aboutsummaryrefslogtreecommitdiff
path: root/2.3.4.5.lyx
blob: 8bd484a92c884c9c13e9d6c443f883cff1095d09 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset Note Note
status open

\begin_layout Plain Layout
TODO 3,
 4,
 12 (2pp.,
 1:14)
\end_layout

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc3[M24]
\end_layout

\end_inset

An extended binary tree with 
\begin_inset Formula $m$
\end_inset

 external nodes determines a set of path lengths 
\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$
\end_inset

 that describe the lengths of paths from the root to the respective external nodes.
 Conversely,
 if we are given a set of numbers 
\begin_inset Formula $l_{1},l_{2},\dots,l_{m}$
\end_inset

,
 is it always possible to construct an extended binary tree in which these numbers are the path lengths in some order?
 Show that this is possible if and only if 
\begin_inset Formula $\sum_{j=1}^{m}2^{-l_{j}}=1$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

We assign each external node an interval of real numbers as follows:
 start with 
\begin_inset Formula $[l,u)=[0,1)$
\end_inset

;
 then,
 for each edge in the path from the root to the node,
 if it's a left edge,
 set 
\begin_inset Formula $[l,u)\gets[l,\frac{l+u}{2})$
\end_inset

,
 and if it's a right edge,
 set 
\begin_inset Formula $[l,u)\gets[\frac{l+u}{2},u)$
\end_inset

,
 so the interval's length is 
\begin_inset Formula $2^{-l}$
\end_inset

,
 
\begin_inset Formula $l$
\end_inset

 being the path length.
 It's easy to see that these intervals are disjoint and that,
 for each 
\begin_inset Formula $x\in[0,1)$
\end_inset

,
 there is a special node whose interval contains 
\begin_inset Formula $x$
\end_inset

.
 With this in mind:
\end_layout

\begin_layout Itemize
\begin_inset Argument item:1
status open

\begin_layout Plain Layout
\begin_inset Formula $\implies]$
\end_inset


\end_layout

\end_inset

This is precisely the sum of the lengths of the intervals,
 which is 1 because 
\begin_inset Formula $[0,1)$
\end_inset

 is the disjoint union of these intervals.
\end_layout

\begin_layout Itemize
\begin_inset Argument item:1
status open

\begin_layout Plain Layout
\begin_inset Formula $\impliedby]$
\end_inset


\end_layout

\end_inset

We just have to sort the path lengths in increasing order,
 assign consecutive intervals of length 
\begin_inset Formula $2^{-l_{k}}$
\end_inset

 starting from 0 and converting the intervals to paths (more precisely,
 to sequences of left/right turns),
 which we can do since the increasing order ensures that the starting point 
\begin_inset Formula $l_{k}$
\end_inset

 of an interval 
\begin_inset Formula $[l_{k},u_{k})$
\end_inset

 is a multiple of the length 
\begin_inset Formula $u_{k}-l_{k}$
\end_inset

.
 These paths are all different and none is a prefix of another one,
 so they define the leaves of a binary tree.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc4[M25]
\end_layout

\end_inset

(E.
 S.
 Schwartz and B.
 Kallick.) Assume that 
\begin_inset Formula $w_{1}\leq w_{2}\leq\dots\leq w_{m}$
\end_inset

.
 Show that there is an extended binary tree that minimizes 
\begin_inset Formula $\sum w_{j}l_{j}$
\end_inset

 and for which the terminal nodes in left to right order contain the respective values 
\begin_inset Formula $w_{1},w_{2},\dots,w_{m}$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Let 
\begin_inset Formula $T$
\end_inset

 be an extended binary tree that minimizes 
\begin_inset Formula $\sum w_{j}l_{j}$
\end_inset

.
 For 
\begin_inset Formula $i<j$
\end_inset

,
 if 
\begin_inset Formula $w_{i}<w_{j}$
\end_inset

,
 then 
\begin_inset Formula $l_{i}\geq l_{j}$
\end_inset

 in that tree,
 as otherwise we could reduce the weight path length by swapping their positions as
\begin_inset Formula 
\[
(w_{i}l_{j}+w_{j}l_{i})-(w_{i}l_{i}+w_{j}l_{j})=(w_{i}-w_{j})(l_{j}-l_{i})<0\#.
\]

\end_inset

Thus we might assume 
\begin_inset Formula $l_{i}\geq l_{j}$
\end_inset

 for all 
\begin_inset Formula $i<j$
\end_inset

.
 This means lengths 
\begin_inset Formula $l_{1},\dots,l_{m}$
\end_inset

 are in decreasing order,
 so the proof in the previous exercise gives us a tree whose nodes,
 in the order of the tree,
 are 
\begin_inset Formula $w_{m},\dots,w_{1}$
\end_inset

 with lengths 
\begin_inset Formula $l_{m},\dots,l_{1}$
\end_inset

,
 and we just have to swap left and right edges in that tree.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc12[M20]
\end_layout

\end_inset

Suppose that a node has been chosen at random in a binary tree,
 with each node equally likely.
 Show that the average size of the subtree rooted at that node is related to the path length of the tree.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Let 
\begin_inset Formula $V_{1},\dots,V_{m}$
\end_inset

 be the internal nodes,
 with path lengths 
\begin_inset Formula $l_{1},\dots,l_{m}$
\end_inset

.
 The average size of the subtrees is the sum of the number of nodes in each subtree divided by 
\begin_inset Formula $m$
\end_inset

,
 but in this sum,
 each node 
\begin_inset Formula $V_{k}$
\end_inset

 is counted 
\begin_inset Formula $l_{k}+1$
\end_inset

 times,
 one for the subtree generated by each node in the path from the root to 
\begin_inset Formula $V_{k}$
\end_inset

 including both ends of the path.
 Thus this average is precisely
\begin_inset Formula 
\[
\frac{1}{m}\sum_{k}(l_{k}+1)=\frac{1}{m}(I+m)=\frac{I}{m}+1,
\]

\end_inset

where 
\begin_inset Formula $I$
\end_inset

 is the internal path length of the tree.
\end_layout

\end_body
\end_document