1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\use_default_options true
\maintain_unincluded_children no
\language american
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content true
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc1[10]
\end_layout
\end_inset
Determine the value of
\begin_inset Formula $p_{n0}$
\end_inset
from Eqs.
(4) and (5) and interpret this result from the standpoint of Algorithm M.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
For
\begin_inset Formula $n=1$
\end_inset
,
\begin_inset Formula $p_{10}=1$
\end_inset
,
and for
\begin_inset Formula $n>1$
\end_inset
,
\begin_inset Formula
\[
p_{n0}=\frac{1}{n}p_{(n-1)(-1)}+\frac{n-1}{n}p_{(n-1)0}=\frac{n-1}{n}p_{(n-1)0}=\dots=\frac{n-1}{n}\frac{n-2}{n-1}\cdots\frac{1}{2}p_{10}=\frac{1}{n},
\]
\end_inset
so in general the probability that step M4 is never run (which happens when
\begin_inset Formula $a_{n}$
\end_inset
is already the maximum value) is
\begin_inset Formula $p_{n0}=\frac{1}{n}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc4[M10]
\end_layout
\end_inset
Give an explicit,
closed formula for the values of
\begin_inset Formula $p_{nk}$
\end_inset
in the coin-tossing experiment,
Eq.
(17).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\begin_inset Formula $p_{nk}=\binom{n}{k}p^{k}q^{n-k}$
\end_inset
.
To show that this derives from Eq.
(17),
we see that,
when
\begin_inset Formula $n=0$
\end_inset
,
\begin_inset Formula $p_{0k}=\delta_{k0}$
\end_inset
,
matching the formula,
and then,
by induction,
\begin_inset Formula
\[
p_{nk}=pp_{n-1,k-1}+qp_{n-1,k}=\binom{n-1}{k-1}p^{k}q^{n-k}+\binom{n-1}{k}p^{k}q^{n-k}=\binom{n}{k}p^{k}q^{n-k}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc8[M20]
\end_layout
\end_inset
Suppose that each
\begin_inset Formula $X[k]$
\end_inset
is taken at random from a set of
\begin_inset Formula $M$
\end_inset
distinct elements,
so that each of the
\begin_inset Formula $M^{n}$
\end_inset
possible choices for
\begin_inset Formula $X[1],X[2],\dots,X[n]$
\end_inset
is considered equally likely.
What is the probability that all the
\begin_inset Formula $X[k]$
\end_inset
will be distinct?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
We need calculate the number of choices out of those
\begin_inset Formula $M^{n}$
\end_inset
that do not repeat numbers.
These choices can be considered as taking a subset of
\begin_inset Formula $n$
\end_inset
elements from those
\begin_inset Formula $M$
\end_inset
(if
\begin_inset Formula $n>M$
\end_inset
then we must necessarily repeat) and then ordering them somehow,
so the total number of choices is
\begin_inset Formula $\binom{M}{n}n!$
\end_inset
,
and the probability is
\begin_inset Formula
\[
\frac{\binom{M}{n}n!}{M^{n}}=\frac{M(M-1)\cdots(M-n+1)}{M^{n}}=\frac{M^{\underline{n}}}{M^{n}}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc11[M15]
\end_layout
\end_inset
What happens to the semi-invariants of a distribution if we change
\begin_inset Formula $G(z)$
\end_inset
to
\begin_inset Formula $F(z)=z^{n}G(z)$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Let
\begin_inset Formula $H(z)\coloneqq z^{n}$
\end_inset
,
then
\begin_inset Formula $h(t)\coloneqq\ln H(\text{e}^{t})=\ln\text{e}^{nt}=nt$
\end_inset
,
so
\begin_inset Formula $\dot{h}(t)=n$
\end_inset
and
\begin_inset Formula $\ddot{h}(t)=\dddot{h}(t)=\dots=0$
\end_inset
.
Therefore
\begin_inset Formula
\begin{align*}
\kappa_{1} & =\dot{h}(0)=n; & \kappa_{n} & =h^{(n)}(0)=0, & n & >1.
\end{align*}
\end_inset
Thus,
by Theorem A,
the mean increases by
\begin_inset Formula $n$
\end_inset
and all the other semi-invariants stay the same.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc20[M22]
\end_layout
\end_inset
Suppose we want to calculate
\begin_inset Formula $\max\{|a_{1}-b_{1}|,|a_{2}-b_{2}|,\dots,|a_{n}-b_{n}|\}$
\end_inset
when
\begin_inset Formula $b_{1}\leq b_{2}\leq\dots\leq b_{n}$
\end_inset
.
Show that it is sufficient to calculate
\begin_inset Formula $\max\{m_{\text{L}},m_{\text{R}}\}$
\end_inset
,
where
\begin_inset Formula
\begin{align*}
m_{\text{L}} & =\max\{a_{k}-b_{k}\mid a_{k}\text{ is a left-to-right maximum of }a_{1}a_{2}\cdots a_{n}\},\\
m_{\text{R}} & =\max\{b_{k}-a_{k}\mid a_{k}\text{ is a right-to-left minimum of }a_{1}a_{2}\cdots a_{n}\}.
\end{align*}
\end_inset
(Thus,
if the
\begin_inset Formula $a$
\end_inset
's are in random order,
the number of
\begin_inset Formula $k$
\end_inset
's for which a subtraction must be performed is only about
\begin_inset Formula $2\ln n$
\end_inset
.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
We interpret the concepts of
\begin_inset Quotes eld
\end_inset
directional
\begin_inset Quotes erd
\end_inset
maximum and minimum as meaning that
\begin_inset Formula $a_{k}\geq a_{k-1},\dots,a_{1}$
\end_inset
or that
\begin_inset Formula $a_{k}\leq a_{k+1},\dots,a_{n}$
\end_inset
,
respectively.
Then,
if
\begin_inset Formula $a_{j}$
\end_inset
is not a left-to-right maximum,
there is a
\begin_inset Formula $k<j$
\end_inset
with
\begin_inset Formula $a_{k}>a_{j}$
\end_inset
and therefore
\begin_inset Formula $a_{k}-b_{k}>a_{j}-b_{j}$
\end_inset
(as
\begin_inset Formula $b_{k}\leq b_{j}$
\end_inset
),
so
\begin_inset Formula $a_{j}-b_{j}$
\end_inset
is not a maximum of
\begin_inset Formula $\{a_{k}-b_{k}\}$
\end_inset
.
Similarly,
if
\begin_inset Formula $a_{j}$
\end_inset
is not a right-to-left minimum,
there is a
\begin_inset Formula $k>j$
\end_inset
with
\begin_inset Formula $a_{k}<a_{j}$
\end_inset
and
\begin_inset Formula $b_{k}-a_{k}>b_{j}-a_{j}$
\end_inset
.
\end_layout
\begin_layout Standard
Thus
\begin_inset Formula $m_{\text{L}}=\max\{a_{k}-b_{k}\}$
\end_inset
and
\begin_inset Formula $m_{\text{R}}=\max\{b_{k}-a_{k}\}$
\end_inset
.
Since at least one of them is non-negative,
\begin_inset Formula $\max\{m_{\text{L}},m_{\text{R}}\}$
\end_inset
is also non-negative and it is therefore
\begin_inset Formula $|a_{k}-b_{k}|$
\end_inset
for some
\begin_inset Formula $k$
\end_inset
,
and it is no lower than any
\begin_inset Formula $|a_{j}-b_{j}|$
\end_inset
as those are either
\begin_inset Formula $a_{j}-b_{j}$
\end_inset
or
\begin_inset Formula $b_{j}-a_{j}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc21[HM21]
\end_layout
\end_inset
Let
\begin_inset Formula $X$
\end_inset
be the number of heads that occur when a random coin is flipped
\begin_inset Formula $n$
\end_inset
times,
with generating function (18).
Use (25) to prove that
\begin_inset Formula
\[
\text{Pr}(X\geq n(p+\epsilon))\leq\text{e}^{-\epsilon^{2}n/(2q)}
\]
\end_inset
when
\begin_inset Formula $\epsilon\geq0$
\end_inset
,
and obtain a similar estimate for
\begin_inset Formula $\text{Pr}(X\leq n(p-\epsilon))$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
First,
we tackle the edge cases.
If
\begin_inset Formula $n=0$
\end_inset
,
then
\begin_inset Formula $X=0$
\end_inset
and
\begin_inset Formula $\text{Pr}(X\geq0)\leq1$
\end_inset
trivially,
so we may consider
\begin_inset Formula $n>0$
\end_inset
.
If
\begin_inset Formula $p=0$
\end_inset
,
then
\begin_inset Formula $\text{Pr}(X=0)=1$
\end_inset
and
\begin_inset Formula $\text{Pr}(X\geq n\epsilon)\leq\text{e}^{-\epsilon^{2}n/2}$
\end_inset
trivially,
so we may consider
\begin_inset Formula $p>0$
\end_inset
.
Finally,
if
\begin_inset Formula $\epsilon>q$
\end_inset
then
\begin_inset Formula $\text{Pr}(X\geq n(p+\epsilon))=0\leq\text{e}^{-\epsilon^{2}n/(2q)}$
\end_inset
and if
\begin_inset Formula $\epsilon=q$
\end_inset
then
\begin_inset Formula $\text{Pr}(X\geq n)=p^{n}\leq(\text{e}^{-q})^{n}\leq\text{e}^{-qn/2}$
\end_inset
,
using the fact that
\begin_inset Formula $t\leq\text{e}^{t-1}$
\end_inset
for every
\begin_inset Formula $t\in\mathbb{R}$
\end_inset
,
so we may consider
\begin_inset Formula $\epsilon<q$
\end_inset
and in particular
\begin_inset Formula $q>0$
\end_inset
.
\end_layout
\begin_layout Standard
Now let
\begin_inset Formula $r=n(p+\epsilon)$
\end_inset
.
Then
\begin_inset Formula $\text{Pr}(X\geq n(p+\epsilon))\leq x^{-n(p+\epsilon)}(q+px)^{n}$
\end_inset
,
and we just need to find
\begin_inset Formula $x\geq1$
\end_inset
such that
\begin_inset Formula
\[
\ln(q+px)-(p+\epsilon)\ln x\leq-\frac{\epsilon^{2}}{2q}.
\]
\end_inset
\begin_inset Note Greyedout
status open
\begin_layout Plain Layout
(I had to look at the solution,
esp.
for the right value of
\begin_inset Formula $x$
\end_inset
.)
\end_layout
\end_inset
If
\begin_inset Formula $x\coloneqq\frac{p+\epsilon}{p}\frac{q}{q-\epsilon}$
\end_inset
,
we have
\begin_inset Formula
\begin{multline*}
\ln(q+px)-(p+\epsilon)\ln x=\ln\left(q+(p+\epsilon)\frac{q}{q-\epsilon}\right)-(p+\epsilon)\ln\left(\frac{p+\epsilon}{p}\frac{q}{q-\epsilon}\right)=\\
=\ln q-\ln(q-\epsilon)-(p+\epsilon)(\ln q-\ln(q-\epsilon)+\ln(p+\epsilon)-\ln p)=\\
=(q-\epsilon)\ln\frac{q}{q-\epsilon}-(p+\epsilon)\ln\frac{p+\epsilon}{p},
\end{multline*}
\end_inset
where we are assuming that
\begin_inset Formula $\epsilon<q$
\end_inset
.
Now,
by Eq.
1.2.9(24),
let
\begin_inset Formula $v\coloneqq\frac{\epsilon}{q}$
\end_inset
,
\begin_inset Formula
\begin{multline*}
(q-\epsilon)\ln\frac{q}{q-\epsilon}=q(1-v)\ln\frac{1}{1-v}=q(v-1)\ln(1-v)=\\
=q(v-1)\sum_{k\geq1}\frac{(-1)^{k+1}}{k}(-v)^{k}=q(1-v)\sum_{k\geq1}\frac{v^{k}}{k}=q\left(\sum_{k\geq1}\frac{v^{k}}{k}-\sum_{k\geq2}\frac{v^{k}}{k-1}\right)=\\
=q\left(v-\sum_{k\geq2}\frac{v^{k}}{k(k-1)}\right)=\epsilon-\frac{\epsilon^{2}}{2q}-\frac{\epsilon^{3}}{6q^{2}}-\frac{\epsilon^{4}}{12q^{3}}-\dots\leq\epsilon-\frac{\epsilon^{2}}{2q}.
\end{multline*}
\end_inset
In addition,
\begin_inset Formula
\[
-(p+\epsilon)\ln\frac{p+\epsilon}{p}=(p+\epsilon)\ln\frac{p}{p+\epsilon}=(p+\epsilon)\ln\left(1-\frac{\epsilon}{p+\epsilon}\right)\leq-\epsilon,
\]
\end_inset
so
\begin_inset Formula $-(p+\epsilon)\ln\frac{p+\epsilon}{p}\leq\epsilon$
\end_inset
and,
putting it all together,
\begin_inset Formula
\[
\ln(q+px)-(p+\epsilon)\ln x\leq\cancel{\epsilon}-\frac{\epsilon^{2}}{2q}\cancel{-\epsilon}.
\]
\end_inset
For the second part,
switching the roles of heads and tails,
let
\begin_inset Formula $Y\coloneqq n-X$
\end_inset
,
\begin_inset Formula
\[
\text{Pr}(X\leq n(p-\epsilon))=\text{Pr}(Y\geq n(q+\epsilon))\leq\text{e}^{-\epsilon^{2}n/(2p)}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc22[HM22]
\end_layout
\end_inset
Suppose
\begin_inset Formula $X$
\end_inset
has the generating function
\begin_inset Formula $(q_{1}+p_{1}z)(q_{2}+p_{2}z)\cdots(q_{n}+p_{n}z)$
\end_inset
,
where
\begin_inset Formula $p_{k}+q_{k}=1$
\end_inset
for
\begin_inset Formula $1\leq k\leq n$
\end_inset
.
Let
\begin_inset Formula $\mu=EX=p_{1}+p_{2}+\dots+p_{n}$
\end_inset
.
\end_layout
\begin_layout Enumerate
Prove that
\begin_inset Formula
\begin{align*}
\text{Pr}(X\leq\mu r) & \leq(r^{-r}\text{e}^{r-1})^{\mu}, & \text{when }0 & <r\leq1;\\
\text{Pr}(X\geq\mu r) & \leq(r^{-r}\text{e}^{r-1})^{\mu}, & \text{when }r & \geq1.
\end{align*}
\end_inset
\end_layout
\begin_layout Enumerate
Express the right-hand sides of these estimates in convenient form when
\begin_inset Formula $r\approx1$
\end_inset
.
\end_layout
\begin_layout Enumerate
Show that if
\begin_inset Formula $r$
\end_inset
is sufficiently large we have
\begin_inset Formula $\text{Pr}(X\geq\mu r)\leq2^{-\mu r}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
For the first equation,
using Eq.
(24) with
\begin_inset Formula $x=r$
\end_inset
,
\begin_inset Formula
\begin{multline*}
\text{Pr}(X\leq\mu r)\leq r^{-\mu r}(q_{1}+p_{1}r)\cdots(q_{n}+p_{n}r)=r^{-\mu r}\prod_{k}(q_{k}+p_{k}r)=\\
=r^{-\mu r}\prod_{k}(1+p_{k}(r-1))\leq r^{-\mu r}\prod_{k}\text{e}^{p_{k}(r-1)}=r^{-\mu r}\text{e}^{\mu(r-1)}=(r^{-r}\text{e}^{r-1})^{\mu}.
\end{multline*}
\end_inset
For the second equation,
repeat the same steps but using Eq.
(25).
\end_layout
\begin_layout Enumerate
When
\begin_inset Formula $r\approx1$
\end_inset
,
\begin_inset Formula $r\approx\text{e}^{r-1}$
\end_inset
,
so
\begin_inset Formula $(r^{-r}\text{e}^{r-1})^{\mu}\approx r^{\mu(1-r)}$
\end_inset
.
The inequality still holds for
\begin_inset Formula $r<2$
\end_inset
since,
in the previous proof,
we can see that
\begin_inset Formula $1+p_{k}(r-1)\leq r^{p_{k}}$
\end_inset
by taking the Taylor series of the logarithms:
\begin_inset Formula
\begin{multline*}
\ln(1+p_{k}(r-1))=p_{k}(r-1)-\frac{p_{k}^{2}(r-1)^{2}}{2}+\frac{p_{k}^{3}(r-1)^{3}}{3}-\frac{p_{k}^{4}(r-1)^{4}}{4}+\dots\leq\\
\leq p_{k}(r-1)-\frac{p_{k}(r-1)^{2}}{2}+\frac{p_{k}(r-1)^{3}}{3}-\frac{p_{k}(r-1)^{4}}{4}+\dots=p_{k}\ln r.
\end{multline*}
\end_inset
Using this inequality instead of the one we used gives the proper result.
\end_layout
\begin_layout Enumerate
Clearly
\begin_inset Formula $1+p_{k}(r-1)\leq r$
\end_inset
,
so
\begin_inset Formula $r^{-\mu r}\prod_{k}(1+p_{k}(r-1))\leq r^{-\mu r}r^{n}$
\end_inset
,
and we want to see that this in turn is less than
\begin_inset Formula $2^{-\mu r}$
\end_inset
for large enough
\begin_inset Formula $r$
\end_inset
.
Now,
\begin_inset Formula
\[
\frac{r^{n}r^{-\mu r}}{2^{-\mu r}}=r^{n}\left(\frac{2}{r}\right)^{\mu r},
\]
\end_inset
and since
\begin_inset Formula $\left(\frac{2}{r}\right)^{\mu r}$
\end_inset
decreases faster than
\begin_inset Formula $r^{n}$
\end_inset
increases,
there exist
\begin_inset Formula $r_{0}$
\end_inset
such that,
for
\begin_inset Formula $r>r_{0}$
\end_inset
,
this fraction is less than 1.
\end_layout
\end_body
\end_document
|