aboutsummaryrefslogtreecommitdiff
path: root/vol1/2.2.6.lyx
blob: 56b0cdd496c5eeff9e3493b9234217e7d891ac27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc[21]
\end_layout

\end_inset

Formulas (5) and (6) have been derived from the assumption that 
\begin_inset Formula $0\leq\mathtt{I}_{r}\leq d_{r}$
\end_inset

 for 
\begin_inset Formula $1\leq r\leq k$
\end_inset

.
 Give a general formula that applies to the case 
\begin_inset Formula $l_{r}\leq\mathtt{I}_{r}\leq u_{r}$
\end_inset

,
 where 
\begin_inset Formula $l_{r}$
\end_inset

 and 
\begin_inset Formula $u_{r}$
\end_inset

 are any lower and upper bounds on the dimensionality.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset


\begin_inset Formula 
\begin{align*}
\mathtt{LOC(A[}\mathtt{I}_{1},\mathtt{I}_{2},\dots,\mathtt{I}_{k}\mathtt{])} & =\mathtt{LOC(A[}l_{1},l_{2},\dots,l_{k}\mathtt{])}+\sum_{1\leq r\leq k}a_{r}(\mathtt{I}_{r}-l_{r})=\\
 & =\left(\mathtt{LOC(A[}l_{1},l_{2},\dots,l_{k}\mathtt{])}-\sum_{1\leq r\leq k}a_{r}l_{r}\right)+\sum_{1\leq r\leq k}a_{r}\mathtt{I}_{r},
\end{align*}

\end_inset

where
\begin_inset Formula 
\[
a_{r}=c\prod_{r<s\leq k}(u_{s}-l_{s}+1).
\]

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc6[24]
\end_layout

\end_inset

Consider the 
\begin_inset Quotes eld
\end_inset

tetrahedral arrays
\begin_inset Quotes erd
\end_inset

 
\begin_inset Formula $\mathtt{A[}i\mathtt{,}j\mathtt{,}k\mathtt{]},$
\end_inset


\begin_inset Formula $\mathtt{B[}i\mathtt{,}j\mathtt{,}k\mathtt{]}$
\end_inset

,
 where 
\begin_inset Formula $0\leq k\leq j\leq i\leq n$
\end_inset

 in 
\family typewriter
A
\family default
,
 and 
\begin_inset Formula $0\leq i\leq j\leq k\leq n$
\end_inset

 in 
\family typewriter
B
\family default
.
 Suppose that both of these arrays are stored in consecutive memory locations in lexicographic order of the indices;
 show that 
\begin_inset Formula $\mathtt{LOC(A[I,J,K])}=a_{0}+f_{1}\mathtt{(I)}+f_{2}\mathtt{(J)}+f_{3}\mathtt{(K)}$
\end_inset

 for certain functions 
\begin_inset Formula $f_{1}$
\end_inset

,
 
\begin_inset Formula $f_{2}$
\end_inset

,
 
\begin_inset Formula $f_{3}$
\end_inset

.
 Can 
\begin_inset Formula $\mathtt{LOC(B[I,J,K])}$
\end_inset

 be expressed in a similar manner?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Let 
\begin_inset Formula $c$
\end_inset

 be the size of an entry,
 
\begin_inset Formula $a_{0}\coloneqq\mathtt{LOC(A[}0\mathtt{,}0\mathtt{,}0\mathtt{])}$
\end_inset

,
 and 
\begin_inset Formula $x(i,j,k)$
\end_inset

 be the number of positions from 
\begin_inset Formula $a_{0}$
\end_inset

 to 
\begin_inset Formula $\mathtt{LOC(A[}i\mathtt{,}j\mathtt{,}k\mathtt{])}$
\end_inset

,
 so that 
\begin_inset Formula $\mathtt{LOC(A[}i\mathtt{,}j\mathtt{,}k\mathtt{])}=a_{0}+cx(i,j,k)$
\end_inset

,
 then
\begin_inset Formula 
\[
x(i,j,k)=x(i,0,0)+(x(i,j,0)-x(i,0,0))+(x(i,j,k)-x(i,j,0)),
\]

\end_inset

but
\begin_inset Formula 
\begin{align*}
x(i,j,k)-x(i,j,0) & =k,\\
x(i,j,0)-x(i,0,0) & =\sum_{p=0}^{j-1}(x(i,p+1,0)-x(i,p,0))=\sum_{p=0}^{j-1}(p+1)=\sum_{p=1}^{j}p=\frac{j(j+1)}{2},
\end{align*}

\end_inset

and 
\begin_inset Formula $x(i,0,0)$
\end_inset

 is already a function of 
\begin_inset Formula $i$
\end_inset

,
 so in fact locations can be put in this form.
\end_layout

\begin_layout Standard
Now let 
\begin_inset Formula $b_{0}\coloneqq\mathtt{LOC(B[}0\mathtt{,}0\mathtt{,}0\mathtt{])}$
\end_inset

 and 
\begin_inset Formula $y(i,j,k)\coloneqq\frac{\mathtt{LOC(B[}0\mathtt{,}0\mathtt{,}0\mathtt{])}-\mathtt{LOC(B[}i\mathtt{,}j\mathtt{,}k\mathtt{])}}{c}$
\end_inset

,
 the functions,
 if they exist,
 would depend on 
\begin_inset Formula $n$
\end_inset

,
 since 
\begin_inset Formula $y(0,1,1)=y(0,0,n)+1=n+1$
\end_inset

,
 but still
\begin_inset Formula 
\begin{align*}
y(i,j,k) & =y(i,n,n)+(y(i,j,n)-y(i,n,n))+(y(i,j,k)-y(i,j,n))
\end{align*}

\end_inset

with
\begin_inset Formula 
\begin{align*}
y(i,j,k)-y(i,j,n) & =n-k,\\
y(i,j,n)-y(i,n,n) & =\sum_{p=j+1}^{n}(y(i,p-1,n)-y(i,p,n))=\sum_{p=j+1}^{n}(1+y(i,p,p)-y(i,p,n))\\
 & =\sum_{p=j+1}^{n}(n-p+1)=\sum_{p=1}^{n-p}p,
\end{align*}

\end_inset

and 
\begin_inset Formula $y(i,n,n)$
\end_inset

 is already a function of 
\begin_inset Formula $i$
\end_inset

 (and 
\begin_inset Formula $n$
\end_inset

).
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc12[20]
\end_layout

\end_inset

What are 
\family typewriter
VAL(Q0)
\family default
,
 
\family typewriter
VAL(P0)
\family default
,
 and 
\family typewriter
VAL(P1)
\family default
 at the beginning of step S7,
 in terms of the notation 
\begin_inset Formula $a$
\end_inset

,
 
\begin_inset Formula $b$
\end_inset

,
 
\begin_inset Formula $c$
\end_inset

,
 
\begin_inset Formula $d$
\end_inset

 used in (13)?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset


\begin_inset Formula $\mathtt{VAL(P1)}=d$
\end_inset

,
 
\begin_inset Formula $\mathtt{VAL(Q0)}=c$
\end_inset

,
 
\begin_inset Formula $\mathtt{VAL(P0)}=b/a$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc13[22]
\end_layout

\end_inset

Why were circular lists used in Fig.
 14 instead of straight linear lists?
 Could Algorithm S be rewritten so that it does not make use of the circular linkage?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Circular lists are used as an optimization and simplification:
 since many lists have to be traversed many times,
 it is advantageous to not have to reset the pointer to the list every time as the pointer is already situated at the beginning of the list by the time the previous iteration ends.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc24[25]
\end_layout

\end_inset

(
\emph on
The sparse array trick.
\emph default
) Suppose you want to use a large array for random access,
 although you won't actually be referring to very many of its entries.
 You want 
\begin_inset Formula $\mathtt{A[}k\mathtt{]}$
\end_inset

 to be zero the first time you access it,
 yet you don't want to spend the time to set every location to zero.
 Explain how it is possible to read and write any desired elements 
\begin_inset Formula $\mathtt{A[}k\mathtt{]}$
\end_inset

 reliably,
 given 
\begin_inset Formula $k$
\end_inset

,
 without assuming anything about the actual initial memory contents,
 by doing only a small fixed number of additional operations per array access.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

One could have an auxiliary array 
\family typewriter
L
\family default
 containing pairs of index and value,
 and have 
\family typewriter
A
\family default
 contain pointers to 
\family typewriter
L
\family default
.
 If the pointer is within bounds and 
\family typewriter
L
\family default
 contains the index 
\begin_inset Formula $k$
\end_inset

 in that position,
 then the value contained is the value of 
\begin_inset Formula $\mathtt{A[}k\mathtt{]}$
\end_inset

,
 otherwise the value is 0.
 
\family typewriter
L
\family default
 could actually be the size of 
\family typewriter
A
\family default
 but have an upper limit 
\begin_inset Formula $n$
\end_inset

 with the number of elements actually allocated,
 which is considered the upper bound and which increases whenever a value that has not been yet allocated is written to.
\end_layout

\end_body
\end_document