1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc3[22]
\end_layout
\end_inset
The
\begin_inset Formula $(t+1)$
\end_inset
st item in Algorithm S is selected with probability
\begin_inset Formula $(n-m)/(N-t)$
\end_inset
,
not
\begin_inset Formula $n/N$
\end_inset
,
yet the text claims that the sample is unbiased;
thus each item should be selected with the
\emph on
same
\emph default
probability.
How can both of these statements be true?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
This is because
\begin_inset Formula $\frac{n-m}{N-t}$
\end_inset
appears as a
\emph on
conditioned
\emph default
probability,
where the condition depends on
\begin_inset Formula $t$
\end_inset
.
The actual probability of choosing the
\begin_inset Formula $(t+1)$
\end_inset
st element is
\begin_inset Formula
\[
\sum_{m=0}^{t}P(\{m\text{ elements have been chosen between }1\text{ and }t\})\frac{n-m}{N-t}.
\]
\end_inset
Let
\begin_inset Formula $P_{mt}$
\end_inset
be the probability described with words inside this formula.
For
\begin_inset Formula $m>t$
\end_inset
or
\begin_inset Formula $m<0$
\end_inset
,
this probability is obviously 0,
and for
\begin_inset Formula $t=0$
\end_inset
,
\begin_inset Formula $P_{00}=1$
\end_inset
.
For
\begin_inset Formula $t\geq1$
\end_inset
and
\begin_inset Formula $0\leq m\leq t$
\end_inset
,
\begin_inset Formula
\[
P_{mt}=P_{m(t-1)}\left(1-\frac{n-m}{N-t+1}\right)+P_{(m-1)(t-1)}\frac{n-m+1}{N-t+1}.
\]
\end_inset
Note that,
by this formula,
\begin_inset Formula $P_{(n-1)t}=0$
\end_inset
always,
since the second term is 0 and the first term is a multiple of
\begin_inset Formula $P_{(n-1)(t-1)}$
\end_inset
,
which is 0 by induction since
\begin_inset Formula $P_{(n-1)(-1)}=0$
\end_inset
.
Then,
by induction in
\begin_inset Formula $m$
\end_inset
,
\begin_inset Formula $P_{mt}=0$
\end_inset
for any
\begin_inset Formula $m>n$
\end_inset
.
\end_layout
\begin_layout Standard
Since the algorithm is said to be unbiased,
we would expect
\begin_inset Formula
\[
P_{mt}=\frac{\binom{t}{m}\binom{N-t}{n-m}}{\binom{N}{n}},
\]
\end_inset
that is,
the number of ways to choose
\begin_inset Formula $m$
\end_inset
elements among the first
\begin_inset Formula $t$
\end_inset
ones and
\begin_inset Formula $n-m$
\end_inset
elements among the rest,
divided by the total number of ways of choosing
\begin_inset Formula $n$
\end_inset
elements among
\begin_inset Formula $N$
\end_inset
.
\end_layout
\begin_layout Standard
We prove this by induction.
For
\begin_inset Formula $t=0$
\end_inset
we have seen it already.
For
\begin_inset Formula $t>0$
\end_inset
,
if
\begin_inset Formula $m=0$
\end_inset
,
\begin_inset Formula
\[
P_{0t}=P_{0(t-1)}\left(1-\frac{n}{N-t+1}\right)=\frac{\binom{N-t+1}{n}}{\binom{N}{n}}\frac{N-t-n+1}{N-t+1}=\frac{\binom{N-t}{n}}{\binom{N}{n}},
\]
\end_inset
and if
\begin_inset Formula $m>0$
\end_inset
,
\begin_inset Formula
\begin{align*}
P_{mt} & =\frac{\binom{t-1}{m}\binom{N-t+1}{n-m}}{\binom{N}{n}}\frac{N-t-n+m+1}{N-t+1}+\frac{\binom{t-1}{m-1}\binom{N-t+1}{n-m+1}}{\binom{N}{n}}\frac{n-m+1}{N-t+1}=\\
& =\frac{\binom{t-1}{m}\binom{N-t}{n-m}}{\binom{N}{n}}+\frac{\binom{t-1}{m-1}\binom{N-t}{n-m}}{\binom{N}{n}}=\frac{\binom{t}{m}\binom{N-t}{n-m}}{\binom{N}{n}},
\end{align*}
\end_inset
where we make extensive use of Eq.
1.2.6–(8).
Finally,
by Eq.
1.2.6–(21),
the probability of choosing any given element is
\begin_inset Formula
\[
\sum_{m=0}^{t}P_{mt}\frac{n-m}{N-t}=\frac{1}{\binom{N}{n}}\sum_{m=0}^{t}\binom{t}{m}\binom{N-1-t}{n-1-m}=\frac{\binom{N-1}{n-1}}{\binom{N}{n}}=\frac{\binom{N-1}{N-n}}{\binom{N}{N-n}}=\frac{n}{N}.
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc11[M25]
\end_layout
\end_inset
Let
\begin_inset Formula $p_{m}$
\end_inset
be the probability that exactly
\begin_inset Formula $m$
\end_inset
elements are put into the reservoir during the first pass of Algorithm R.
Determine the generating function
\begin_inset Formula $G(z)=\sum_{m}p_{m}z^{m}$
\end_inset
,
and find the mean and standard deviation.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Let
\begin_inset Formula $s_{k}\coloneqq P(\text{the }k\text{th element is copied to the reservoir})$
\end_inset
,
then
\begin_inset Formula $p_{m}$
\end_inset
is the sum across all subsets
\begin_inset Formula $\{x_{1},\dots,x_{m}\}\in\{1,\dots,N\}$
\end_inset
of
\begin_inset Formula $m$
\end_inset
elements,
\begin_inset Formula $x_{1}<\dots<x_{m}$
\end_inset
,
of the product of the
\begin_inset Formula $s_{x_{i}}$
\end_inset
times the
\begin_inset Formula $(1-s_{j})$
\end_inset
for
\begin_inset Formula $j\in\{1,\dots N\}\setminus\{x_{1},\dots,x_{m}\}$
\end_inset
.
Rearranging terms we can see that
\begin_inset Formula
\[
G(z)=\prod_{k=1}^{N}(s_{k}z+1-s_{k})=z^{n}\prod_{k=n+1}^{N}\left(\frac{nz}{k}+1-\frac{n}{k}\right)=z^{n}\prod_{k=n+1}^{N}\frac{n(z-1)+k}{k}.
\]
\end_inset
Let
\begin_inset Formula $F(z)\coloneqq\prod_{k=n+1}^{N}\frac{n(z-1)+k}{k}$
\end_inset
,
we have
\begin_inset Formula $F(1)=1$
\end_inset
and
\begin_inset Formula
\begin{align*}
\dot{F}(z) & =F(z)\sum_{k=n+1}^{N}\frac{n}{n(z-1)+k}, & \dot{F}(1) & =\sum_{k=n+1}^{N}\frac{n}{k}=n(H_{N}-H_{n});\\
\ddot{F}(z) & =\frac{\dot{F}(z)^{2}}{F(z)}-F(z)\sum_{k=n+1}^{N}\frac{n^{2}}{(n(z-1)+k)^{2}}, & \ddot{F}(1) & =n^{2}\left((H_{N}-H_{n})^{2}-(H_{N}^{(2)}-H_{n}^{(2)})\right).
\end{align*}
\end_inset
Using this,
\begin_inset Formula
\begin{align*}
\dot{G}(z) & =nz^{n-1}F(z)+z^{n}\dot{F}(z),\\
\ddot{G}(z) & =n(n-1)z^{n-2}F(z)+2nz^{n-1}\dot{F}(z)+z^{n}\ddot{F}(z),
\end{align*}
\end_inset
so
\begin_inset Formula
\begin{align*}
\text{mean}(G) & =\dot{G}(1)=n(1+H_{N}-H_{n});\\
\text{var}(G) & =\ddot{G}(1)+\dot{G}(1)-\dot{G}(1)^{2}\\
& =\cancel{n(n-1)}\cancel{+2n\dot{F}(1)}+\ddot{F}(1)\cancel{+n}+\dot{F}(1)\cancel{-n^{2}}-\dot{F}(1)^{2}\cancel{-2n\dot{F}(1)}\\
& =n(H_{N}-H_{n})-n^{2}(H_{N}^{(2)}-H_{n}^{(2)}),\\
\sigma(G) & =\sqrt{\text{var}(G)}=\sqrt{n(H_{N}-H_{n})-n^{2}(H_{N}^{(2)}-H_{n}^{(2)})}.
\end{align*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc16[M25]
\end_layout
\end_inset
Devise a way to compute a random sample of
\begin_inset Formula $n$
\end_inset
records from
\begin_inset Formula $N$
\end_inset
,
given
\begin_inset Formula $N$
\end_inset
and
\begin_inset Formula $n$
\end_inset
,
based on the idea of hashing (Section 6.4).
Your method should use
\begin_inset Formula $O(n)$
\end_inset
storage locations and an average of
\begin_inset Formula $O(n)$
\end_inset
units of time,
and it should present the sample as a sorted set of integers
\begin_inset Formula $1\leq X_{1}<X_{2}<\dots<X_{n}\leq N$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO Depends on Section 6.4.
\end_layout
\end_inset
\end_layout
\end_body
\end_document
|