aboutsummaryrefslogtreecommitdiff
path: root/vol1/2.2.4.lyx
blob: 54459751cea13cc57b335e86a946a7f83fac6d6d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc3[20]
\end_layout

\end_inset

What does operation (3) do if 
\begin_inset Formula $\mathtt{PTR}_{1}$
\end_inset

 and 
\begin_inset Formula $\mathtt{PTR}_{2}$
\end_inset

 are both pointing to nodes in the 
\emph on
same
\emph default
 circular list?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

It splits the list into two parts;
 the one that goes from the right of 
\begin_inset Formula $\mathtt{PTR}_{1}$
\end_inset

 to 
\begin_inset Formula $\mathtt{PTR}_{2}$
\end_inset

 is preserved but the other one becomes a memory leak.
 If the two pointers are equal,
 nothing happens,
 just 
\begin_inset Formula $\mathtt{PTR}_{2}$
\end_inset

 is set to 
\begin_inset Formula $\Lambda$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc5[21]
\end_layout

\end_inset

Design an algorithm that takes a circular list such as (1) and reverses the direction of all the arrows.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

This is similar to exercise 2.2.3.7.
\end_layout

\begin_layout Enumerate
Set 
\begin_inset Formula $\mathtt{P}\gets\Lambda$
\end_inset

 and 
\begin_inset Formula $\mathtt{C}\gets\mathtt{PTR}$
\end_inset

.
\end_layout

\begin_layout Enumerate
If 
\begin_inset Formula $\mathtt{C}\neq\Lambda$
\end_inset

,
 set 
\begin_inset Formula $\mathtt{N}\gets\mathtt{LINK(C)}$
\end_inset

,
 
\begin_inset Formula $\mathtt{LINK(C)}\gets\mathtt{P}$
\end_inset

,
 
\begin_inset Formula $\mathtt{P}\gets\mathtt{C}$
\end_inset

,
 
\begin_inset Formula $\mathtt{C}\gets\mathtt{N}$
\end_inset

,
 and repeat.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc7[10]
\end_layout

\end_inset

Why is it useful to assume that the 
\family typewriter
ABC
\family default
 fields of a polynomial list appear in decreasing order?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Many operations on polynomials require us to match monomials with equal exponents of the variables.
 By having a total order on them it's easy to match these in linear time.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc8[10]
\end_layout

\end_inset

Why is it useful to have 
\family typewriter
Q1
\family default
 trailing one step behind 
\family typewriter
Q
\family default
 in Algorithm A?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

We need 
\family typewriter
Q
\family default
 to advance in order to check if the next monomial has greater,
 lower,
 or equal coefficient than the one pointed to by 
\family typewriter
P
\family default
,
 and if it's lower,
 we need 
\family typewriter
Q1
\family default
 to insert the one pointed to by 
\family typewriter
P
\family default
 right before the one pointed to by 
\family typewriter
Q
\family default
.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc9[23]
\end_layout

\end_inset

Would Algorithm A work properly if 
\begin_inset Formula $\mathtt{P}=\mathtt{Q}$
\end_inset

 (i.e.,
 both pointer variables point at the same polynomial)?
 Would Algorithm M work properly if 
\begin_inset Formula $\mathtt{P}=\mathtt{M}$
\end_inset

,
 if 
\begin_inset Formula $\mathtt{P}=\mathtt{Q}$
\end_inset

,
 or if 
\begin_inset Formula $\mathtt{M}=\mathtt{Q}$
\end_inset

?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Algorithm A would work properly,
 doubling the polynomial being pointed to (this is assuming no coefficient is 0).
 As for Algorithm M,
 it would work for 
\begin_inset Formula $\mathtt{P}=\mathtt{M}$
\end_inset

 since they're not mutated.
 If 
\begin_inset Formula $\mathtt{P}=\mathtt{Q}$
\end_inset

 it wouldn't work,
 because if 
\family typewriter
M
\family default
 has more than one monomial then the addition of 
\begin_inset Formula $\mathtt{P}$
\end_inset

 times the second monomial or later (the second iteration of step M2) would add the wrong value to 
\family typewriter
Q
\family default
.
 If 
\begin_inset Formula $\mathtt{M}=\mathtt{Q}$
\end_inset

 it wouldn't work either as,
 for example,
 if initially 
\begin_inset Formula $\mathtt{M}=\mathtt{Q}=1$
\end_inset

 and 
\begin_inset Formula $\mathtt{P}=-1$
\end_inset

,
 then addition in the first iteration of M2 would free the current monomial pointed to by 
\begin_inset Formula $\mathtt{M}$
\end_inset

 and in the next iteration of M1,
 
\begin_inset Formula $\mathtt{M}$
\end_inset

 would point to free memory with unpredictable consequences.
 In cases where the constant coefficient of 
\family typewriter
P
\family default
 is not 
\begin_inset Formula $-1$
\end_inset

,
 it amazingly works,
 as writes to 
\family typewriter
Q
\family default
 are always behind where we read from 
\family typewriter
M
\family default
 when considering monomials of 
\family typewriter
P
\family default
 with positive degree and,
 for the constant coefficient,
 it writes to the same position where 
\family typewriter
M
\family default
 is but only to the 
\family typewriter
COEF
\family default
 field—
unless 
\family typewriter
P
\family default
 is 
\begin_inset Formula $-1$
\end_inset

 in which case the node pointed to by 
\family typewriter
M
\family default
 is freed.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc10[20]
\end_layout

\end_inset

The algorithms in this section assume that we are using three variables 
\begin_inset Formula $x$
\end_inset

,
 
\begin_inset Formula $y$
\end_inset

,
 and 
\begin_inset Formula $z$
\end_inset

 in the polynomials,
 and that their exponents individually never exceed 
\begin_inset Formula $b-1$
\end_inset

 (where 
\begin_inset Formula $b$
\end_inset

 is the byte size in 
\family typewriter
MIX
\family default
's case).
 Suppose instead that we want to do addition and multiplication of polynomials in only one variable,
 
\begin_inset Formula $x$
\end_inset

,
 and to let its exponent take on values up to 
\begin_inset Formula $b^{3}-1$
\end_inset

.
 What changes should be made to Algorithms A and M?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

None,
 as they work out of the box if we consider the 
\family typewriter
ABC
\family default
 field to hold a single coefficient.
 The sums and comparisons made on this field in the algorithms are equally valid independently of which of the two interpretations we want to give to this field,
 assuming no overflow.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc17[22]
\end_layout

\end_inset

What advantage is there in representing polynomials with a circular list as in this section,
 instead of with a straight linear linked list terminated by 
\begin_inset Formula $\Lambda$
\end_inset

 as in the previous section?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Steps A2 and A5 don't need special cases to handle the end of a list,
 only A3 does.
 Other than that there's not much of a difference.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc18[25]
\end_layout

\end_inset

Devise a way to represent circular lists inside a computer in such a way that the list can be traversed efficiently in both directions,
 yet only one link field is used per node.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

If the link field combines the location of the next and previous fields with some monoidal operation like XOR,
 and we have an item 
\begin_inset Formula $x_{i}$
\end_inset

,
 then knowing the location of 
\begin_inset Formula $x_{i+1}$
\end_inset

 allows us to get the location of 
\begin_inset Formula $x_{i-1}$
\end_inset

 and vice versa,
 so knowing the location of two consecutive items allows us to traverse the list in both directions.
\end_layout

\end_body
\end_document