diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/2.3.4.3.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/2.3.4.3.lyx')
| -rw-r--r-- | vol1/2.3.4.3.lyx | 508 |
1 files changed, 508 insertions, 0 deletions
diff --git a/vol1/2.3.4.3.lyx b/vol1/2.3.4.3.lyx new file mode 100644 index 0000000..44b134e --- /dev/null +++ b/vol1/2.3.4.3.lyx @@ -0,0 +1,508 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 1, + 3, + 6 (2pp., + 0:46) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc1[M10] +\end_layout + +\end_inset + +The text refers to a set +\begin_inset Formula $S$ +\end_inset + + containing finite sequences of positive integers, + and states that this set is +\begin_inset Quotes eld +\end_inset + +essentially an oriented tree. +\begin_inset Quotes erd +\end_inset + + What is the root of this oriented tree, + and what are the arcs? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The vertices are the elements of +\begin_inset Formula $S$ +\end_inset + +, + the root is +\begin_inset Formula $\emptyset$ +\end_inset + +, + and the arcs go from +\begin_inset Formula $(x_{1},\dots,x_{n})$ +\end_inset + + to +\begin_inset Formula $(x_{1},\dots,x_{n-1})$ +\end_inset + +, + for every +\begin_inset Formula $(x_{1},\dots,x_{n})\in S\setminus\{\emptyset\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc3[M23] +\end_layout + +\end_inset + +If it is possible to tile the upper right quadrant of the plane when given an +\emph on +infinite +\emph default + set of tetrad types, + is it always possible to tile the whole plane? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +No. + For example, + our tiles might be of the form +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{center} +\end_layout + +\begin_layout Plain Layout + + +\backslash +begin{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +draw (0,0) -- (0,2) -- (2,2) -- (2,0) -- (0,0) -- (2,2) +\end_layout + +\begin_layout Plain Layout + + (0,2) -- (2,0) +\end_layout + +\begin_layout Plain Layout + + (0.5,1) node{$n$} (1,0.5) node{$n$} +\end_layout + +\begin_layout Plain Layout + + (1.5,1) node{$n+1$} (1,1.5) node{$n+1$}; +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{tikzpicture} +\end_layout + +\begin_layout Plain Layout + + +\backslash +end{center} +\end_layout + +\end_inset + +for +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +. + Then in the +\begin_inset Formula $(x,y)$ +\end_inset + + square we might place the tile with +\begin_inset Formula $n=\max\{x,y\}$ +\end_inset + + and this would tile the upper right quadrant, + but there's obviously no way to tile the whole plane. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[M23] +\end_layout + +\end_inset + +(Otto Schreier.) In a famous paper, + B. + L. + van der Waerden proved the following theorem: +\end_layout + +\begin_layout Quote + +\shape slanted +If +\begin_inset Formula $k$ +\end_inset + + and +\begin_inset Formula $m$ +\end_inset + + are positive integers, + and if we have +\begin_inset Formula $k$ +\end_inset + + sets +\begin_inset Formula $S_{1},\dots,S_{k}$ +\end_inset + + of positive integers with every positive integer included in at least one of these sets, + then at least of the sets +\begin_inset Formula $S_{j}$ +\end_inset + + contains an arithmetic progression of length +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +(The latter statement means there exist integers +\begin_inset Formula $a$ +\end_inset + + and +\begin_inset Formula $\delta>0$ +\end_inset + + such that +\begin_inset Formula $a+\delta$ +\end_inset + +, + +\begin_inset Formula $a+2\delta$ +\end_inset + +, + ..., + +\begin_inset Formula $a+m\delta$ +\end_inset + + are all in +\begin_inset Formula $S_{j}$ +\end_inset + +.) If possible, + use this result and the infinity lemma to prove the following stronger statement: +\end_layout + +\begin_layout Quote + +\shape slanted +If +\begin_inset Formula $k$ +\end_inset + + and +\begin_inset Formula $m$ +\end_inset + + are positive integers, + there is a number +\begin_inset Formula $N$ +\end_inset + + such that if we have +\begin_inset Formula $k$ +\end_inset + + sets +\begin_inset Formula $S_{1},\dots,S_{k}$ +\end_inset + + of integers with every integer between 1 and +\begin_inset Formula $N$ +\end_inset + + included in at least one of these sets, + then at least one of the sets +\begin_inset Formula $S_{j}$ +\end_inset + + contains an arithmetic progression of length +\begin_inset Formula $m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +It is enough to prove it when the set that contains every integer between 1 and +\begin_inset Formula $N$ +\end_inset + + is +\begin_inset Formula $S_{1}$ +\end_inset + +. + We define a tree whose vertices are the tuples +\begin_inset Formula $(S_{1},\dots,S_{k})$ +\end_inset + + of finite sets of integers such that, + if +\begin_inset Formula $n=\max\bigcup_{i=1}^{k}S_{i}$ +\end_inset + +, + every positive integer up to +\begin_inset Formula $n$ +\end_inset + + is in one of the sets, + and such that no set contains an arithmetic progression of length +\begin_inset Formula $m$ +\end_inset + +. + The edges go from one such tuple to +\begin_inset Formula $(S_{1}\setminus\{n\},\dots,S_{k}\setminus\{n\})$ +\end_inset + +, + so the root is +\begin_inset Formula $(\emptyset,\dots,\emptyset)$ +\end_inset + + and +\begin_inset Formula $n$ +\end_inset + + is the height of the node in the tree. +\end_layout + +\begin_layout Standard +Since each vertex contains a finite number of children ( +\begin_inset Formula $2^{k}-1$ +\end_inset + +, + corresponding to the ways of adding the next number to one or more of the sets), + it follows that if this tree were infinite, + there would be an infinite path. + By van der Waerden theorem, + the component-wise union of this path would give us a tuple +\begin_inset Formula $(S_{1},\dots,S_{k})$ +\end_inset + + such that some +\begin_inset Formula $S_{j}$ +\end_inset + + contains an arithmetic progression of length +\begin_inset Formula $m$ +\end_inset + +, + so by construction one of the nodes in the path would follow this condition. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\begin_layout Standard +Thus the tree is finite and we just need to take +\begin_inset Formula $N$ +\end_inset + + as one plus the depth of the tree. +\end_layout + +\end_body +\end_document |
