diff options
Diffstat (limited to 'vol1/1.2.11.1.lyx')
| -rw-r--r-- | vol1/1.2.11.1.lyx | 556 |
1 files changed, 556 insertions, 0 deletions
diff --git a/vol1/1.2.11.1.lyx b/vol1/1.2.11.1.lyx new file mode 100644 index 0000000..daa07e2 --- /dev/null +++ b/vol1/1.2.11.1.lyx @@ -0,0 +1,556 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children no +\language american +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content true +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Note Note +status open + +\begin_layout Plain Layout +TODO 1, + 2, + 4, + 6, + 11, + 13 (1 p.) (est. + 0:21:19) +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[HM01] +\end_layout + +\end_inset + +What is +\begin_inset Formula $\lim_{n\to\infty}O(n^{-1/3})$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +0. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[M10] +\end_layout + +\end_inset + +Mr. + B. + C. + Dull obtained astonishing results by using the +\begin_inset Quotes eld +\end_inset + +self-evident +\begin_inset Quotes erd +\end_inset + + formula +\begin_inset Formula $O(f(n))-O(f(n))=0$ +\end_inset + +. + What was his mistake, + and what should the right-hand side of his formula has been? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $O(f(n))$ +\end_inset + + is a set of functions, + not a single function, + so the two +\begin_inset Formula $O(f(n))$ +\end_inset + + do not cancel out (for example, + the first +\begin_inset Formula $O(f(n))$ +\end_inset + + could represent +\begin_inset Formula $f(n)$ +\end_inset + + and the second one could be 0). + The right hand side should be another +\begin_inset Formula $O(f(n))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[M15] +\end_layout + +\end_inset + +Give an asymptotic expansion of +\begin_inset Formula $n(\sqrt[n]{a}-1)$ +\end_inset + +, + if +\begin_inset Formula $a>0$ +\end_inset + +, + to terms +\begin_inset Formula $O(1/n^{3})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We can do this by considering the function in terms of +\begin_inset Formula $x\coloneqq\frac{1}{n}$ +\end_inset + +, + which would be +\begin_inset Formula $\frac{1}{x}(a^{x}-1)$ +\end_inset + +. + Then +\begin_inset Formula $a^{x}=\text{e}^{x\ln a}=1+x\ln a+\frac{1}{2}x^{2}\ln^{2}a+\frac{1}{6}x^{3}\ln^{3}a+O(x^{4}\ln^{4}a)$ +\end_inset + +, + so +\begin_inset Formula +\[ +a^{x}-1=x\ln a+\frac{x^{2}\ln^{2}a}{2}+\frac{x^{3}\ln^{3}a}{6}+O(x^{4})=\frac{\ln a}{n}+\frac{\ln^{2}a}{2n^{2}}+\frac{\ln^{3}a}{6n^{3}}+O(n^{-4}) +\] + +\end_inset + +and finally +\begin_inset Formula +\[ +n(\sqrt[n]{a}-1)=\ln a+\frac{\ln^{2}a}{2n}+\frac{\ln^{3}a}{6n^{2}}+O(n^{-3}). +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[M20] +\end_layout + +\end_inset + +What is wrong with the following arguments? + +\begin_inset Quotes eld +\end_inset + +Since +\begin_inset Formula $n=O(n)$ +\end_inset + +, + and +\begin_inset Formula $2n=O(n)$ +\end_inset + +, + ..., + we have +\begin_inset Formula +\[ +\sum_{k=1}^{n}kn=\sum_{k=1}^{n}O(n)=O(n^{2}).\text{''} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The second expression does not make sense. + It is a sum of +\begin_inset Formula $n$ +\end_inset + + functions each of which has +\begin_inset Formula $n$ +\end_inset + + as a parameter, + but if +\begin_inset Formula $n$ +\end_inset + + is a parameter, + it cannot be an +\begin_inset Quotes eld +\end_inset + +external +\begin_inset Quotes erd +\end_inset + + parameter of the function represented by +\begin_inset Formula $O(n)$ +\end_inset + + as well. + In this case, + it is invalid to move the big O inside the sum as the range of the sum depends on +\begin_inset Formula $n$ +\end_inset + + and so does the domain of values +\begin_inset Formula $k$ +\end_inset + + can take, + so +\begin_inset Formula $k$ +\end_inset + +, + which depends on +\begin_inset Formula $n$ +\end_inset + +, + cannot be treated like a constant. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc11[M11] +\end_layout + +\end_inset + +Explain why Eq. + (18) is true. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The first identity is because +\begin_inset Formula $\sqrt[n]{n}=\text{e}^{\ln\sqrt[n]{n}}=\text{e}^{\ln n^{1/n}}=\text{e}^{\ln n/n}$ +\end_inset + +, + taking the power +\begin_inset Formula $1/n$ +\end_inset + + out of the logarithm. + The second identity is a direct application of Eq. + (12), + using that +\begin_inset Formula $\ln n/n\to0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc13[M10] +\end_layout + +\end_inset + +Prove or disprove: + +\begin_inset Formula $g(n)=\Omega(f(n))$ +\end_inset + + if and only if +\begin_inset Formula $f(n)=O(g(n))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $g(n)=\Omega(f(n))$ +\end_inset + + if and only if there exist +\begin_inset Formula $n_{0}$ +\end_inset + + and +\begin_inset Formula $L$ +\end_inset + + such that +\begin_inset Formula $|g(n)|\geq L|f(n)|$ +\end_inset + + for each +\begin_inset Formula $n\geq n_{0}$ +\end_inset + +, + but this is the same as saying that, + for all such +\begin_inset Formula $n$ +\end_inset + +, + +\begin_inset Formula $|f(n)|\leq\frac{1}{L}|g(n)|$ +\end_inset + +, + which is to say that +\begin_inset Formula $f(n)=O(g(n))$ +\end_inset + +. + Since arguably this +\begin_inset Formula $L$ +\end_inset + + must be positive (otherwise the statement is trivial), + taking +\begin_inset Formula $\frac{1}{L}$ +\end_inset + + is valid, + and likewise, + if +\begin_inset Formula $|f(n)|\leq M|g(n)|$ +\end_inset + + for each +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + and some +\begin_inset Formula $M$ +\end_inset + +, + we can always make this +\begin_inset Formula $M$ +\end_inset + + positive to make the reverse argument. +\end_layout + +\end_body +\end_document |
