diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-05-16 22:18:44 +0200 |
| commit | 4f670b750af5c11e1eac16d9cd8556455f89f46a (patch) | |
| tree | e0f8d7b33df2727d89150f799ee8628821fda80a /vol1/2.3.4.5.lyx | |
| parent | 16ccda6c459c0fd7ca2081e9d541124c28b0c556 (diff) | |
Changed layout for more manageable volumes
Diffstat (limited to 'vol1/2.3.4.5.lyx')
| -rw-r--r-- | vol1/2.3.4.5.lyx | 443 |
1 files changed, 443 insertions, 0 deletions
diff --git a/vol1/2.3.4.5.lyx b/vol1/2.3.4.5.lyx new file mode 100644 index 0000000..8bd484a --- /dev/null +++ b/vol1/2.3.4.5.lyx @@ -0,0 +1,443 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 3, + 4, + 12 (2pp., + 1:14) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc3[M24] +\end_layout + +\end_inset + +An extended binary tree with +\begin_inset Formula $m$ +\end_inset + + external nodes determines a set of path lengths +\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$ +\end_inset + + that describe the lengths of paths from the root to the respective external nodes. + Conversely, + if we are given a set of numbers +\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$ +\end_inset + +, + is it always possible to construct an extended binary tree in which these numbers are the path lengths in some order? + Show that this is possible if and only if +\begin_inset Formula $\sum_{j=1}^{m}2^{-l_{j}}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We assign each external node an interval of real numbers as follows: + start with +\begin_inset Formula $[l,u)=[0,1)$ +\end_inset + +; + then, + for each edge in the path from the root to the node, + if it's a left edge, + set +\begin_inset Formula $[l,u)\gets[l,\frac{l+u}{2})$ +\end_inset + +, + and if it's a right edge, + set +\begin_inset Formula $[l,u)\gets[\frac{l+u}{2},u)$ +\end_inset + +, + so the interval's length is +\begin_inset Formula $2^{-l}$ +\end_inset + +, + +\begin_inset Formula $l$ +\end_inset + + being the path length. + It's easy to see that these intervals are disjoint and that, + for each +\begin_inset Formula $x\in[0,1)$ +\end_inset + +, + there is a special node whose interval contains +\begin_inset Formula $x$ +\end_inset + +. + With this in mind: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +This is precisely the sum of the lengths of the intervals, + which is 1 because +\begin_inset Formula $[0,1)$ +\end_inset + + is the disjoint union of these intervals. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +We just have to sort the path lengths in increasing order, + assign consecutive intervals of length +\begin_inset Formula $2^{-l_{k}}$ +\end_inset + + starting from 0 and converting the intervals to paths (more precisely, + to sequences of left/right turns), + which we can do since the increasing order ensures that the starting point +\begin_inset Formula $l_{k}$ +\end_inset + + of an interval +\begin_inset Formula $[l_{k},u_{k})$ +\end_inset + + is a multiple of the length +\begin_inset Formula $u_{k}-l_{k}$ +\end_inset + +. + These paths are all different and none is a prefix of another one, + so they define the leaves of a binary tree. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M25] +\end_layout + +\end_inset + +(E. + S. + Schwartz and B. + Kallick.) Assume that +\begin_inset Formula $w_{1}\leq w_{2}\leq\dots\leq w_{m}$ +\end_inset + +. + Show that there is an extended binary tree that minimizes +\begin_inset Formula $\sum w_{j}l_{j}$ +\end_inset + + and for which the terminal nodes in left to right order contain the respective values +\begin_inset Formula $w_{1},w_{2},\dots,w_{m}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $T$ +\end_inset + + be an extended binary tree that minimizes +\begin_inset Formula $\sum w_{j}l_{j}$ +\end_inset + +. + For +\begin_inset Formula $i<j$ +\end_inset + +, + if +\begin_inset Formula $w_{i}<w_{j}$ +\end_inset + +, + then +\begin_inset Formula $l_{i}\geq l_{j}$ +\end_inset + + in that tree, + as otherwise we could reduce the weight path length by swapping their positions as +\begin_inset Formula +\[ +(w_{i}l_{j}+w_{j}l_{i})-(w_{i}l_{i}+w_{j}l_{j})=(w_{i}-w_{j})(l_{j}-l_{i})<0\#. +\] + +\end_inset + +Thus we might assume +\begin_inset Formula $l_{i}\geq l_{j}$ +\end_inset + + for all +\begin_inset Formula $i<j$ +\end_inset + +. + This means lengths +\begin_inset Formula $l_{1},\dots,l_{m}$ +\end_inset + + are in decreasing order, + so the proof in the previous exercise gives us a tree whose nodes, + in the order of the tree, + are +\begin_inset Formula $w_{m},\dots,w_{1}$ +\end_inset + + with lengths +\begin_inset Formula $l_{m},\dots,l_{1}$ +\end_inset + +, + and we just have to swap left and right edges in that tree. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc12[M20] +\end_layout + +\end_inset + +Suppose that a node has been chosen at random in a binary tree, + with each node equally likely. + Show that the average size of the subtree rooted at that node is related to the path length of the tree. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Let +\begin_inset Formula $V_{1},\dots,V_{m}$ +\end_inset + + be the internal nodes, + with path lengths +\begin_inset Formula $l_{1},\dots,l_{m}$ +\end_inset + +. + The average size of the subtrees is the sum of the number of nodes in each subtree divided by +\begin_inset Formula $m$ +\end_inset + +, + but in this sum, + each node +\begin_inset Formula $V_{k}$ +\end_inset + + is counted +\begin_inset Formula $l_{k}+1$ +\end_inset + + times, + one for the subtree generated by each node in the path from the root to +\begin_inset Formula $V_{k}$ +\end_inset + + including both ends of the path. + Thus this average is precisely +\begin_inset Formula +\[ +\frac{1}{m}\sum_{k}(l_{k}+1)=\frac{1}{m}(I+m)=\frac{I}{m}+1, +\] + +\end_inset + +where +\begin_inset Formula $I$ +\end_inset + + is the internal path length of the tree. +\end_layout + +\end_body +\end_document |
