aboutsummaryrefslogtreecommitdiff
path: root/4.1.lyx
diff options
context:
space:
mode:
Diffstat (limited to '4.1.lyx')
-rw-r--r--4.1.lyx1897
1 files changed, 0 insertions, 1897 deletions
diff --git a/4.1.lyx b/4.1.lyx
deleted file mode 100644
index aba30d7..0000000
--- a/4.1.lyx
+++ /dev/null
@@ -1,1897 +0,0 @@
-#LyX 2.4 created this file. For more info see https://www.lyx.org/
-\lyxformat 620
-\begin_document
-\begin_header
-\save_transient_properties true
-\origin unavailable
-\textclass book
-\begin_preamble
-\input defs
-\end_preamble
-\use_default_options true
-\maintain_unincluded_children no
-\language english
-\language_package default
-\inputencoding utf8
-\fontencoding auto
-\font_roman "default" "default"
-\font_sans "default" "default"
-\font_typewriter "default" "default"
-\font_math "auto" "auto"
-\font_default_family default
-\use_non_tex_fonts false
-\font_sc false
-\font_roman_osf false
-\font_sans_osf false
-\font_typewriter_osf false
-\font_sf_scale 100 100
-\font_tt_scale 100 100
-\use_microtype false
-\use_dash_ligatures true
-\graphics default
-\default_output_format default
-\output_sync 0
-\bibtex_command default
-\index_command default
-\float_placement class
-\float_alignment class
-\paperfontsize default
-\spacing single
-\use_hyperref false
-\papersize default
-\use_geometry false
-\use_package amsmath 1
-\use_package amssymb 1
-\use_package cancel 1
-\use_package esint 1
-\use_package mathdots 1
-\use_package mathtools 1
-\use_package mhchem 1
-\use_package stackrel 1
-\use_package stmaryrd 1
-\use_package undertilde 1
-\cite_engine basic
-\cite_engine_type default
-\biblio_style plain
-\use_bibtopic false
-\use_indices false
-\paperorientation portrait
-\suppress_date false
-\justification true
-\use_refstyle 1
-\use_formatted_ref 0
-\use_minted 0
-\use_lineno 0
-\index Index
-\shortcut idx
-\color #008000
-\end_index
-\secnumdepth 3
-\tocdepth 3
-\paragraph_separation indent
-\paragraph_indentation default
-\is_math_indent 0
-\math_numbering_side default
-\quotes_style english
-\dynamic_quotes 0
-\papercolumns 1
-\papersides 1
-\paperpagestyle default
-\tablestyle default
-\tracking_changes false
-\output_changes false
-\change_bars false
-\postpone_fragile_content false
-\html_math_output 0
-\html_css_as_file 0
-\html_be_strict false
-\docbook_table_output 0
-\docbook_mathml_prefix 1
-\end_header
-
-\begin_body
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc2[24]
-\end_layout
-
-\end_inset
-
-Consider the following four number systems:
-\end_layout
-
-\begin_layout Enumerate
-binary (signed magnitude);
-\end_layout
-
-\begin_layout Enumerate
-negabinary (radix
-\begin_inset Formula $-2$
-\end_inset
-
-);
-\end_layout
-
-\begin_layout Enumerate
-balanced ternary;
- and
-\end_layout
-
-\begin_layout Enumerate
-radix
-\begin_inset Formula $b=\frac{1}{10}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Use each of these four number systems to express each of the following three numbers:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $-49$
-\end_inset
-
-;
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $-3\frac{1}{7}$
-\end_inset
-
- (show the repeating cycle);
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $\pi$
-\end_inset
-
- (to a few significant figures).
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $-49\to-110001$
-\end_inset
-
-.
- Multiplying by 2,
-
-\begin_inset Formula $\frac{1}{7}\to\frac{2}{7}\to\frac{4}{7}\to1+\frac{1}{7}$
-\end_inset
-
-,
- so
-\begin_inset Formula $-3\frac{1}{7}\to-11.\overbrace{001}$
-\end_inset
-
-.
- Finally,
-
-\begin_inset Formula $\pi\to11.00100100001111...$
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-The trick is to express the number in binary and,
- for the odd positions (the ones where
-\begin_inset Formula $(-2)^{k}$
-\end_inset
-
- is negative),
- add 1 to the part of the number on the right,
- because we are subtracting
-\begin_inset Formula $2^{k}$
-\end_inset
-
- instead of adding so we compensate for that.
- For negative numbers,
- we represent them in two's complement before this change,
- effectively adding
-\begin_inset Formula $2^{M}$
-\end_inset
-
- for some large
-\begin_inset Formula $M$
-\end_inset
-
-,
- and after it we drop that upper bit to subtract
-\begin_inset Formula $2^{M}$
-\end_inset
-
-.
- Thus
-\begin_inset Formula $-49\to...111001111\to11010011$
-\end_inset
-
-,
-
-\begin_inset Formula $-3\frac{1}{7}\to...1100.\overbrace{110110}\to1101.\overbrace{001011}$
-\end_inset
-
-,
-
-\begin_inset Formula $\pi\to111.01100100010000...$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-We proceed as in the text:
-
-\begin_inset Formula
-\begin{align*}
--49 & \to-1211\to...11102200\to\overline{1}11\overline{1}\overline{1};\\
--3\frac{1}{7} & \to-10.\overbrace{010212}\to\dots1101.\overbrace{100122}\to\overline{1}0.\overbrace{0\overline{1}\overline{1}011};\\
-\pi & \to10.010211012\dots\to...1121.122022201\dots\to10.011\overline{1}111\overline{1}0\dots.
-\end{align*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-This is like the decimal system but backwards,
- so
-\begin_inset Formula $-49\to-9.4$
-\end_inset
-
-,
-
-\begin_inset Formula $-3\frac{1}{7}\to-\overbrace{758241}3$
-\end_inset
-
-,
-
-\begin_inset Formula $\pi\to...51413$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-exerc5[00]
-\end_layout
-
-\end_inset
-
-Explain why a negative integer in nines' complement notation has a representation in ten's complement notation that is always one greater,
- if the representations are regarded as positive.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-Ten's complement of a negative number
-\begin_inset Formula $s$
-\end_inset
-
- is
-\begin_inset Formula $10^{M}+s$
-\end_inset
-
-,
- for a suitably large integer
-\begin_inset Formula $M$
-\end_inset
-
-,
- while nines' complement is
-\begin_inset Formula $(10^{M}-1)+s$
-\end_inset
-
-,
- so the ten's complement is one greater.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-exerc8[M10]
-\end_layout
-
-\end_inset
-
-Prove Eq.
- (5).
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-The part at the left is
-\begin_inset Formula $\sum_{j}a_{j}b^{j}$
-\end_inset
-
-,
- while the part at the right is
-\begin_inset Formula $\sum_{j}A_{j}b^{kj}$
-\end_inset
-
-,
- but
-\begin_inset Formula $A_{j}=\sum_{i=0}^{k-1}a_{kj+i}b^{i}$
-\end_inset
-
-,
- so this is
-\begin_inset Formula
-\[
-\sum_{j}A_{j}b^{kj}=\sum_{j}\sum_{i=0}^{k-1}(a_{kj+i}b^{i})b^{kj}=\sum_{j}\sum_{i=0}^{k-1}(a_{kj+i}b^{kj+i})=\sum_{j}a_{j}b^{j}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc9[15]
-\end_layout
-
-\end_inset
-
-Change the following
-\emph on
-octal
-\emph default
- numbers to
-\emph on
-hexadecimal
-\emph default
- notation,
- using the hexadecimal digits
-\family typewriter
-0
-\family default
-,
-
-\family typewriter
-1
-\family default
-,
- ...,
-
-\family typewriter
-9
-\family default
-,
-
-\family typewriter
-A
-\family default
-,
-
-\family typewriter
-B
-\family default
-,
-
-\family typewriter
-C
-\family default
-,
-
-\family typewriter
-D
-\family default
-,
-
-\family typewriter
-E
-\family default
-,
-
-\family typewriter
-F
-\family default
-:
- 12;
- 5655;
- 2550276;
- 76545336;
- 3726755.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-We use Eq.
- (5) with base 2.
-\end_layout
-
-\begin_layout Standard
-\align center
-\begin_inset Tabular
-<lyxtabular version="3" rows="6" columns="3">
-<features tabularvalignment="middle">
-<column alignment="right" valignment="top">
-<column alignment="right" valignment="top">
-<column alignment="right" valignment="top">
-<row>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-Octal
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-Binary
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-Hexadecimal
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-12
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-1 010
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-
-\family typewriter
-A
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-5655
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-101 110 101 101
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-
-\family typewriter
-BAD
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-2550276
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-10 101 101 000 010 111 110
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-
-\family typewriter
-AD0BE
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-76545336
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-111 110 101 100 101 011 011 110
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-
-\family typewriter
-FACADE
-\end_layout
-
-\end_inset
-</cell>
-</row>
-<row>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-3726755
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-11 111 010 110 111 101 101
-\end_layout
-
-\end_inset
-</cell>
-<cell alignment="right" valignment="top" topline="true" bottomline="true" leftline="true" rightline="true" usebox="none">
-\begin_inset Text
-
-\begin_layout Plain Layout
-
-\family typewriter
-FADED
-\end_layout
-
-\end_inset
-</cell>
-</row>
-</lyxtabular>
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset Note Comment
-status open
-
-\begin_layout Plain Layout
-Is this what academics do when they get bored?
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc13[M21]
-\end_layout
-
-\end_inset
-
-In the decimal system there are some numbers with two infinite decimal expansions;
- for example,
-
-\begin_inset Formula $2.3599999...=2.3600000...$
-\end_inset
-
-.
- Does the
-\emph on
-negadecimal
-\emph default
- (base
-\begin_inset Formula $-10$
-\end_inset
-
-) system have unique expansions,
- or are there real numbers with two different infinite expansions in this base also?
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-There are real numbers with two different infinite expansions:
-
-\begin_inset Formula
-\[
-\tfrac{1}{11}=0.090909...=(0.090909...)_{-10}=(1.909090...)_{-10}.
-\]
-
-\end_inset
-
-Effectively,
-
-\begin_inset Formula $(0.090909...)_{-10}=\sum_{k\geq1}9\cdot(-10)^{-2k}=9\sum_{k\geq1}100^{-k}=9\frac{\frac{1}{100}}{\frac{99}{100}}=\frac{1}{11}$
-\end_inset
-
-,
- but
-\begin_inset Formula $(1.909090...)_{-10}=1+\sum_{k\geq1}9\cdot(-10)^{-2k+1}=1-90\sum_{k\geq1}100^{-k}=1-90\frac{1}{99}=1-\frac{10}{11}=\frac{1}{11}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc19[23]
-\end_layout
-
-\end_inset
-
-(David W.
- Matula.) Let
-\begin_inset Formula $D$
-\end_inset
-
- be a set of
-\begin_inset Formula $b$
-\end_inset
-
- integers,
- containing exactly one solution to the congruence
-\begin_inset Formula $x\equiv j\pmod b$
-\end_inset
-
- for
-\begin_inset Formula $0\leq j<b$
-\end_inset
-
-.
- Prove that all integers (positive,
- negative,
- or zero) can be represented in the form
-\begin_inset Formula $m=(a_{n}\dots a_{0})_{b}$
-\end_inset
-
-,
- where all the
-\begin_inset Formula $a_{j}$
-\end_inset
-
- are in
-\begin_inset Formula $D$
-\end_inset
-
-,
- if and only if all integers in the range
-\begin_inset Formula $l\leq m\leq u$
-\end_inset
-
- can be so represented,
- where
-\begin_inset Formula $l=-\max\{a\mid a\in D\}/(b-1)$
-\end_inset
-
- and
-\begin_inset Formula $u=-\min\{a\mid a\in D\}/(b-1)$
-\end_inset
-
-.
- For example,
-
-\begin_inset Formula $D=\{-1,0,\dots,b-2\}$
-\end_inset
-
- satisfies the conditions for all
-\begin_inset Formula $b\geq3$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-For the statement to make sense,
- we need
-\begin_inset Formula $b\geq2$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\implies]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Obvious.
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\impliedby]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Take an arbitrary
-\begin_inset Formula $m\in\mathbb{Z}$
-\end_inset
-
-.
- If
-\begin_inset Formula $l\leq m\leq u$
-\end_inset
-
-,
- we are done.
- Otherwise,
- let
-\begin_inset Formula $q$
-\end_inset
-
- and
-\begin_inset Formula $r$
-\end_inset
-
- be the quotient and remainder of dividing
-\begin_inset Formula $m$
-\end_inset
-
- by
-\begin_inset Formula $b$
-\end_inset
-
-,
- and let
-\begin_inset Formula $x\in D$
-\end_inset
-
- be such that
-\begin_inset Formula $x\equiv r\pmod b$
-\end_inset
-
-.
- Then write
-\begin_inset Formula $x$
-\end_inset
-
- and,
- if
-\begin_inset Formula $k\in\mathbb{Z}$
-\end_inset
-
- is such that
-\begin_inset Formula $x=kb+r$
-\end_inset
-
-,
- write the number
-\begin_inset Formula $q-k$
-\end_inset
-
- to the right of the
-\begin_inset Formula $x$
-\end_inset
-
- we just wrote by applying this same process.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-We have to prove that this algorithm terminates.
- First we note that there exists at least an integer between
-\begin_inset Formula $l$
-\end_inset
-
- and
-\begin_inset Formula $u$
-\end_inset
-
-,
- because there are
-\begin_inset Formula $b$
-\end_inset
-
- integers in
-\begin_inset Formula $D$
-\end_inset
-
- and so the maximum and minimum must differ by at least
-\begin_inset Formula $b-1$
-\end_inset
-
-,
- and so
-\begin_inset Formula $u-l\geq1$
-\end_inset
-
-.
- This means that necessarily
-\begin_inset Formula $l\leq0$
-\end_inset
-
- and
-\begin_inset Formula $u\geq0$
-\end_inset
-
-,
- for if
-\begin_inset Formula $l>0$
-\end_inset
-
-,
- then all numbers in
-\begin_inset Formula $D$
-\end_inset
-
- are negative,
- but the integers between
-\begin_inset Formula $l$
-\end_inset
-
- and
-\begin_inset Formula $u$
-\end_inset
-
- are positive so they couldn't be represented in the given form,
-\begin_inset Formula $\#$
-\end_inset
-
- and a similar thing would happen if
-\begin_inset Formula $u<0$
-\end_inset
-
-.
- Now,
- in the algorithm above,
-
-\begin_inset Formula $q-k=\lfloor\frac{m}{b}\rfloor-k=\frac{m-r}{b}-\frac{x-r}{b}=\frac{m-x}{b}$
-\end_inset
-
-.
- With this,
- if
-\begin_inset Formula $m>u$
-\end_inset
-
-,
- then
-\begin_inset Formula $m(b-1)>-\min D$
-\end_inset
-
-,
- but and therefore
-\begin_inset Formula
-\[
-m-(q-k)=m-\frac{m-x}{b}=\frac{m(b-1)+x}{b}>\frac{-\min D+\min D}{b}=0,
-\]
-
-\end_inset
-
-so
-\begin_inset Formula $q-k<m$
-\end_inset
-
-,
- and
-\begin_inset Formula
-\[
-m+(q-k)=\frac{m(b+1)-x}{b}>m-\frac{\max D}{b}\geq m+l,
-\]
-
-\end_inset
-
-so
-\begin_inset Formula $q-k\geq l$
-\end_inset
-
-.
- This means that,
- on each step,
-
-\begin_inset Formula $m$
-\end_inset
-
- is smaller by at least 1,
- but it doesn't become smaller than
-\begin_inset Formula $l$
-\end_inset
-
-,
- so it eventually reaches the interval
-\begin_inset Formula $[l,u]$
-\end_inset
-
- in at most
-\begin_inset Formula $|m-u|$
-\end_inset
-
- steps.
- And if
-\begin_inset Formula $m<l$
-\end_inset
-
-,
- then
-\begin_inset Formula $m(b-1)<-\max D$
-\end_inset
-
-,
- so
-\begin_inset Formula
-\[
-m-(q-k)=\frac{m(b-1)+x}{b}<\frac{-\max D+\max D}{b}=0,
-\]
-
-\end_inset
-
-so
-\begin_inset Formula $q-k>m$
-\end_inset
-
-,
- and
-\begin_inset Formula
-\[
-m+(q-k)=\frac{m(b+1)-x}{b}<m-\frac{\min D}{b}\leq m+u,
-\]
-
-\end_inset
-
- so
-\begin_inset Formula $q-k\leq u$
-\end_inset
-
-,
- and a similar reasoning applies.
-\end_layout
-
-\end_deeper
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc21[M22]
-\end_layout
-
-\end_inset
-
-(C.
- E.
- Shannon.) Can every real number (positive,
- negative,
- or zero) be expressed in a
-\begin_inset Quotes eld
-\end_inset
-
-balanced decimal
-\begin_inset Quotes erd
-\end_inset
-
- system,
- that is,
- in the form
-\begin_inset Formula $\sum_{k\leq n}a_{k}10^{k}$
-\end_inset
-
-,
- for some integer
-\begin_inset Formula $n$
-\end_inset
-
- and some sequence
-\begin_inset Formula $a_{n},a_{n-1},a_{n-2},\dots$
-\end_inset
-
-,
- where each
-\begin_inset Formula $a_{k}$
-\end_inset
-
- is one of the ten numbers
-\begin_inset Formula $\{-4\frac{1}{2},-3\frac{1}{2},-2\frac{1}{2},-1\frac{1}{2},-\frac{1}{2},\frac{1}{2},1\frac{1}{2},2\frac{1}{2},3\frac{1}{2},4\frac{1}{2}\}$
-\end_inset
-
-?
- (Although zero is not one of the allowed digits,
- we implicitly assume that
-\begin_inset Formula $a_{n+1},a_{n+2},\dots$
-\end_inset
-
- are zero.) Find all representations of zero in this number system,
- and find all representations of unity.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-Yes,
- we can do something similar to the construction of balanced ternary.
- First,
- we add
-\begin_inset Formula $5\cdot10^{n+1}$
-\end_inset
-
- to the number,
- and then we subtract
-\begin_inset Formula $4\frac{1}{2}$
-\end_inset
-
- from each digit from the
-\begin_inset Formula $(n+1)$
-\end_inset
-
-st to the right.
-\end_layout
-
-\begin_layout Standard
-For a sum in the given form to be 0,
-
-\begin_inset Formula $a_{n}10^{n}$
-\end_inset
-
- must equal
-\begin_inset Formula $-\sum_{k<n}a_{k}10^{k}$
-\end_inset
-
-.
- The biggest value we can write as
-\begin_inset Formula $\sum_{k<n}a_{k}10^{k}$
-\end_inset
-
- is
-\begin_inset Formula $5\cdot10^{n-1}=10^{n}/2$
-\end_inset
-
-,
- which we can only reach if all those
-\begin_inset Formula $a_{k}=4\frac{1}{2}$
-\end_inset
-
-,
- and the smallest is
-\begin_inset Formula $-10^{n}/2$
-\end_inset
-
-,
- where all the
-\begin_inset Formula $a_{k}=-4\frac{1}{2}$
-\end_inset
-
-,
- so the representations are
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $-\frac{1}{2},4\frac{1}{2},4\frac{1}{2},4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
- and
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $\frac{1}{2},-4\frac{1}{2},-4\frac{1}{2},-4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
-,
- with the decimal point in any arbitrary position.
-\end_layout
-
-\begin_layout Standard
-To get one,
- we need
-\begin_inset Formula $\frac{1}{2}+\frac{1}{2}$
-\end_inset
-
- or
-\begin_inset Formula $1\frac{1}{2}-\frac{1}{2}$
-\end_inset
-
-,
- so either
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $\frac{1}{2};4\frac{1}{2},\dots,4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
- or
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $1\frac{1}{2};-4\frac{1}{2},\dots,-4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
-,
- or
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $\frac{1}{2},-4\frac{1}{2},\dots,-4\frac{1}{2},-3\frac{1}{2},-4\frac{1}{2},\dots,-4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
- or
-\begin_inset Quotes eld
-\end_inset
-
-
-\begin_inset Formula $\frac{1}{2},-4\frac{1}{2},\dots,-4\frac{1}{2};4\frac{1}{2},\dots,4\frac{1}{2},\dots$
-\end_inset
-
-
-\begin_inset Quotes erd
-\end_inset
-
-,
- which stem from representing
-\begin_inset Formula $\frac{1}{2}$
-\end_inset
-
- and
-\begin_inset Formula $1\frac{1}{2}$
-\end_inset
-
- in a way similar to the one used to represent the zero above.
- Here the semicolon represents the radix point.
- The most significant digit must be positive and to the left of the radix point,
- and we can use this fact to show that these are all the ways that the number 1 can be represented in this system.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc28[M24]
-\end_layout
-
-\end_inset
-
-Show that every nonzero complex number of the form
-\begin_inset Formula $a+b\text{i}$
-\end_inset
-
- where
-\begin_inset Formula $a$
-\end_inset
-
- and
-\begin_inset Formula $b$
-\end_inset
-
- are integers has a unique
-\begin_inset Quotes eld
-\end_inset
-
-revolving binary representation
-\begin_inset Quotes erd
-\end_inset
-
-
-\begin_inset Formula
-\[
-(1+\text{i})^{e_{0}}+\text{i}(1+\text{i})^{e_{1}}-(1+\text{i})^{e_{2}}-\text{i}(1+\text{i})^{e_{3}}+\dots+\text{i}^{t}(1+\text{i})^{e_{t}},
-\]
-
-\end_inset
-
-where
-\begin_inset Formula $e_{0}<e_{1}<\dots<e_{t}$
-\end_inset
-
-.
- (Compare with exercise 27.)
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-First we show that such representation exists by providing an algorithm for getting it from a number
-\begin_inset Formula $c\in\mathbb{Z}+\text{i}\mathbb{Z}$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-[Initialize.] Set
-\begin_inset Formula $s\gets0$
-\end_inset
-
- and
-\begin_inset Formula $e\gets0$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset CommandInset label
-LatexCommand label
-name "enu:e4128b"
-
-\end_inset
-
-[Case
-\begin_inset Formula $(1+\text{i})^{0}$
-\end_inset
-
-.] If
-\begin_inset Formula $\text{Re}c$
-\end_inset
-
- is odd and
-\begin_inset Formula $\text{Im}c$
-\end_inset
-
- is even,
- or vice versa,
- write down
-\begin_inset Formula $\text{i}^{s}(1+\text{i})^{e}$
-\end_inset
-
- and set
-\begin_inset Formula $s\gets s+1$
-\end_inset
-
- and
-\begin_inset Formula $c\gets-\text{i}(c-1)$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset CommandInset label
-LatexCommand label
-name "enu:e4128c"
-
-\end_inset
-
-[Case
-\begin_inset Formula $(1+\text{i})^{1}$
-\end_inset
-
-.] If
-\begin_inset Formula $\text{Re}c$
-\end_inset
-
- is odd [if,
- and only if,
-
-\begin_inset Formula $\text{Im}c$
-\end_inset
-
- is odd,] write down
-\begin_inset Formula $\text{i}^{s}(1+\text{i})^{e+1}$
-\end_inset
-
- and set
-\begin_inset Formula $s\gets s+1$
-\end_inset
-
- and
-\begin_inset Formula $c\gets-\text{i}(c-1-\text{i})$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset CommandInset label
-LatexCommand label
-name "enu:e4128d"
-
-\end_inset
-
-[Iterate.] If
-\begin_inset Formula $c\neq0$
-\end_inset
-
-,
- set
-\begin_inset Formula $e\gets e+2$
-\end_inset
-
- and
-\begin_inset Formula $c\gets\frac{c}{2\text{i}}$
-\end_inset
-
- and go back to step
-\begin_inset CommandInset ref
-LatexCommand ref
-reference "enu:e4128b"
-plural "false"
-caps "false"
-noprefix "false"
-nolink "false"
-
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-The algorithm always maintains the invariant that
-\begin_inset Formula $c_{0}=w+\text{i}^{s}(1+\text{i})^{e}c$
-\end_inset
-
-,
- where
-\begin_inset Formula $c_{0}$
-\end_inset
-
- is the original value of
-\begin_inset Formula $c$
-\end_inset
-
- and
-\begin_inset Formula $w$
-\end_inset
-
- is the sum of the terms that have been written,
- so when it finishes,
-
-\begin_inset Formula $w=c_{0}$
-\end_inset
-
-,
- and it's trivial to see that
-\begin_inset Formula $w$
-\end_inset
-
- is a revolving binary representation.
- To see that the algorithm terminates,
- we see that,
- after each iteration,
-
-\begin_inset Formula $c$
-\end_inset
-
- has a smaller magnitude except if originally
-\begin_inset Formula $c=-1,-\text{i},-1-\text{i}$
-\end_inset
-
-,
- but in these cases the iteration after that will lower the magnitude of
-\begin_inset Formula $c$
-\end_inset
-
-,
- preventing an infinite loop:
-\begin_inset Formula
-\begin{align*}
--1 & \overset{\eqref{enu:e4128b}}{\to}2\text{i}\overset{\eqref{enu:e4128d}}{\to}1, & -\text{i} & \overset{\eqref{enu:e4128b}}{\to}\text{i}-1\overset{\eqref{enu:e4128c}}{\to}2\text{i}\overset{\eqref{enu:e4128d}}{\to}1, & -1-\text{i} & \overset{\eqref{enu:e4128c}}{\to}2\text{i}-2\overset{\eqref{enu:e4128d}}{\to}\text{i}+1.
-\end{align*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-For the uniqueness,
- let
-\begin_inset Formula $\sum_{k=0}^{n}\text{i}^{k}(1+\text{i})^{e_{k}}=\sum_{j=0}^{m}\text{i}^{j}(1+\text{i})^{f_{j}}$
-\end_inset
-
- (
-\begin_inset Formula $n,m,e_{k},f_{j}\in\mathbb{N}$
-\end_inset
-
-,
-
-\begin_inset Formula $e_{0}<\dots<e_{n}$
-\end_inset
-
-,
-
-\begin_inset Formula $f_{0}<\dots<f_{m}$
-\end_inset
-
-) be two different representations of the same number,
- and let
-\begin_inset Formula $s\leq m,n$
-\end_inset
-
- be the first index where they differ (let's say
-\begin_inset Formula $e_{s}<f_{s}$
-\end_inset
-
-).
- Then we may remove all terms before
-\begin_inset Formula $s$
-\end_inset
-
- in both representations and divide each remaining term by
-\begin_inset Formula $\text{i}^{s}(1+\text{i})^{e_{s}}$
-\end_inset
-
-.
- But then,
- the second representation is a multiple of
-\begin_inset Formula $(1+\text{i})^{\min\{e_{s}+1,f_{s}\}}$
-\end_inset
-
- in
-\begin_inset Formula $\mathbb{Z}+\text{i}\mathbb{Z}$
-\end_inset
-
- but the first one isn't.
-\begin_inset Formula $\#$
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-rexerc34[22]
-\end_layout
-
-\end_inset
-
-(G.
- W.
- Reitweisner,
- 1960.) Explain how to represent a given integer
-\begin_inset Formula $n$
-\end_inset
-
- in the form
-\begin_inset Formula $(\dots a_{2}a_{1}a_{0})_{2}$
-\end_inset
-
-,
- where each
-\begin_inset Formula $a_{j}$
-\end_inset
-
- is
-\begin_inset Formula $-1$
-\end_inset
-
-,
- 0,
- or 1,
- using the fewest nonzero digits.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-answer
-\end_layout
-
-\end_inset
-
-If
-\begin_inset Formula $n=0$
-\end_inset
-
-,
- we just write 0.
- If
-\begin_inset Formula $n>0$
-\end_inset
-
-,
- we take
-\begin_inset Formula $k\in\mathbb{N}$
-\end_inset
-
- such that
-\begin_inset Formula $|2^{k}-n|$
-\end_inset
-
- is minimum,
- write a 1 at position
-\begin_inset Formula $k$
-\end_inset
-
-,
- and then write
-\begin_inset Formula $n-2^{k}$
-\end_inset
-
- on the
-\begin_inset Formula $k$
-\end_inset
-
- positions to the right.
- If
-\begin_inset Formula $n<0$
-\end_inset
-
-,
- we do the same except that first we write
-\begin_inset Formula $\overline{1}$
-\end_inset
-
- instead of 1.
-\end_layout
-
-\begin_layout Standard
-Now we prove that this in fact results in the representation fewest number of nonzero digits.
- We only need to prove it for positive
-\begin_inset Formula $n$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Now,
- if
-\begin_inset Formula $n=2^{k}$
-\end_inset
-
- or
-\begin_inset Formula $3\cdot2^{k}$
-\end_inset
-
- for some
-\begin_inset Formula $k\in\mathbb{N}$
-\end_inset
-
-,
- the statement is trivial.
- Otherwise,
- if
-\begin_inset Formula $2^{k}<n<2^{k+1}$
-\end_inset
-
- for some
-\begin_inset Formula $k\in\mathbb{N}$
-\end_inset
-
-,
- we operate by induction.
- First note that,
- for such
-\begin_inset Formula $n$
-\end_inset
-
-,
-
-\begin_inset Formula $k\geq2$
-\end_inset
-
-,
- and that all possible representations start with a 1 at position
-\begin_inset Formula $k$
-\end_inset
-
- or
-\begin_inset Formula $k+1$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-If
-\begin_inset Formula $n<3\cdot2^{k-1}$
-\end_inset
-
-,
- let
-\begin_inset Formula $\sigma(s)$
-\end_inset
-
- be the minimum number of nonzero digits in a representation of
-\begin_inset Formula $s$
-\end_inset
-
-,
- then if we start with a 1 at position
-\begin_inset Formula $k$
-\end_inset
-
- we would have a minimum of
-\begin_inset Formula $1+\sigma(n-2^{k})$
-\end_inset
-
- nonzero digits,
- whereas if we start at position
-\begin_inset Formula $k+1$
-\end_inset
-
- we would have a minimum of
-\begin_inset Formula $1+\sigma(2^{k+1}-n)$
-\end_inset
-
-.
- Let
-\begin_inset Formula $t\coloneqq2^{k+1}-n>2^{k-1}$
-\end_inset
-
-,
-
-\begin_inset Formula $t$
-\end_inset
-
- would need to have its most significant digit in position
-\begin_inset Formula $k$
-\end_inset
-
- or
-\begin_inset Formula $k-1$
-\end_inset
-
-,
- but any representation of
-\begin_inset Formula $t$
-\end_inset
-
- that starts at position
-\begin_inset Formula $k$
-\end_inset
-
- can be converted into one of
-\begin_inset Formula $2^{k}-n$
-\end_inset
-
- by removing the 1 at that position,
- and any one starting at position
-\begin_inset Formula $k-1$
-\end_inset
-
- can be converted into one of
-\begin_inset Formula $2^{k}-n$
-\end_inset
-
- by swapping the sign in that position,
- so in general
-\begin_inset Formula $\sigma(t)=\sigma(2^{k+1}-n)\geq\sigma(2^{k}-n)=\sigma(n-2^{k})$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-A similar argument shows that,
- if
-\begin_inset Formula $n>3\cdot2^{k-1}$
-\end_inset
-
-,
- then
-\begin_inset Formula $\sigma(n-2^{k})\geq\sigma(2^{k+1}-n)$
-\end_inset
-
-.
-\end_layout
-
-\end_body
-\end_document