend right] node[above]{$e_3$} (A); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (Stop) to[bend right] node[above]{$e_0$} (Start); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{center} +\end_layout + +\end_inset + +(Here +\begin_inset Formula $e_{0}$ +\end_inset + + has also been added from Stop to Start, + as in the text.) Continuing this procedure, + we can combine +\begin_inset Formula $e_{3}+e_{7}$ +\end_inset + +, + then +\begin_inset Formula $(e_{3}+e_{7})+e_{8}$ +\end_inset + +, + then +\begin_inset Formula $e_{6}+e_{9}$ +\end_inset + +, + until we obtain the +\emph on +reduced flow chart +\emph default + having edges +\begin_inset Formula $s=e_{1}$ +\end_inset + +, + +\begin_inset Formula $a=e_{2}+e_{4}$ +\end_inset + +, + +\begin_inset Formula $b=e_{5}$ +\end_inset + +, + +\begin_inset Formula $c=e_{3}+e_{7}+e_{8}$ +\end_inset + +, + +\begin_inset Formula $d=e_{6}+e_{9}$ +\end_inset + +, + +\begin_inset Formula $t=e_{0}$ +\end_inset + +, + precisely one edge for each vertex in the original flow chart: +\begin_inset Formula $\text{}$ +\end_inset + + +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{center} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture}[node distance=3cm] +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[circle,draw](S){Start}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[rectangle,draw,right of=S](M){$A,B,D, +\backslash +text{Stop}$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +node[rectangle,draw,right of=M](C){$C$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=2pt}] (S) -- node[above]{$s$} (M); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=-2pt}] (M) -- node[below]{$t$} (S); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=2pt}] (M) -- node[above]{$b$} (C); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->,transform canvas={yshift=-2pt}] (C) -- node[below]{$c$} (M); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (M) to[out=120,in=60,looseness=4] node[left]{$a$ +\backslash + +\backslash + } (M); +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw[->] (M) to[out=300,in=240,looseness=4] node[right]{ +\backslash + $d$} (M); +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{center} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +By construction, + Kirchhoff's law holds in this reduced flow chart. + The new edge flows are the vertex flows of the original; + hence the analysis in the text, + applied to the reduced flow chart, + shows how the original vertex flows depend on each other. +\end_layout + +\begin_layout Standard +Prove that this reduction process can be reversed, + in the sense that any set of flows +\begin_inset Formula $\{a,b,\dots\}$ +\end_inset + + satisfying Kirchhoff's law in the reduced flow chart can be +\begin_inset Quotes eld +\end_inset + +split up +\begin_inset Quotes erd +\end_inset + + into a set of edge flows +\begin_inset Formula $\{e_{0},e_{1},\dots\}$ +\end_inset + + in the original flow chart. + These flows +\begin_inset Formula $e_{j}$ +\end_inset + + satisfy Kirchhoff's law and combine to yield the given flows +\begin_inset Formula $\{a,b,\dots\}$ +\end_inset + +; + some of them might, + however, + be negative. + (Although the reduction procedure has been illustrated for only one particular flow chart, + your proof should be valid in general.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution, + this one is difficult.) +\end_layout + +\end_inset + + We only have to show that there exists an assignment in the original flowchart that produces any given set of flows in the reduced flowchart. +\end_layout + +\begin_layout Standard +Since we get from one to the other by reductions, + we only have to prove that we can reverse reductions. + In these reductions, + there are two arrows +\begin_inset Formula $e_{1}$ +\end_inset + + from vertex or supervertex +\begin_inset Formula $a$ +\end_inset + + to +\begin_inset Formula $b$ +\end_inset + + and +\begin_inset Formula $e_{2}$ +\end_inset + + from +\begin_inset Formula $a$ +\end_inset + + to +\begin_inset Formula $c$ +\end_inset + +, + to get an edge +\begin_inset Formula $f=e_{1}+e_{2}$ +\end_inset + + from +\begin_inset Formula $a$ +\end_inset + + to +\begin_inset Formula $b,c$ +\end_inset + +, + and reverting means recovering +\begin_inset Formula $e_{1}$ +\end_inset + + and +\begin_inset Formula $e_{2}$ +\end_inset + + from +\begin_inset Formula $f$ +\end_inset + + and the other edges. +\end_layout + +\begin_layout Standard +If +\begin_inset Formula $b=c$ +\end_inset + +, + we can just make up +\begin_inset Formula $e_{1}$ +\end_inset + + and set +\begin_inset Formula $e_{2}$ +\end_inset + + to +\begin_inset Formula $f-e_{1}$ +\end_inset + +. + If +\begin_inset Formula $a=b\neq c$ +\end_inset + +, + then +\begin_inset Formula $e_{2}$ +\end_inset + + must be such that Kirchhoff's law is preserved for +\begin_inset Formula $c$ +\end_inset + +, + and we can just set +\begin_inset Formula $e_{1}=f-e_{2}$ +\end_inset + +. + The situation +\begin_inset Formula $a=c\neq b$ +\end_inset + + is symmetrical. + Finally, + if the three nodes are distinct, + setting +\begin_inset Formula $e_{1}$ +\end_inset + + and +\begin_inset Formula $e_{2}$ +\end_inset + + such that they follow Kirchhoff's law for +\begin_inset Formula $b$ +\end_inset + + and +\begin_inset Formula $c$ +\end_inset + + makes +\begin_inset Formula $e_{1}+e_{2}$ +\end_inset + + follow Kirchhoff's law in +\begin_inset Formula $b,c$ +\end_inset + + in the reduced flowchart. +\end_layout + +\end_body +\end_document |
