diff options
Diffstat (limited to 'vol1/1.2.9.lyx')
| -rw-r--r-- | vol1/1.2.9.lyx | 846 |
1 files changed, 846 insertions, 0 deletions
diff --git a/vol1/1.2.9.lyx b/vol1/1.2.9.lyx new file mode 100644 index 0000000..6bc6c57 --- /dev/null +++ b/vol1/1.2.9.lyx @@ -0,0 +1,846 @@ +#LyX 2.4 created this file. For more info see https://www.lyx.org/ +\lyxformat 620 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children no +\language american +\language_package default +\inputencoding utf8 +\fontencoding auto +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_roman_osf false +\font_sans_osf false +\font_typewriter_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\float_placement class +\float_alignment class +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_formatted_ref 0 +\use_minted 0 +\use_lineno 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style english +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tablestyle default +\tracking_changes false +\output_changes false +\change_bars false +\postpone_fragile_content true +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\docbook_table_output 0 +\docbook_mathml_prefix 1 +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc2[M13] +\end_layout + +\end_inset + +Prove Eq. + (11). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Formula +\[ +\left(\sum_{n\geq0}\frac{a_{n}}{n!}z^{n}\right)\left(\sum_{m\geq0}\frac{b_{m}}{m!}z^{m}\right)=\sum_{n\geq0}\left(\sum_{k}\frac{a_{k}b_{n-k}}{k!(n-k)!}\right)z^{n}=\sum_{n\geq0}\frac{1}{n!}\left(\sum_{k}\binom{n}{k}a_{k}b_{n-k}\right)z^{n}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +exerc4[M01] +\end_layout + +\end_inset + +Explain why Eq. + (19) is a special case of Eq. + (21). +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Just set +\begin_inset Formula $t=0$ +\end_inset + +, + then +\begin_inset Formula $x=1+z$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc6[HM15] +\end_layout + +\end_inset + +Find the generating function for +\begin_inset Formula +\[ +\left\langle \sum_{0<k<n}\frac{1}{k(n-k)}\right\rangle ; +\] + +\end_inset + +differentiate it and express the coefficients in terms of harmonic numbers. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +The generating function is +\begin_inset Formula +\begin{align*} +G(z) & \coloneqq\sum_{n\geq0}\sum_{0<k<n}\frac{1}{k(n-k)}z^{n}=\sum_{n,m\geq1}\frac{z^{n+m}}{nm}=\left(\sum_{n\geq1}\frac{z^{n}}{n}\right)\left(\sum_{m\geq1}\frac{z^{m}}{m}\right)=\left(\sum_{n\geq1}\frac{z^{n}}{n}\right)^{2}\\ + & =\left(-\sum_{n\geq1}\frac{(-1)^{n+1}}{n}(-z)^{n}\right)^{2}=(-\ln(1+(-z)))^{2}=\ln(1-z)^{2}, +\end{align*} + +\end_inset + +by Eq. + (24). + Its derivative is +\begin_inset Formula +\[ +\dot{G}(z)=-\frac{2}{1-z}\ln(1-z)=\frac{2}{1-z}\ln\left(\frac{1}{1-z}\right), +\] + +\end_inset + +so by Eq. + (25) with +\begin_inset Formula $m=0$ +\end_inset + + the coefficients are +\begin_inset Formula $[z^{n}]\dot{G}(z)=2(H_{n}-H_{0})\binom{n}{n}=2H_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc10[M25] +\end_layout + +\end_inset + +An +\emph on +elementary symmetric function +\emph default + is defined by the formula +\begin_inset Formula +\[ +e_{m}=\sum_{1\leq j_{1}<\dots<j_{m}\leq n}x_{j_{1}}\cdots x_{j_{m}}. +\] + +\end_inset + +(This is the same as +\begin_inset Formula $h_{m}$ +\end_inset + + of Eq. + (33), + except that equal subscripts are not allowed.) Find the generating function for +\begin_inset Formula $e_{m}$ +\end_inset + +, + and express +\begin_inset Formula $e_{m}$ +\end_inset + + in terms of the +\begin_inset Formula $S_{j}$ +\end_inset + + in Eq. + (34). + Write out the formulas for +\begin_inset Formula $e_{1}$ +\end_inset + +, + +\begin_inset Formula $e_{2}$ +\end_inset + +, + +\begin_inset Formula $e_{3}$ +\end_inset + +, + and +\begin_inset Formula $e_{4}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +Here +\begin_inset Formula $m\leq n$ +\end_inset + + or otherwise we have no elements, + so +\begin_inset Formula +\begin{align*} +G(z) & \coloneqq\sum_{m\geq0}e_{m}z^{m}=\sum_{m=0}^{n}\sum_{1\leq j_{1}<\dots<j_{k}\leq n}x_{j_{1}}\cdots x_{j_{m}}z^{n}=\sum_{a_{1},\dots,a_{n}\in\{0,1\}}\prod_{i=1}^{n}(x_{i}z)^{a_{i}}\\ + & =\prod_{i=1}^{n}\sum_{a\in\{0,1\}}(x_{i}z)^{a}=\prod_{i=1}^{n}(x_{i}z+1), +\end{align*} + +\end_inset + +as we can regard the sum as taking the product of each subset of +\begin_inset Formula $\{x_{i}z\}_{i}$ +\end_inset + +. + From here, +\begin_inset Formula +\[ +\ln G(z)=\sum_{i=1}^{n}\ln(1+x_{i}z)=\sum_{i=1}^{n}\sum_{k\geq1}\frac{(-1)^{k+1}}{k}x_{i}^{k}z^{k}=\sum_{k\geq1}\frac{(-1)^{k+1}}{k}S_{k}z^{k}, +\] + +\end_inset + +so +\begin_inset Formula +\begin{align*} +G(z) & =\text{e}^{\ln G(z)}=\exp\left(\sum_{k\geq1}\frac{(-1)^{k+1}}{k}S_{k}z^{k}\right)=\prod_{k\geq1}\text{e}^{(-1)^{k+1}S_{k}z^{k}/k}\\ + & =\prod_{k\geq1}\sum_{j\geq0}\frac{1}{j!}\left(\frac{(-1)^{k+1}S_{k}}{k}\right)^{j}z^{jk}=\sum_{m\geq0}\left(\sum_{\begin{subarray}{c} +j_{1},\dots,j_{m}\geq0\\ +j_{1}+2j_{2}+\dots+mj_{m}=m +\end{subarray}}\prod_{k=1}^{m}\frac{1}{j_{k}!}\left(\frac{(-1)^{k+1}S_{k}}{k}\right)^{j_{k}}\right)z^{m}. +\end{align*} + +\end_inset + +This gives us an explicit formulation for +\begin_inset Formula $e_{m}$ +\end_inset + +. + Note that +\begin_inset Formula +\[ +\prod_{k=1}^{m}(-1)^{(k+1)j_{k}}=(-1)^{\sum_{k=1}^{m}kj_{k}+\sum_{k=1}^{m}j_{k}}=(-1)^{m+\sum_{k}j_{k}}, +\] + +\end_inset + +so +\begin_inset Formula +\[ +e_{m}=\sum_{\begin{subarray}{c} +j_{1},\dots,j_{m}\geq0\\ +j_{1}+2j_{2}+\dots+mj_{m}=m +\end{subarray}}(-1)^{m+j_{1}+\dots+j_{m}}\prod_{k=1}^{m}\frac{S_{k}^{j_{k}}}{k^{j_{k}}j_{k}!}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +For example, + if we call +\begin_inset Formula $p_{kj_{k}}$ +\end_inset + + to each of the factors of the product in this latest formula, + using that each +\begin_inset Formula $p_{k0}=1$ +\end_inset + + and can therefore be ignored, +\begin_inset Formula +\begin{align*} +e_{1} & =p_{11}=S_{1},\\ +e_{2} & =p_{12}+p_{21}=\frac{S_{1}^{2}}{2}-\frac{S_{2}}{2}=\frac{1}{2}(S_{1}^{2}-S_{2}),\\ +e_{3} & =p_{13}-p_{11}p_{21}+p_{31}=\frac{S_{1}^{3}}{6}-S_{1}\frac{S_{2}}{2}+\frac{S_{3}}{3}=\frac{1}{6}(S_{1}^{3}+2S_{3}-3S_{1}S_{2}),\\ +e_{4} & =p_{14}-p_{12}p_{21}+p_{11}p_{31}+p_{22}-p_{41}=\frac{S_{1}^{4}}{24}-\frac{S_{1}^{2}}{2}\frac{S_{2}}{2}+S_{1}\frac{S_{3}}{3}+\frac{S_{2}^{2}}{8}-\frac{S_{4}}{4}\\ + & =\frac{1}{24}(S_{1}^{4}-6S_{1}^{2}S_{2}+8S_{1}S_{3}+3S_{2}^{2}-6S_{4}). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc11[M25] +\end_layout + +\end_inset + +Equation (39) can also be used to express the +\begin_inset Formula $S$ +\end_inset + +'s in terms of the +\begin_inset Formula $h$ +\end_inset + +'s: + We find +\begin_inset Formula $S_{1}=h_{1}$ +\end_inset + +, + +\begin_inset Formula $S_{2}=2h_{2}-h_{1}^{2}$ +\end_inset + +, + +\begin_inset Formula $S_{3}=3h_{3}-3h_{1}h_{2}+h_{1}^{3}$ +\end_inset + +, + etc. + What is the coefficient of +\begin_inset Formula $h_{1}^{k_{1}}h_{2}^{k_{2}}\cdots h_{m}^{k_{m}}$ +\end_inset + + in this representation of +\begin_inset Formula $S_{m}$ +\end_inset + +, + when +\begin_inset Formula $k_{1}+2k_{2}+\dots+mk_{m}=m$ +\end_inset + +? +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\begin_inset Note Greyedout +status open + +\begin_layout Plain Layout +(I had to look up the solution.) +\end_layout + +\end_inset + + We ignore Eq. + (39) and focus on Eqs. + (37) and (24). + There, +\begin_inset Formula +\begin{align*} +\sum_{k\geq1}\frac{S_{k}z^{k}}{k!} & =\ln G(z)=\ln\left(1+\sum_{j\geq1}h_{j}z^{j}\right)=\sum_{k\geq1}\frac{(-1)^{k+1}}{k}\left(\sum_{j\geq1}h_{j}z^{j}\right)^{k}\\ + & =\sum_{k\geq1}\frac{(-1)^{k+1}}{k}\sum_{j_{1},\dots,j_{k}\geq1}h_{j_{1}}\cdots h_{j_{k}}z^{j_{1}+\dots+j_{k}}\\ + & =\sum_{m\geq1}\sum_{\begin{subarray}{c} +i_{1},\dots,i_{m}\geq0\\ +i_{1}+2i_{2}+\dots+mi_{m}=m +\end{subarray}}\frac{(-1)^{i_{1}+\dots+i_{m}+1}}{i_{1}+\dots+i_{m}}\binom{i_{1}+\dots+i_{m}}{i_{1},\dots,i_{m}}h_{1}^{i_{1}}\cdots h_{m}^{i_{m}}z^{m}, +\end{align*} + +\end_inset + +so the coefficient is +\begin_inset Formula +\[ +\frac{(-1)^{k_{1}+\dots+k_{m}+1}(k_{1}+\dots+k_{m})!}{k_{1}!\cdots k_{m}!}. +\] + +\end_inset + +For the last identity, + we have regrouped all the terms by the value of +\begin_inset Formula $m\coloneqq j_{1}+\dots+j_{k}$ +\end_inset + + and then by +\begin_inset Formula $\{i_{j}\coloneqq|\{t\mid j_{t}=j\}|\}_{j=1}^{m}$ +\end_inset + +, + that is, + the number of times that each +\begin_inset Formula $h_{j}$ +\end_inset + + appears rather than the indexes of those that do. + When doing this, + we note that +\begin_inset Formula $k=i_{1}+\dots+i_{m}$ +\end_inset + + and that +\begin_inset Formula $h_{j_{1}}\cdots h_{j_{k}}=h_{1}^{i_{1}}\cdots h_{m}^{i_{m}}$ +\end_inset + +, + so all the addends in a given group are the same, + and the number of addends is the number of orderings of the +\begin_inset Formula $k$ +\end_inset + + indexes without considering the order of indexes that are equal, + of which there are +\begin_inset Formula $i_{1}$ +\end_inset + + indexes equal to 1, + +\begin_inset Formula $i_{2}$ +\end_inset + + equal to 2, + etc., + and this is a multinomial coefficient. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc12[M20] +\end_layout + +\end_inset + +Suppose we have a doubly subscripted sequence +\begin_inset Formula $\langle a_{mn}\rangle$ +\end_inset + + for +\begin_inset Formula $m,n=0,1,\dots$ +\end_inset + +; + show how this double sequence can be represented by a +\emph on +single +\emph default + generating function of two variables, + and determine the generating function for +\begin_inset Formula $\langle\binom{n}{m}\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +A generating function in this case could be something like +\begin_inset Formula +\[ +G(y,z)\coloneqq\sum_{m,n\geq0}a_{mn}y^{m}z^{n}=\sum_{n\geq0}\left(\sum_{m\geq0}a_{mn}y^{m}\right)z^{n}=\sum_{m\geq0}\left(\sum_{n\geq0}a_{mn}z^{n}\right)y^{m}. +\] + +\end_inset + +In our case, + by the binomial theorem, +\begin_inset Formula +\[ +(1+y)^{n}=\sum_{m\geq0}\binom{n}{m}y^{m}, +\] + +\end_inset + +so +\begin_inset Formula +\[ +G(y,z)=\sum_{n\geq0}(1+y)^{n}z^{n}=\frac{1}{1-(1+y)z}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc18[M25] +\end_layout + +\end_inset + +Given positive integers +\begin_inset Formula $n$ +\end_inset + + and +\begin_inset Formula $r$ +\end_inset + +, + find a simple formula for the value of the following sums: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sum_{1\leq k_{1}<k_{2}<\dots<k_{r}\leq n}k_{1}k_{2}\cdots k_{r}$ +\end_inset + +; +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sum_{1\leq k_{1}\leq k_{2}\leq\dots\leq k_{r}\leq n}k_{1}k_{2}\cdots k_{r}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +(For example, + when +\begin_inset Formula $n=3$ +\end_inset + + and +\begin_inset Formula $r=2$ +\end_inset + + the sums are, + respectively, + +\begin_inset Formula $1\cdot2+1\cdot3+2\cdot3$ +\end_inset + + and +\begin_inset Formula $1\cdot1+1\cdot2+1\cdot3+2\cdot2+2\cdot3+3\cdot3$ +\end_inset + +.) +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Following Exercise 10 and then applying Equation (27), +\begin_inset Formula +\begin{align*} +G(z) & \coloneqq\sum_{r\geq0}\sum_{1\leq k_{1}<\dots<k_{r}\leq n}k_{1}\cdots k_{r}=\prod_{k=1}^{n}(1+kz)=z^{n}\prod_{k=1}^{n}\left(\frac{1}{z}+k\right)\\ + & =z^{n+1}\prod_{k=0}^{n}\left(\frac{1}{z}+k\right)=z^{n+1}\sum_{k\geq0}\stirla{n+1}{k}z^{-k}\\ + & =\sum_{k=0}^{n+1}\stirla{n+1}{k}z^{n+1-k}=\sum_{k=0}^{n+1}\stirla{n+1}{n+1-k}z^{k}, +\end{align*} + +\end_inset + +so the sum is +\begin_inset Formula $\stirla{n+1}{n+1-r}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Doing something similar with Equations (36) and (28), +\begin_inset Formula +\begin{align*} +G(z) & \coloneqq\sum_{r\geq0}\sum_{1\leq k_{1}\leq\dots\leq k_{r}\leq n}k_{1}\cdots k_{r}=\prod_{k=1}^{n}\frac{1}{1-kz}=\frac{1}{z^{n}}\sum_{k\geq n}\stirlb{k}{n}z^{k}\\ + & =\sum_{k}\stirlb{k+n}{n}z^{k}, +\end{align*} + +\end_inset + +so the sum is +\begin_inset Formula $\stirlb{n+r}{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +rexerc25[M23] +\end_layout + +\end_inset + +Evaluate the sum +\begin_inset Formula $\sum_{k}\binom{n}{k}\binom{2n-2k}{n-k}(-2)^{k}$ +\end_inset + + by simplifying the equivalent formula +\begin_inset Formula $\sum_{k}[w^{k}](1-2w)^{n}[z^{n-k}](1+z)^{2n-2k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +answer +\end_layout + +\end_inset + +By the binomial theorem, +\begin_inset Formula +\begin{align*} +(1-2w)^{n} & =\sum_{k\geq0}\binom{n}{k}(-2)^{k}w^{k}, & (1+z)^{2n-2k} & =\sum_{j\geq0}\binom{2n-2k}{j}z^{j}, +\end{align*} + +\end_inset + +so the second formula is indeed equivalent to the first, + assuming of course that +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + + and therefore terms with negative +\begin_inset Formula $k$ +\end_inset + + or +\begin_inset Formula $k>n$ +\end_inset + + are null. + Now, + +\begin_inset Formula $[z^{n-k}](1+z)^{2n-2k}=[z^{n}](z^{k}(1+z)^{2n-2k})$ +\end_inset + +, + so this is +\begin_inset Formula +\[ +S\coloneqq[z^{n}](1+z)^{2n}\sum_{k}[w^{k}](1-2w)^{n}\left(\frac{z}{(1+z)^{2}}\right)^{k}=[z^{n}](1+z)^{2n}\left(1-\frac{2z}{(1+z)^{2}}\right)^{n}, +\] + +\end_inset + +where we evaluating the sum by taking +\begin_inset Formula $\frac{z}{(1+z)^{2}}$ +\end_inset + + as the argument of the generating function in +\begin_inset Formula $w$ +\end_inset + +. + Then, + we simplify to get +\begin_inset Formula +\[ +S=[z^{n}]\left(\left((1+z)^{2}(1-\nicefrac{2z}{(1+z)^{2}})\right)^{n}\right)=[z^{n}]\left((1+z^{2})^{n}\right)=\binom{n}{\nicefrac{n}{2}}[n\text{ even}]. +\] + +\end_inset + + +\end_layout + +\end_body +\end_document |
