aboutsummaryrefslogtreecommitdiff
path: root/vol1/2.2.1.lyx
blob: 27287f7676296e8e0dbdd9076dacf37bbf843a86 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc1[06]
\end_layout

\end_inset

An input-restricted deque is a linear list in which items may be inserted at one end but removed from either end;
 clearly an input-restricted deque can operate either as a stack or as a queue,
 if we consistently remove all items from one of the two ends.
 Can an output-restricted deque also be operated either as a stack or as a queue?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Yes.
 If output happens on the left,
 we can use a deque as a queue by inserting on the right or as a stack by inserting on the left.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc2[15]
\end_layout

\end_inset

Imagine four railroad cars positioned on the input side of the track in Fig.
 1,
 numbered 1,
 2,
 3,
 and 4,
 from left to right.
 Suppose we perform the following sequence of operations (which is compatible with the direction of the arrows in the diagram and does not require cars to 
\begin_inset Quotes eld
\end_inset

jump over
\begin_inset Quotes erd
\end_inset

 other cars):
 (i) move car 1 into the stack;
 (ii) move car 2 into the stack;
 (iii) move car 2 into the output;
 (iv) move car 3 into the stack;
 (v) move car 4 into the stack;
 (vi) move car 4 into the output;
 (vii) move car 3 into the output;
 (viii) move car 1 into the output.
\end_layout

\begin_layout Standard
As a result of these operations the original order of the cars,
 
\begin_inset Formula $1\,2\,3\,4$
\end_inset

,
 has been changed into 
\begin_inset Formula $2\,4\,3\,1$
\end_inset

.
 
\emph on
It is the purpose of this exercise and the following exercises to examine what permutations are obtainable in such a manner from stacks,
 queues,
 or deques.
\end_layout

\begin_layout Standard
If there are six railroad cars numbered 
\begin_inset Formula $1\,2\,3\,4\,5\,6$
\end_inset

,
 can they be permuted into the order 
\begin_inset Formula $3\,2\,5\,6\,4\,1$
\end_inset

?
 Can they be permuted into the order 
\begin_inset Formula $1\,5\,4\,6\,2\,3$
\end_inset

?
 (In case it is possible,
 show how to do it.)
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

For 
\begin_inset Formula $3\,2\,5\,6\,4\,1$
\end_inset

,
 we push 1,
 push 2,
 push 3,
 pop 3,
 pop 2,
 push 4,
 push 5,
 pop 5,
 push 6,
 pop 6,
 pop 4,
 and pop 1.
 We can't get the permutation 
\begin_inset Formula $1\,5\,4\,6\,2\,3$
\end_inset

:
 first,
 we'd need to push 1 and pop it immediately since,
 otherwise,
 it couldn't be the first car to go out;
 then we need to push trains 2 to 5 without popping anything before the 5,
 so that no car is between the 1 and the 5,
 but then we must pop 3 before popping 2,
 so the order wouldn't be respected.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc5[M28]
\end_layout

\end_inset

Show that it is possible to obtain a permutation 
\begin_inset Formula $p_{1}\,p_{2}\,\dots\,p_{n}$
\end_inset

 from 
\begin_inset Formula $1\,2\,\dots\,n$
\end_inset

 using a stack if and only if there are no indices 
\begin_inset Formula $i<j<k$
\end_inset

 such that 
\begin_inset Formula $p_{j}<p_{k}<p_{i}$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset


\end_layout

\begin_layout Itemize
\begin_inset Argument item:1
status open

\begin_layout Plain Layout
\begin_inset Formula $\implies]$
\end_inset


\end_layout

\end_inset

Assume,
 by contradiction,
 that there are such indexes.
 When the next element to pop is 
\begin_inset Formula $p_{i}$
\end_inset

,
 
\begin_inset Formula $p_{i}$
\end_inset

 is either at the top of the stack or in the input road.
 In the second case,
 the only valid option is to push all elements from the input until reaching 
\begin_inset Formula $p_{i}$
\end_inset

 and then pop 
\begin_inset Formula $p_{i}$
\end_inset

,
 so in either case,
 
\begin_inset Formula $p_{j}$
\end_inset

 and 
\begin_inset Formula $p_{k}$
\end_inset

 end up in the stack after popping 
\begin_inset Formula $p_{i}$
\end_inset

.
 Then 
\begin_inset Formula $p_{k}$
\end_inset

 has to remain in the stack until the next element is 
\begin_inset Formula $p_{k}$
\end_inset

,
 and in particular it has to remain after popping 
\begin_inset Formula $p_{j}$
\end_inset

,
 but since higher elements in the stack have higher values (this is easily proved by induction on the size of the stack),
 
\begin_inset Formula $p_{k}$
\end_inset

 is over 
\begin_inset Formula $p_{j}$
\end_inset

 and thus it must be popped before popping 
\begin_inset Formula $p_{j}$
\end_inset

,
 giving an incorrect order to the output.
\end_layout

\begin_layout Itemize
\begin_inset Argument item:1
status open

\begin_layout Plain Layout
\begin_inset Formula $\impliedby]$
\end_inset


\end_layout

\end_inset

Let's consider the following algorithm for generating such permutation:
 we set 
\begin_inset Formula $m\gets1$
\end_inset

,
 and for 
\begin_inset Formula $j\gets1$
\end_inset

 to 
\begin_inset Formula $n$
\end_inset

,
 if 
\begin_inset Formula $p_{j}\geq m$
\end_inset

,
 we push elements 
\begin_inset Formula $m$
\end_inset

 to 
\begin_inset Formula $p_{j}$
\end_inset

,
 pop 
\begin_inset Formula $p_{j}$
\end_inset

 and set 
\begin_inset Formula $m\gets p_{j}+1$
\end_inset

,
 and otherwise we just pop 
\begin_inset Formula $p_{j}$
\end_inset

.
 In this algorithm,
 
\begin_inset Formula $m$
\end_inset

 represents the next element to be pushed and 
\begin_inset Formula $j$
\end_inset

 is such that 
\begin_inset Formula $p_{j}$
\end_inset

 is to be popped,
 so 
\begin_inset Formula $j\leq m$
\end_inset

 at the beginning of every iteration.
 Thus,
 if 
\begin_inset Formula $p_{j}\geq m$
\end_inset

,
 the car is still in the input road and we have to push elements 
\begin_inset Formula $m$
\end_inset

 to 
\begin_inset Formula $p_{j}$
\end_inset

,
 and otherwise 
\begin_inset Formula $p_{j}$
\end_inset

 is in the stack.
\end_layout

\begin_deeper
\begin_layout Standard
We show that,
 in the latter case,
 if 
\begin_inset Formula $p_{j}$
\end_inset

 weren't at the top of the stack,
 there would be indices 
\begin_inset Formula $i<j$
\end_inset

 and 
\begin_inset Formula $k>j$
\end_inset

 such that 
\begin_inset Formula $p_{j}<p_{k}<p_{i}$
\end_inset

.
 If 
\begin_inset Formula $p_{j}$
\end_inset

 is in the stack but not as the top element,
 the latest operations have been pushing 
\begin_inset Formula $m',m'+1,\dots,p_{i}$
\end_inset

 for some 
\begin_inset Formula $i<j$
\end_inset

 (
\begin_inset Formula $m'$
\end_inset

 is the value of 
\begin_inset Formula $m$
\end_inset

 when processing 
\begin_inset Formula $i$
\end_inset

) and,
 after that,
 to popping 
\begin_inset Formula $p_{i},p_{i}-1,\dots,p_{j}+c$
\end_inset

 for some 
\begin_inset Formula $c\in\{2,\dots,j-i\}$
\end_inset

,
 since at least 
\begin_inset Formula $p_{i}$
\end_inset

 is popped and at least 
\begin_inset Formula $p_{j}+1$
\end_inset

 is not popped (otherwise,
 either 
\begin_inset Formula $p_{j}$
\end_inset

 would have been popped too or it would be at the top).
\end_layout

\begin_layout Standard
Let 
\begin_inset Formula $k$
\end_inset

 be the element such that 
\begin_inset Formula $p_{k}=p_{j}+1$
\end_inset

,
 so that 
\begin_inset Formula $p_{j}<p_{k}<p_{i}$
\end_inset

.
 We have 
\begin_inset Formula $i<j$
\end_inset

 because 
\begin_inset Formula $p_{i}$
\end_inset

 was popped earlier than 
\begin_inset Formula $p_{j}$
\end_inset

,
 and we have to show that 
\begin_inset Formula $j<k$
\end_inset

.
 If it were 
\begin_inset Formula $k<j$
\end_inset

,
 
\begin_inset Formula $p_{k}$
\end_inset

 would have already been popped,
 clearly before 
\begin_inset Formula $i$
\end_inset

,
 but then it would be 
\begin_inset Formula $k<i$
\end_inset

 and,
 because the value of 
\begin_inset Formula $m$
\end_inset

 when processing 
\begin_inset Formula $k$
\end_inset

 would be 
\begin_inset Formula $m''\leq m'\leq p_{j}<p_{k}$
\end_inset

,
 we'd have pushed 
\begin_inset Formula $p_{j}$
\end_inset

 when processing 
\begin_inset Formula $k$
\end_inset

,
 not when processing 
\begin_inset Formula $i\#$
\end_inset

.
 Since 
\begin_inset Formula $k\neq j$
\end_inset

,
 we conclude that 
\begin_inset Formula $j<k$
\end_inset

.
\end_layout

\end_deeper
\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc6[00]
\end_layout

\end_inset

Consider the problem of exercise 2,
 with a queue substituted for a stack.
 What permutations of 
\begin_inset Formula $1\,2\,\dots\,n$
\end_inset

 can be obtained with use of a queue?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Just one;
 a queue would be represented by a bare straight line.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc7[25]
\end_layout

\end_inset

Consider the problem of exercise 2,
 with a deque substituted for a stack.
\end_layout

\begin_layout Enumerate
Find a permutation of 
\begin_inset Formula $1\,2\,3\,4$
\end_inset

 that can be obtained with an input-restricted deque,
 but it cannot be obtained with an output-restricted deque.
\end_layout

\begin_layout Enumerate
Find a permutation of 
\begin_inset Formula $1\,2\,3\,4$
\end_inset

 that can be obtained with an output-restricted deque but not with an input-restricted deque.
 [As a consequence of (1) and (2),
 there is definitely a difference between input-restricted and output-restricted deques.]
\end_layout

\begin_layout Enumerate
Find a permutation of 
\begin_inset Formula $1\,2\,3\,4$
\end_inset

 that cannot be obtained with either an input-restricted or an output-restricted deque.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer
\end_layout

\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $4\,1\,3\,2$
\end_inset

 (input all from the right,
 output 4 right,
 1 left,
 3 right,
 then 2).
 With an output-restricted deque,
 to output the 4,
 we'd first have to put 1,
 2,
 and 3 in the deque and (here lies the difference) in the order of the permutation.
 But,
 after inserting the 1,
 we'd have to insert the 2 at the right and then we'd have no place for the 3.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $4\,2\,1\,3$
\end_inset

 (input 1 wherever,
 2 left,
 3 right,
 4 left,
 then output all to the left).
 With an input-restricted deque,
 to output the 4,
 we'd first have to put 1,
 2,
 and 3 in the deque and (here lies the difference) in the order of the input.
 Then we'd have to output 2,
 which is just between 1 and 3.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $4\,2\,3\,1$
\end_inset

.
 With an input-restricted deque,
 to output the 4,
 we'd have to input 1,
 2,
 3 first,
 but then we'd have to output the 2 which lies in the middle.
 With an output-restricted deque,
 we'd have to input 1,
 2,
 3 first in the order 2,
 3,
 1,
 so we'd have to put the 2 to the left of the 1 but then we couldn't place the 3 in the middle.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc14[26]
\end_layout

\end_inset

Suppose you are allowed to use only stacks as data structures.
 How can you implement a queue efficiently with two stacks?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Let 
\begin_inset Formula $A$
\end_inset

 and 
\begin_inset Formula $B$
\end_inset

 be two stacks (elements go from the top of 
\begin_inset Formula $A$
\end_inset

 to the bottom and from the bottom of 
\begin_inset Formula $B$
\end_inset

 to the top).
 To enqueue an element,
 we push it to 
\begin_inset Formula $A$
\end_inset

 (we could push it to 
\begin_inset Formula $B$
\end_inset

 if 
\begin_inset Formula $B$
\end_inset

 is empty).
 To deque an element,
 if 
\begin_inset Formula $B$
\end_inset

 is empty,
 we do 
\begin_inset Formula $x\Leftarrow A,B\Leftarrow x$
\end_inset

 until 
\begin_inset Formula $A$
\end_inset

 is empty;
 if 
\begin_inset Formula $B$
\end_inset

 is still empty,
 the queue is empty,
 and otherwise we pop the element from 
\begin_inset Formula $B$
\end_inset

.
 The time needed to copy 
\begin_inset Formula $n$
\end_inset

 elements from 
\begin_inset Formula $A$
\end_inset

 to 
\begin_inset Formula $B$
\end_inset

 is generally amortized as we won't need to copy for the following 
\begin_inset Formula $n$
\end_inset

 deletions.
\end_layout

\end_body
\end_document