diff options
Diffstat (limited to 'vol1/1.2.8.lyx')
| -rw-r--r-- | vol1/1.2.8.lyx | 1852 |
1 files changed, 1852 insertions, 0 deletions
diff --git a/vol1/1.2.8.lyx b/vol1/1.2.8.lyx new file mode 100644 index 0000000..23e44dc --- /dev/null +++ b/vol1/1.2.8.lyx @@ -0,0 +1,1852 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input defs +\usepackage{amsmath} +\end_preamble +\use_default_options true +\maintain_unincluded_children no +\language english +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc1[10] +\end_layout + +\end_inset + +What is the answer to Leonardo Fibonacci's original problem: + How many pairs of rabbits are present after a year? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +After one month there are +\begin_inset Formula $F_{3}=2$ +\end_inset + + pairs of rabbits, + after two months there are +\begin_inset Formula $F_{4}=3$ +\end_inset + +, + etc., + therefore after a year there are +\begin_inset Formula $F_{14}=377$ +\end_inset + + pairs of rabbits. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[20] +\end_layout + +\end_inset + +In view of Eq. + (15), + what is the approximate value of +\begin_inset Formula $F_{1000}$ +\end_inset + +? + (Use logarithms found in Appendix A.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\begin{align*} +F_{1000} & \approx\frac{\phi^{1000}}{\sqrt{5}}=\frac{10^{\log\phi^{1000}}}{\sqrt{5}}=\frac{10^{1000(\ln\phi/\ln10)}}{\sqrt{5}}\cong\frac{10^{1000\cdot0.48121...\cdot0.43429...}}{2.23606...}\cong\frac{10^{208.9876..}}{2.23606...}\\ + & \cong\frac{10^{0.9876}}{2.23606}\cdot10^{208}\cong4.3\cdot10^{208}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc4[14] +\end_layout + +\end_inset + +Find all +\begin_inset Formula $n$ +\end_inset + + for which +\begin_inset Formula $F_{n}=n$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula $F_{0}=0$ +\end_inset + +, + +\begin_inset Formula $F_{1}=1$ +\end_inset + +. + Then +\begin_inset Formula $F_{2}=1$ +\end_inset + +, + +\begin_inset Formula $F_{3}=2$ +\end_inset + +, + +\begin_inset Formula $F_{4}=3$ +\end_inset + +, + +\begin_inset Formula $F_{5}=5$ +\end_inset + +, + and from here +\begin_inset Formula $F_{n}$ +\end_inset + + grows strictly faster than +\begin_inset Formula $n$ +\end_inset + + so there are no more such numbers. + Thus only 0, + 1, + and 5 meet this condition. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc7[15] +\end_layout + +\end_inset + +If +\begin_inset Formula $n$ +\end_inset + + is not a prime number, + +\begin_inset Formula $F_{n}$ +\end_inset + + is not a prime number (with one exception). + Prove this and find the exception. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The exception is +\begin_inset Formula $F_{4}=3$ +\end_inset + +. + For the general rule, + let +\begin_inset Formula $r,s\in\mathbb{Z}$ +\end_inset + + with +\begin_inset Formula $r\geq3$ +\end_inset + + and +\begin_inset Formula $s\geq2$ +\end_inset + +, + by Eq. + (6), +\end_layout + +\begin_layout Standard +\begin_inset Formula +\begin{align*} +F_{rs} & =F_{r+r(s-1)}=F_{r(s-1)}F_{r+1}+F_{r(s-1)-1}F_{r}=F_{r}(F_{r(s-1)}+F_{r(s-1)-1})+F_{r-1}F_{r(s-1)}\\ + & =F_{r}\left(F_{r(s-1)+1}+F_{r-1}{\textstyle \frac{F_{r(s-1)}}{F_{r}}}\right), +\end{align*} + +\end_inset + +where the fraction in the last part is an integer. + If +\begin_inset Formula $r>2$ +\end_inset + +, + then +\begin_inset Formula $F_{r}>1$ +\end_inset + + and, + since +\begin_inset Formula $F_{r(s-1)+1}>1$ +\end_inset + +, + we have a decomposition of +\begin_inset Formula $F_{rs}$ +\end_inset + + as a compound number. + Every compound number other than 4 can be expressed as a product of integers +\begin_inset Formula $rs$ +\end_inset + + with +\begin_inset Formula $r\geq3$ +\end_inset + + and +\begin_inset Formula $s\geq2$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc13[M22] +\end_layout + +\end_inset + +Express the following sequences in terms of the Fibonacci numbers, + when +\begin_inset Formula $r$ +\end_inset + +, + +\begin_inset Formula $s$ +\end_inset + +, + and +\begin_inset Formula $c$ +\end_inset + + are given constants: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $a_{0}=r$ +\end_inset + +, + +\begin_inset Formula $a_{1}=s$ +\end_inset + +; + +\begin_inset Formula $a_{n+2}=a_{n+1}+a_{n}$ +\end_inset + +, + for +\begin_inset Formula $n\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $b_{0}=0$ +\end_inset + +, + +\begin_inset Formula $b_{1}=1$ +\end_inset + +; + +\begin_inset Formula $b_{n+2}=b_{n+1}+b_{n}+c$ +\end_inset + +, + for +\begin_inset Formula $n\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula +\[ +\binom{a_{n+1}}{a_{n}}=\begin{pmatrix}1 & 1\\ +1 & 0 +\end{pmatrix}\begin{pmatrix}a_{n}\\ +a_{n-1} +\end{pmatrix}=\dots=\begin{pmatrix}1 & 1\\ +1 & 0 +\end{pmatrix}^{n}\begin{pmatrix}s\\ +r +\end{pmatrix}=\begin{pmatrix}F_{n+1}s+F_{n}r\\ +F_{n}s+F_{n-1}r +\end{pmatrix}, +\] + +\end_inset + +so in general +\begin_inset Formula $a_{n}=F_{n-1}r+F_{n}s$ +\end_inset + +, + using the convention that +\begin_inset Formula $F_{-1}=1$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +We have +\begin_inset Formula +\[ +\begin{pmatrix}b_{n+1}\\ +b_{n}\\ +1 +\end{pmatrix}=\begin{pmatrix}1 & 1 & c\\ +1 & 0 & 0\\ +0 & 0 & 1 +\end{pmatrix}\begin{pmatrix}b_{n}\\ +b_{n-1}\\ +1 +\end{pmatrix}=\dots=\begin{pmatrix}1 & 1 & c\\ +1 & 0 & 0\\ +0 & 0 & 1 +\end{pmatrix}^{n}\begin{pmatrix}1\\ +0\\ +1 +\end{pmatrix}. +\] + +\end_inset + +By playing a bit with this matrix, + we come to the conclusion that +\begin_inset Formula +\[ +\begin{pmatrix}1 & 1 & c\\ +1\\ + & & 1 +\end{pmatrix}^{n}=\begin{pmatrix}F_{n+1} & F_{n} & (F_{n+2}-1)c\\ +F_{n} & F_{n-1} & (F_{n+1}-1)c\\ + & & 1 +\end{pmatrix} +\] + +\end_inset + +and therefore +\begin_inset Formula +\[ +b_{n}=F_{n}+(F_{n+1}-1)c. +\] + +\end_inset + +For +\begin_inset Formula $n=0$ +\end_inset + + and +\begin_inset Formula $n=1$ +\end_inset + +, + this is easy to check. + For +\begin_inset Formula $n\geq2$ +\end_inset + +, +\begin_inset Formula +\[ +b_{n}=b_{n-1}+b_{n-2}+c=F_{n-1}+(F_{n}-1)c+F_{n-2}+(F_{n-1}-1)c+c=F_{n}+(F_{n+1}-1)c. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc16[M20] +\end_layout + +\end_inset + +Fibonacci numbers appear implicitly in Pascal's triangle if it is viewed from the right angle. + Show that the following sum of binomial coefficients is a Fibonacci number: +\begin_inset Formula +\[ +\sum_{k=0}^{n}\binom{n-k}{k}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We prove by induction that this sum is precisely +\begin_inset Formula $F_{n+1}$ +\end_inset + +. + For +\begin_inset Formula $n=0$ +\end_inset + + and +\begin_inset Formula $n=1$ +\end_inset + +, + this is a simple check. + For +\begin_inset Formula $n>1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\sum_{k=0}^{n}\binom{n-k}{k} & =\sum_{k=0}^{n}\binom{n-k-1}{k}+\sum_{k=0}^{n}\binom{n-k-1}{k-1}\\ + & =\sum_{k=0}^{n}\binom{n-k-1}{k}+\sum_{k=-1}^{n-1}\binom{n-k-2}{k}\\ + & =\sum_{k=0}^{n-1}\binom{(n-1)-k}{k}+\sum_{k=0}^{n-2}\binom{(n-2)-k}{k}=F_{n}+F_{n-1}=F_{n+1}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc22[M20] +\end_layout + +\end_inset + +Show that +\begin_inset Formula $\sum_{k}\binom{n}{k}F_{m+k}$ +\end_inset + + is a Fibonacci number. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +We prove by induction on +\begin_inset Formula $n$ +\end_inset + + that this sum is +\begin_inset Formula $F_{m+2n}$ +\end_inset + +. + For +\begin_inset Formula $n=0$ +\end_inset + + and +\begin_inset Formula $n=1$ +\end_inset + +, + this is a simple check. + For +\begin_inset Formula $n>1$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\sum_{k}\binom{n}{k}F_{m+k} & =\sum_{k}\binom{n-1}{k}F_{m+k}+\sum_{k}\binom{n-1}{k-1}F_{m+k}\\ + & =F_{m+2(n-1)}+\sum_{k}\binom{n-1}{k}F_{m+1+k}\\ + & =F_{m+2(n-1)}+F_{m+1+2(n-1)}=F_{m+2+2(n-1)}=F_{m+2n}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc26[M20] +\end_layout + +\end_inset + +Using the previous exercise, + show that +\begin_inset Formula $F_{p}=5^{(p-1)/2}\pmod p$ +\end_inset + + if +\begin_inset Formula $p$ +\end_inset + + is an odd prime. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The previous exercise tells us that +\begin_inset Formula +\[ +2^{n}F_{n}=2\sum_{k\text{ odd}}\binom{n}{k}5^{(k-1)/2}. +\] + +\end_inset + +Now, + if +\begin_inset Formula $n=p$ +\end_inset + + is prime, + +\begin_inset Formula $\binom{p}{k}=\frac{p(p-1)\cdots(p-k+1)}{1\cdots k}$ +\end_inset + + is a multiple of +\begin_inset Formula $p$ +\end_inset + + for +\begin_inset Formula $k\in\{1,\dots,p-1\}$ +\end_inset + +, + and +\begin_inset Formula $k=0$ +\end_inset + + is not odd, + so +\begin_inset Formula +\[ +2^{p-1}F_{p}=\sum_{k\text{ odd}}\binom{p}{k}5^{(k-1)/2}\equiv\binom{p}{p}5^{(p-1)/2}=5^{(p-1)/2}\pmod p, +\] + +\end_inset + +but by Fermat's theorem, + +\begin_inset Formula $2^{p-1}\equiv1\pmod p$ +\end_inset + +, + so this simplifies to the desired result. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc29[M23] +\end_layout + +\end_inset + +( +\emph on +Fibonomial coefficients. +\emph default +) Édouard Lucas defined the quantities +\begin_inset Formula +\[ +\binom{n}{k}_{{\cal F}}=\frac{F_{n}F_{n-1}\cdots F_{n-k+1}}{F_{k}F_{k-1}\cdots F_{1}}=\prod_{j=1}^{k}\left(\frac{F_{n-k+j}}{F_{j}}\right) +\] + +\end_inset + +in a manner analogous to binomial coefficients. +\end_layout + +\begin_layout Enumerate +Make a table of +\begin_inset Formula $\binom{n}{k}_{{\cal F}}$ +\end_inset + + for +\begin_inset Formula $0\leq k\leq n\leq6$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Show that +\begin_inset Formula $\binom{n}{k}_{{\cal F}}$ +\end_inset + + is always an integer because we have +\begin_inset Formula +\[ +\binom{n}{k}_{{\cal F}}=F_{k-1}\binom{n-1}{k}_{{\cal F}}+F_{n-k+1}\binom{n-1}{k-1}_{{\cal F}}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +\align center +\begin_inset Tabular +<lyxtabular version="3" rows="8" columns="8"> +<features tabularvalignment="middle"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<column alignment="center" valignment="top"> +<row> +<cell alignment="center" valignment="top" bottomline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $n$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{0}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{1}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{2}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{3}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{4}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{5}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" bottomline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +\begin_inset Formula $\binom{n}{6}$ +\end_inset + + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" topline="true" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +0 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" topline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +2 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +3 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +2 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +2 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +4 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +3 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +6 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +3 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +5 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +5 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +15 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +15 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +5 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout + +\end_layout + +\end_inset +</cell> +</row> +<row> +<cell alignment="center" valignment="top" rightline="true" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +6 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +8 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +40 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +60 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +40 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +8 +\end_layout + +\end_inset +</cell> +<cell alignment="center" valignment="top" usebox="none"> +\begin_inset Text + +\begin_layout Plain Layout +1 +\end_layout + +\end_inset +</cell> +</row> +</lyxtabular> + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +We have +\begin_inset Formula +\begin{multline*} +F_{k-1}\binom{n-1}{k}_{{\cal F}}+F_{n-k+1}\binom{n-1}{k-1}_{{\cal F}}=\\ +=F_{k-1}\prod_{j=1}^{k}\frac{F_{n-k+j-1}}{F_{j}}+F_{n-k+1}\prod_{j=1}^{k-1}\frac{F_{n-k+j}}{F_{j}}=\\ +=\frac{1}{F_{k}}\left(\prod_{j=1}^{k-1}\frac{F_{n-k+j}}{F_{j}}\right)(F_{k-1}F_{n-k}+F_{n-k+1}F_{k}), +\end{multline*} + +\end_inset + +where the last identity is better read backwards, + and by Eq. + (6), +\begin_inset Formula +\[ +F_{n}=F_{(n-k)+k}=F_{k}F_{n-k+1}+F_{k-1}F_{n-k}, +\] + +\end_inset + +so the above simplifies precisely to +\begin_inset Formula $\binom{n}{k}_{{\cal F}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc34[M24] +\end_layout + +\end_inset + +( +\emph on +The Fibonacci number system. +\emph default +) Let the notation +\begin_inset Formula $k\gg m$ +\end_inset + + mean that +\begin_inset Formula $k\geq m+2$ +\end_inset + +. + Show that every positive integer +\begin_inset Formula $n$ +\end_inset + + has a +\emph on +unique +\emph default + representation +\begin_inset Formula $n=F_{k_{1}}+F_{k_{2}}+\dots+F_{k_{r}}$ +\end_inset + +, + where +\begin_inset Formula $k_{1}\gg k_{2}\gg\cdots\gg k_{r}\gg0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +If +\begin_inset Formula $n\leq3$ +\end_inset + +, + this is easy to check. + Otherwise, + let +\begin_inset Formula $k$ +\end_inset + + be the greatest number such that +\begin_inset Formula $n\geq F_{k}$ +\end_inset + +. + If +\begin_inset Formula $n=F_{k}$ +\end_inset + +, + we're done. + Otherwise +\begin_inset Formula $n>3$ +\end_inset + + and +\begin_inset Formula $k\geq4$ +\end_inset + +, + and +\begin_inset Formula $n-F_{k}<F_{k-1}$ +\end_inset + + (otherwise +\begin_inset Formula $F_{k+1}\leq n\#$ +\end_inset + +), + and it can be expressed this way by induction. + +\end_layout + +\begin_layout Standard +To see that this representation is unique, + let +\begin_inset Formula $n=F_{k_{1}}+\dots+F_{k_{r}}=F_{j_{1}}+\dots+F_{j_{s}}$ +\end_inset + +. + If +\begin_inset Formula $n\leq3$ +\end_inset + +, + this is easy to check. + Otherwise, + if +\begin_inset Formula $F_{k_{1}}=F_{j_{1}}$ +\end_inset + + we use induction; + otherwise assume +\begin_inset Formula $F_{k_{1}}>F_{j_{1}}\geq2$ +\end_inset + +, + and we want to prove that +\begin_inset Formula +\[ +F_{j_{2}}+\dots+F_{j_{s}}\leq F_{j_{1}-2}+\dots+F_{\lfloor j_{1}\bmod2\rfloor+2}\leq F_{j_{1}-1}\leq F_{k_{1}}-F_{j_{1}}. +\] + +\end_inset + +The first inequality comes from the highest value that +\begin_inset Formula $F_{j_{2}}+\dots+F_{j_{s}}$ +\end_inset + + could possibly have, + and the last one from the highest value that +\begin_inset Formula $F_{j_{1}}+F_{j_{1}-1}$ +\end_inset + + could. + For the middle one we use induction. + For +\begin_inset Formula $j_{1}\in\{2,3\}$ +\end_inset + +, + the left hand side is 0. + Otherwise +\begin_inset Formula +\[ +F_{j_{1}-2}+F_{j_{1}-4}+\dots+F_{\lfloor j_{1}\bmod2\rfloor+2}\leq F_{j_{1}-2}+F_{j_{1}-3}=F_{j_{1}-1}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc41[M25] +\end_layout + +\end_inset + +(Yuri Matiyasevich, + 1990.) Let +\begin_inset Formula $f(x)=\lfloor x+\phi^{-1}\rfloor$ +\end_inset + +. + Prove that if +\begin_inset Formula $n=F_{k_{1}}+\dots+F_{k_{r}}$ +\end_inset + + is the representation of +\begin_inset Formula $n$ +\end_inset + + in the Fibonacci number system of exercise 34, + then +\begin_inset Formula $F_{k_{1}+1}+\dots+F_{k_{r}+1}=f(\phi n)$ +\end_inset + +. + Find a similar formula for +\begin_inset Formula $F_{k_{1}-1}+\dots+F_{k_{r}-1}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Using that each +\begin_inset Formula $F_{k_{i}}=\frac{1}{\sqrt{5}}(\phi^{k_{i}}+\hat{\phi}^{k_{i}})$ +\end_inset + +, + let +\begin_inset Formula $m\coloneqq F_{k_{1}+1}+\dots+F_{k_{r}+1}$ +\end_inset + +, + since +\begin_inset Formula $m\in\mathbb{Z}$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +f(\phi n)-m & =\left\lfloor \frac{1}{\sqrt{5}}\left(\sum_{i}\phi^{k_{i}+1}+\sum_{i}\hat{\phi}^{k_{i}-1}\right)-\hat{\phi}\right\rfloor -\frac{1}{\sqrt{5}}\left(\sum_{i}\phi^{k_{i}+1}-\sum_{i}\hat{\phi}^{k_{i}+1}\right)\\ + & =\left\lfloor \frac{1}{\sqrt{5}}\sum_{i}(\hat{\phi}^{k_{i}-1}+\hat{\phi}^{k_{i}+1})-\hat{\phi}\right\rfloor =\left\lfloor \frac{1+\hat{\phi}^{2}}{\sqrt{5}}\sum_{i}\hat{\phi}^{k_{i}-1}-\hat{\phi}\right\rfloor . +\end{align*} + +\end_inset + +Here, + when +\begin_inset Formula $k_{i}$ +\end_inset + + is even, + +\begin_inset Formula $\hat{\phi}^{k_{i}-1}$ +\end_inset + + is negative, + and when it's odd, + +\begin_inset Formula $\hat{\phi}^{k_{i}-1}$ +\end_inset + + is positive, + so the value of this sum is strictly lower than +\begin_inset Formula $\sum_{k\geq1}\hat{\phi}^{2k}=\frac{\hat{\phi}^{2}}{1-\hat{\phi}^{2}}$ +\end_inset + +, + and strictly greater than +\begin_inset Formula $\sum_{k\geq1}\hat{\phi}^{2k-1}=\frac{\hat{\phi}}{1-\hat{\phi}^{2}}$ +\end_inset + +. + Now, + +\begin_inset Formula $\hat{\phi}^{2}=\frac{1}{4}(1-\sqrt{5})^{2}=\frac{1}{4}(6-2\sqrt{5})=\frac{1}{2}(3-\sqrt{5})$ +\end_inset + +, + so +\begin_inset Formula $1-\hat{\phi}^{2}=\frac{1}{2}(2-3+\sqrt{5})=-\frac{1}{2}(1-\sqrt{5})=-\hat{\phi}$ +\end_inset + + and therefore the lower bound of what is inside the brackets above is +\begin_inset Formula +\[ +\frac{1+\hat{\phi}^{2}}{\sqrt{5}}\frac{\hat{\phi}}{1-\hat{\phi}^{2}}-\hat{\phi}=-\frac{1+\hat{\phi}^{2}}{\sqrt{5}}-\hat{\phi}=-\frac{5-\sqrt{5}}{2\sqrt{5}}-\frac{1-\sqrt{5}}{2}=-\frac{5-\sqrt{5}+\sqrt{5}-5}{2\sqrt{5}}=0, +\] + +\end_inset + +and the upper bound is +\begin_inset Formula +\[ +-\hat{\phi}\frac{1+\hat{\phi}^{2}}{\sqrt{5}}-\hat{\phi}=-\hat{\phi}\left(\frac{5-\sqrt{5}}{2\sqrt{5}}+1\right)=-\hat{\phi}\left(\frac{5+\sqrt{5}}{2\sqrt{5}}\right)=-\hat{\phi}\phi=1, +\] + +\end_inset + +and since these bounds are never reached, + the property has been proven. + A similar argument can be made to prove that +\begin_inset Formula $F_{k_{1}-1}+\dots+F_{k_{r}-1}=f(n/\phi)$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
