diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-08-09 18:32:33 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-08-09 18:34:18 +0200 |
| commit | 3c9f4a09feec4e0331f10b3204d39e4ad29fd564 (patch) | |
| tree | d6f917852f6110fc3833f4671e3ad28f96ceb31b /vol2 | |
| parent | 1ca8d93bc8b3a2c30da45e7d8e8415f13a4f685c (diff) | |
Diffstat (limited to 'vol2')
| -rw-r--r-- | vol2/4.5.1.lyx | 557 | ||||
| -rw-r--r-- | vol2/index.lyx | 16 |
2 files changed, 568 insertions, 5 deletions
diff --git a/vol2/4.5.1.lyx b/vol2/4.5.1.lyx new file mode 100644 index 0000000..bfceb81 --- /dev/null +++ b/vol2/4.5.1.lyx @@ -0,0 +1,557 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc5[10] +\end_layout + +\end_inset + +Compute +\begin_inset Formula $(17/120)+(-27/70)$ +\end_inset + + by the method recommended in the text. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We have +\begin_inset Formula $d_{1}=\gcd\{120,70\}=10$ +\end_inset + +, + +\begin_inset Formula $t=17\cdot\frac{70}{10}-27\cdot\frac{120}{10}=119-324=-205$ +\end_inset + +, + +\begin_inset Formula $d_{2}=\gcd\{-205,10\}=5$ +\end_inset + +, + and so the answer is +\begin_inset Formula $-\frac{205}{5}\Big/\left(\frac{120}{10}\frac{70}{5}\right)=-\frac{41}{168}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[M23] +\end_layout + +\end_inset + +Show that +\begin_inset Formula $u\bot u'$ +\end_inset + + and +\begin_inset Formula $v\bot v'$ +\end_inset + + implies +\begin_inset Formula $\gcd\{uv'+vu',u'v'\}=d_{1}d_{2}$ +\end_inset + +, + where +\begin_inset Formula $d_{1}=\gcd\{u',v'\}$ +\end_inset + + and +\begin_inset Formula $d_{2}=\gcd\{d_{1},u(v'/d_{1})+v(u'/d_{1})\}$ +\end_inset + +. + (Hence if +\begin_inset Formula $d_{1}=1$ +\end_inset + + we have +\begin_inset Formula $(uv'+vu')\bot u'v'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution.) +\end_layout + +\end_inset + +Let +\begin_inset Formula $u''\coloneqq u'/d_{1}$ +\end_inset + + and +\begin_inset Formula $v''\coloneqq v'/d_{1}$ +\end_inset + +, + we just need to prove that +\begin_inset Formula +\[ +\gcd\{uv''+vu'',u''v''d_{1}\}=d_{2}=\gcd\{uv''+vu'',d_{1}\}, +\] + +\end_inset + +as multiplying the first equality by +\begin_inset Formula $d_{1}$ +\end_inset + + gives us the required answer. + Obviously +\begin_inset Formula $d_{2}\mid uv''+vu'',u''v''d_{1}$ +\end_inset + +, + and we have to see that any integer +\begin_inset Formula $d$ +\end_inset + + that divides both +\begin_inset Formula $uv''+vu''$ +\end_inset + + and +\begin_inset Formula $u''v''d_{1}$ +\end_inset + + also divides +\begin_inset Formula $d_{1}$ +\end_inset + + and therefore +\begin_inset Formula $d_{2}$ +\end_inset + +. + Let +\begin_inset Formula $p$ +\end_inset + + be a prime factor of +\begin_inset Formula $d$ +\end_inset + +, + because +\begin_inset Formula $u\bot u'$ +\end_inset + + and therefore +\begin_inset Formula $u\bot d_{1},u''$ +\end_inset + +, + if +\begin_inset Formula $p\mid u''$ +\end_inset + + then +\begin_inset Formula $p\mid uv''$ +\end_inset + + but +\begin_inset Formula $p\nmid u$ +\end_inset + +, + so +\begin_inset Formula $p\mid v''$ +\end_inset + + and +\begin_inset Formula $u''$ +\end_inset + + and +\begin_inset Formula $v''$ +\end_inset + + are not coprime, +\begin_inset Formula $\#$ +\end_inset + + and similarly +\begin_inset Formula $p\nmid v''$ +\end_inset + +. + That means that +\begin_inset Formula $d$ +\end_inset + + doesn't have any common factors with either +\begin_inset Formula $u''$ +\end_inset + + and +\begin_inset Formula $v''$ +\end_inset + +, + so +\begin_inset Formula $d\mid d_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc8[22] +\end_layout + +\end_inset + +Discuss using +\begin_inset Formula $(1/0)$ +\end_inset + + and +\begin_inset Formula $(-1/0)$ +\end_inset + + as representations for +\begin_inset Formula $\infty$ +\end_inset + + and +\begin_inset Formula $-\infty$ +\end_inset + +, + and/or as representations of overflow. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Mathematically they are not that different, + since +\begin_inset Formula $\infty$ +\end_inset + +, + when treated as a number, + represents the concept of a number larger than any other, + or an arbitrarily large number in an asymptotic way, + while overflow represents a number larger than any +\emph on +representable +\emph default + number. + Mediant rounding would round to +\begin_inset Formula $\pm1/0$ +\end_inset + + for numbers with +\begin_inset Formula $|x|\geq2^{p}$ +\end_inset + +, + which makes sense. +\end_layout + +\begin_layout Standard +Using these representations, + multiplying a number by +\begin_inset Formula $\infty$ +\end_inset + + gives +\begin_inset Formula $\infty$ +\end_inset + + if the number is positive or +\begin_inset Formula $-\infty$ +\end_inset + + if it's negative, + or vice versa for +\begin_inset Formula $-\infty$ +\end_inset + +, + and +\begin_inset Formula $\pm\infty\cdot0=(0/0)$ +\end_inset + +, + an indeterminate value. + Dividing +\begin_inset Formula $\pm\infty$ +\end_inset + + by some number yields a similar result, + with +\begin_inset Formula $\pm\infty/\pm\infty$ +\end_inset + + being indeterminate and +\begin_inset Formula $\pm\infty/0=\pm\infty$ +\end_inset + +, + which works well as a convention, + and dividing by +\begin_inset Formula $\pm\infty$ +\end_inset + + is equivalent to multiplying by 0. +\end_layout + +\begin_layout Standard +Addition and subtraction require a bit more attention: + if we do +\begin_inset Formula $\pm\frac{1}{0}+\frac{a}{b}$ +\end_inset + +, + we would have +\begin_inset Formula $d_{1}=b$ +\end_inset + + (if +\begin_inset Formula $b=1$ +\end_inset + + then we shortcut to get +\begin_inset Formula $\pm\frac{1}{0}$ +\end_inset + + as the result) and then +\begin_inset Formula $t=\pm1$ +\end_inset + +, + +\begin_inset Formula $d_{2}=1$ +\end_inset + +, + and the result is +\begin_inset Formula $\pm\frac{1}{0}$ +\end_inset + +, + as expected. + The exception is if +\begin_inset Formula $\frac{a}{b}=\pm\frac{1}{0}$ +\end_inset + +; + then +\begin_inset Formula $d_{1}=0$ +\end_inset + + and calculating +\begin_inset Formula $t$ +\end_inset + + would result in a division by 0, + and the obvious procedure gives us +\begin_inset Formula $\frac{0}{0}$ +\end_inset + + even if both infinities have the same sign, + so we have to consider this a special case to get the correct result, + namely +\begin_inset Formula $\pm\infty\pm\infty=\pm\infty$ +\end_inset + + and +\begin_inset Formula $\pm\infty\mp\infty=0/0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +We also need a special case so that additions and subtractions involving +\begin_inset Formula $0/0$ +\end_inset + + return +\begin_inset Formula $0/0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Note, + however, + that having +\begin_inset Formula $x/(\pm1/0)=0$ +\end_inset + + for +\begin_inset Formula $x\neq0$ +\end_inset + + would be a hazard in the case that we are representing overflow, + as we may inadvertently discard the overflow and get a potentially very inaccurate result, + so sometimes it may be better to use +\begin_inset Formula $0/0$ +\end_inset + + for overflow. +\end_layout + +\end_body +\end_document diff --git a/vol2/index.lyx b/vol2/index.lyx index 27530d8..bb4203a 100644 --- a/vol2/index.lyx +++ b/vol2/index.lyx @@ -1234,15 +1234,21 @@ Fractions \end_layout \begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "4.5.1.lyx" +literal "false" + +\end_inset + + \begin_inset Note Note status open \begin_layout Plain Layout -3+1; - 5, - 6, - 8 (0:42) -> 2d, - -2/3 + +\family typewriter +A10+R25 \end_layout \end_inset |
