diff options
| author | Juan Marín Noguera <juan@mnpi.eu> | 2025-08-06 09:14:25 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan@mnpi.eu> | 2025-08-08 10:47:30 +0200 |
| commit | ae5b7530f812334932173c64ee08c04aa5442e48 (patch) | |
| tree | d0efe68b61acd1256f481bb5d24e88929ca168ec /vol2/4.3.2.lyx | |
| parent | 61db2eefd33743ffc7ae463558beeecc9aee4155 (diff) | |
4.3.2--3: Modular Arithmetic & How Fast Can We Multiply?
Diffstat (limited to 'vol2/4.3.2.lyx')
| -rw-r--r-- | vol2/4.3.2.lyx | 746 |
1 files changed, 746 insertions, 0 deletions
diff --git a/vol2/4.3.2.lyx b/vol2/4.3.2.lyx new file mode 100644 index 0000000..4a16c48 --- /dev/null +++ b/vol2/4.3.2.lyx @@ -0,0 +1,746 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc5[M23] +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Suppose that the method of (13) is continued until no more +\begin_inset Formula $m_{j}$ +\end_inset + + can be chosen. + Does this +\begin_inset Quotes eld +\end_inset + +greedy +\begin_inset Quotes erd +\end_inset + + method give the largest attainable value +\begin_inset Formula $m_{1}m_{2}\dots m_{r}$ +\end_inset + + such that the +\begin_inset Formula $m_{j}$ +\end_inset + + are odd positive integers less than 100 that are relatively prime in pairs? +\end_layout + +\begin_layout Enumerate +What is the largest possible +\begin_inset Formula $m_{1}m_{2}\dots m_{r}$ +\end_inset + + when each residue +\begin_inset Formula $u_{j}$ +\end_inset + + must fit in eight bits of memory? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +No; + if we substitute, + say, + +\begin_inset Formula $m_{3}=95$ +\end_inset + + with 19 and 25, + which weren't chosen before because they have common factors with +\begin_inset Formula $m_{3}$ +\end_inset + +, + then we get a modulo that is 5 times as large. + No other number in the sequence has common factors with 19 and 25 since, + if they had, + they would also have common factors with 95. +\end_layout + +\begin_layout Enumerate +We need to have each prime number to the greatest power that is at most +\begin_inset Formula $2^{8}=256$ +\end_inset + +, + so +\begin_inset Formula +\begin{multline*} +2^{8}\cdot3^{5}\cdot5^{3}\cdot7^{2}\cdot11^{2}\cdot13^{2}\cdot17\cdot19\cdot23\cdot29\cdot31\cdot37\cdot\dots\cdot251=\\ +=166744908068958426716590087517763853502703245089096518499\\ +55453691538889375930032935391666564679008085339616000. +\end{multline*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc7[M21] +\end_layout + +\end_inset + +Show that (24) can be rewritten as follows: +\begin_inset Formula +\begin{align*} +v_{1} & \gets u_{1}\bmod m_{1},\\ +v_{2} & \gets(u_{2}-v_{1})c_{12}\bmod m_{2},\\ +v_{3} & \gets(u_{3}-(v_{1}+m_{1}v_{2}))c_{13}c_{23}\bmod m_{3},\\ +\vdots\\ +v_{r} & \gets(u_{r}-(v_{1}+m_{1}(v_{2}+m_{2}(v_{3}+\dots+m_{r-2}v_{r-1})\dots)))c_{1r}\cdots c_{(r-1)r}\bmod m_{r}. +\end{align*} + +\end_inset + +If the formulas are rewritten in this way, + we see that only +\begin_inset Formula $r-1$ +\end_inset + + constants +\begin_inset Formula $C_{j}=c_{1j}\cdots c_{(j-1)j}\bmod m_{j}$ +\end_inset + + are needed instead of +\begin_inset Formula $r(r-1)/2$ +\end_inset + + constants +\begin_inset Formula $c_{ij}$ +\end_inset + + as in (24). + Discuss the relative merits of this version of the formula compared to (24), + from the standpoint of computer calculation. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +After expanding some products, + the general formula in the exercise is +\begin_inset Formula +\[ +v_{r}=(u_{r}-v_{1}-m_{1}v_{2}-m_{1}m_{2}v_{3}-\dots-m_{1}\cdots m_{r-2}v_{r-1})c_{1r}\cdots c_{(r-1)r}\bmod m_{r}, +\] + +\end_inset + +but for +\begin_inset Formula $1\leq k\leq r$ +\end_inset + +, + +\begin_inset Formula $m_{1}\cdots m_{k}c_{1r}\cdots c_{kr}\equiv1\pmod{m_{r}}$ +\end_inset + +, + so this is equivalent to +\begin_inset Formula +\[ +v_{r}=u_{r}c_{1r}\cdots c_{(r-1)r}-v_{1}c_{1r}\cdots c_{(r-1)r}-v_{2}c_{2r}\cdots c_{(r-1)r}-v_{3}c_{3r}\cdots c_{(r-1)r}-\dots-v_{r-1}c_{(r-1)r}\bmod m_{r}, +\] + +\end_inset + +which is precisely the formula in (24) after expanding all the products. +\end_layout + +\begin_layout Standard +With these formulas, + to calculate +\begin_inset Formula $v_{k}$ +\end_inset + +, + we do +\begin_inset Formula $k-1$ +\end_inset + + multiplications modulo +\begin_inset Formula $m_{k}$ +\end_inset + + and +\begin_inset Formula $k-1$ +\end_inset + + additions, + the same amount as with (24). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc12[M10] +\end_layout + +\end_inset + +Prove that, + if +\begin_inset Formula $0\leq u,v<m$ +\end_inset + +, + the modular addition of +\begin_inset Formula $u$ +\end_inset + + and +\begin_inset Formula $v$ +\end_inset + + causes overflow (lies outside the range allowed by the modular representation) if and only if the sum is less than +\begin_inset Formula $u$ +\end_inset + +. + (Thus the overflow detection problem is equivalent to the comparison problem.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +In this case +\begin_inset Formula $u+v\geq m$ +\end_inset + + but +\begin_inset Formula $u+v<u+m<2m$ +\end_inset + + (since +\begin_inset Formula $u,v<m$ +\end_inset + +), + so +\begin_inset Formula $(u+v)\bmod m=u+v-m<u$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +If +\begin_inset Formula $u+v<m$ +\end_inset + +, + because +\begin_inset Formula $u+v\geq0$ +\end_inset + +, + we would have +\begin_inset Formula $(u+v)\bmod m=u+v\geq u\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc13[M25] +\end_layout + +\end_inset + +( +\emph on +Automorphic numbers. +\emph default +) An +\begin_inset Formula $n$ +\end_inset + +-digit decimal number +\begin_inset Formula $x>1$ +\end_inset + + is called an +\begin_inset Quotes eld +\end_inset + +automorph +\begin_inset Quotes erd +\end_inset + + by recreational mathematicians if the last +\begin_inset Formula $n$ +\end_inset + + digits of +\begin_inset Formula $x^{2}$ +\end_inset + + are equal to +\begin_inset Formula $x$ +\end_inset + +. + For example, + 9376 is a 4-digit automorph, + since +\begin_inset Formula $9376^{2}=87909376$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Prove that an +\begin_inset Formula $n$ +\end_inset + +-digit number +\begin_inset Formula $x>1$ +\end_inset + + is an automorph if and only if +\begin_inset Formula $x\bmod5^{n}=0\text{ or }1$ +\end_inset + + and +\begin_inset Formula $x\bmod2^{n}=1\text{ or 0}$ +\end_inset + +, + respectively. + (Thus, + if +\begin_inset Formula $m_{1}=2^{n}$ +\end_inset + + and +\begin_inset Formula $m_{2}=5^{n}$ +\end_inset + +, + the only two +\begin_inset Formula $n$ +\end_inset + +-digit automorphs are the numbers +\begin_inset Formula $M_{1}$ +\end_inset + + and +\begin_inset Formula $M_{2}$ +\end_inset + + in (7).) +\end_layout + +\begin_layout Enumerate +Prove that if +\begin_inset Formula $x$ +\end_inset + + is an +\begin_inset Formula $n$ +\end_inset + +-digit automorph, + then +\begin_inset Formula $(3x^{2}-2x^{3})\bmod10^{2n}$ +\end_inset + + is a +\begin_inset Formula $2n$ +\end_inset + +-digit automorph. +\end_layout + +\begin_layout Enumerate +Given that +\begin_inset Formula $cx\equiv1\pmod y$ +\end_inset + +, + find a simple formula for a number +\begin_inset Formula $c'$ +\end_inset + + depending on +\begin_inset Formula $c$ +\end_inset + + and +\begin_inset Formula $x$ +\end_inset + + but not on +\begin_inset Formula $y$ +\end_inset + +, + such that +\begin_inset Formula $c'x^{2}\equiv1\pmod{y^{2}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $x$ +\end_inset + + is an automorph if and only if +\begin_inset Formula $x^{2}\bmod10^{n}=x$ +\end_inset + +, + if and only if +\begin_inset Formula $x^{2}\bmod5^{n}=x$ +\end_inset + + and +\begin_inset Formula $x^{2}\bmod2^{n}=x$ +\end_inset + +, + but +\begin_inset Formula $\mathbb{Z}_{5^{n}}$ +\end_inset + + and +\begin_inset Formula $\mathbb{Z}_{2^{n}}$ +\end_inset + + are fields, + so by cancellation, + +\begin_inset Formula $x^{2}=x$ +\end_inset + + in +\begin_inset Formula $\mathbb{Z}_{5^{n}}$ +\end_inset + + or +\begin_inset Formula $\mathbb{Z}_{2^{n}}$ +\end_inset + + if and only if +\begin_inset Formula $x=1$ +\end_inset + +. + The cases where +\begin_inset Formula $x\bmod5^{n}=x\bmod2^{n}=0\text{ or }1$ +\end_inset + + are excluded because they are precisely +\begin_inset Formula $x=0$ +\end_inset + + and +\begin_inset Formula $x=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Let +\begin_inset Formula $k=2\text{ or }5$ +\end_inset + + and +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + +, + if +\begin_inset Formula $x=ak^{n}$ +\end_inset + +, + then +\begin_inset Formula +\[ +3x^{2}-2x^{3}\equiv0\pmod{k^{2n}}, +\] + +\end_inset + +whereas if +\begin_inset Formula $x=ak^{n}+1$ +\end_inset + +, + then +\begin_inset Formula +\[ +3x^{2}-2x^{3}\equiv6ak^{n}+3-6ak^{n}-2=1\pmod{k^{2n}}, +\] + +\end_inset + +so the values of +\begin_inset Formula $3x^{2}-2x^{3}$ +\end_inset + + modulo +\begin_inset Formula $2^{2n}$ +\end_inset + + and +\begin_inset Formula $5^{2n}$ +\end_inset + + are the same as those of +\begin_inset Formula $x$ +\end_inset + + if +\begin_inset Formula $x$ +\end_inset + + is an automorph. +\end_layout + +\begin_layout Enumerate +Let +\begin_inset Formula $c'\coloneqq c^{2}(3-2cx)$ +\end_inset + +, + then +\begin_inset Formula $c'x^{2}=c^{2}x^{2}(3-2cx)=3(cx)^{2}-2(cx)^{3}$ +\end_inset + + and, + if +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + is such that +\begin_inset Formula $cx=ay+1$ +\end_inset + +, + then +\begin_inset Formula +\[ +3(cx)^{2}-2(cx)^{3}\equiv6ay+3-6ay-2=1\pmod{y^{2}}. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
