1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc1[01]
\end_layout
\end_inset
In the binary tree (2),
let
\family typewriter
INFO(P)
\family default
denote the letter stored in
\family typewriter
NODE(P)
\family default
.
What is
\begin_inset Formula $\mathtt{INFO(LLINK(RLINK(RLINK(T))))}$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\begin_inset Formula $H$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc4[20]
\end_layout
\end_inset
The text defines three basic orders for traversing a binary tree;
another alternative would be to proceed in three steps as follows:
\end_layout
\begin_layout Enumerate
Visit the root,
\end_layout
\begin_layout Enumerate
traverse the right subtree,
\end_layout
\begin_layout Enumerate
traverse the left subtree,
\end_layout
\begin_layout Standard
using the same rule recursively on all nonempty subtrees.
Does this new order bear any simple relation to the three orders already discussed?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Yes,
this is the same as postorder but backwards.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc10[20]
\end_layout
\end_inset
What is the largest number of entries that can be in the stack at once,
during the execution of Algorithm T,
if the binary tree has
\begin_inset Formula $n$
\end_inset
nodes?
(The answer to this question is very important for storage allocation,
if the stack is being stored consecutively.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
There can be up to
\begin_inset Formula $n$
\end_inset
nodes in the stack,
in the case that all the right links are null and the tree is just a linked list using the
\begin_inset Formula $\mathtt{RLINK}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc13[24]
\end_layout
\end_inset
Design an algorithm analogous to Algorithm T that traverses a binary tree in
\emph on
preorder
\emph default
,
and prove that your algorithm is correct.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
[Initialize.] Set stack
\family typewriter
A
\family default
empty,
and set the link variable
\begin_inset Formula $\mathtt{P}\gets\mathtt{T}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:23113b"
\end_inset
[
\begin_inset Formula $\mathtt{P}=\Lambda$
\end_inset
?] If
\begin_inset Formula $\mathtt{P}=\Lambda$
\end_inset
,
go to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113d"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:23113c"
\end_inset
[Visit
\begin_inset Formula $\mathtt{P}$
\end_inset
.] Visit
\begin_inset Formula $\mathtt{NODE(P)}$
\end_inset
.
Do
\begin_inset Formula $\mathtt{A}\Leftarrow\mathtt{RLINK(P)}$
\end_inset
,
\begin_inset Formula $\mathtt{P}\gets\mathtt{LLINK(P)}$
\end_inset
,
and return to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:23113d"
\end_inset
[Visit right hand side.] If
\family typewriter
A
\family default
is empty,
the algorithm terminates.
Otherwise set
\begin_inset Formula $\mathtt{P}\Leftarrow\mathtt{A}$
\end_inset
and return to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Standard
We now prove by induction on the number of nodes that,
if we start in step 2,
we traverse the subtree starting at
\begin_inset Formula $\mathtt{P}$
\end_inset
in preorder,
leave the stack unchanged,
and proceed to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113d"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
,
which clearly would show that the algorithm is correct.
\end_layout
\begin_layout Standard
For an empty tree,
this is obvious.
For a tree with
\begin_inset Formula $n$
\end_inset
nodes,
that we start with the root is obvious,
we do that at step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113c"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
with the stack empty.
After that step,
setting
\begin_inset Formula $\mathtt{P}\gets\mathtt{LLINK(P)}$
\end_inset
and returning to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
means that we get to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23113d"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
after traversing the left subtree,
which by the induction hypothesis would leave us on step 4 with the stack like it was before but adding the node
\begin_inset Formula $\mathtt{RLINK(P)}$
\end_inset
.
Then step 4 clearly means to traverse
\begin_inset Formula $\mathtt{RLINK(P)}$
\end_inset
and leave
\family typewriter
A
\family default
like it was before starting processing
\family typewriter
P
\family default
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc16[22]
\end_layout
\end_inset
The diagrams in Fig.
24 help to provide an intuitive characterization of the position of
\begin_inset Formula $\mathtt{NODE(Q}\$\mathtt{)}$
\end_inset
in a binary tree,
in terms of the structure near
\begin_inset Formula $\mathtt{NODE(Q)}$
\end_inset
:
If
\begin_inset Formula $\mathtt{NODE(Q)}$
\end_inset
has a nonempty right subtree,
consider
\begin_inset Formula $\mathtt{Q}=\$\mathtt{P}$
\end_inset
,
\begin_inset Formula $\mathtt{Q}\$=\mathtt{P}$
\end_inset
in the upper diagrams;
\begin_inset Formula $\mathtt{NODE(Q}\$\mathtt{)}$
\end_inset
is the
\begin_inset Quotes eld
\end_inset
leftmost
\begin_inset Quotes erd
\end_inset
node of that right subtree.
If
\family typewriter
\begin_inset Formula $\mathtt{NODE(Q)}$
\end_inset
\family default
has an empty right subtree,
consider
\begin_inset Formula $\mathtt{Q}=\mathtt{P}$
\end_inset
in the lower diagrams;
\begin_inset Formula $\mathtt{NODE(Q}\$\mathtt{)}$
\end_inset
is located by proceeding upward in the tree until after the first upward step to the right.
\end_layout
\begin_layout Standard
Give a similar
\begin_inset Quotes eld
\end_inset
intuitive
\begin_inset Quotes erd
\end_inset
rule for finding the position of
\begin_inset Formula $\mathtt{NODE(Q}*\mathtt{)}$
\end_inset
in a binary tree in terms of the structure near
\family typewriter
NODE(Q)
\family default
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If
\begin_inset Formula $\mathtt{NODE(Q)}$
\end_inset
has a nonempty left subtree,
consider
\begin_inset Formula $\mathtt{Q}=*\mathtt{P}$
\end_inset
in the upper diagrams;
then
\begin_inset Formula $\mathtt{Q}*=\mathtt{P}$
\end_inset
is the left child of
\begin_inset Formula $\mathtt{Q}$
\end_inset
.
Otherwise,
if
\begin_inset Formula $\mathtt{NODE(Q)}$
\end_inset
has a nonempty right subtree,
\begin_inset Formula $\mathtt{Q}*$
\end_inset
is the right child of
\begin_inset Formula $\mathtt{Q}$
\end_inset
.
Otherwise both subtrees are empty and
\begin_inset Formula $\mathtt{Q}*$
\end_inset
can be found by going upward until finding a node that is a left child (which could be
\begin_inset Formula $\mathtt{Q}$
\end_inset
itself) and taking its right sibling.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc17[22]
\end_layout
\end_inset
Give an algorithm analogous to Algorithm S for determining
\begin_inset Formula $\mathtt{P}*$
\end_inset
in a threaded binary tree.
Assume that the tree has a list head as in (8),
(9),
and (10).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If
\family typewriter
P
\family default
points to a node of a threaded binary tree,
this algorithm sets
\begin_inset Formula $\mathtt{Q}\gets\mathtt{P}*$
\end_inset
.
\end_layout
\begin_layout Enumerate
[Is the left subtree nonempty?] If
\begin_inset Formula $\mathtt{LTAG(P)}=1$
\end_inset
,
set
\begin_inset Formula $\mathtt{Q}\gets\mathtt{LLINK(P)}$
\end_inset
and terminate the algorithm.
\end_layout
\begin_layout Enumerate
[Search to the right.] Set
\begin_inset Formula $\mathtt{Q}\gets\mathtt{RLINK(P)}$
\end_inset
.
If
\begin_inset Formula $\mathtt{RTAG(P)}=1$
\end_inset
,
terminate the algorithm.
Otherwise set
\begin_inset Formula $\mathtt{P}\gets\mathtt{Q}$
\end_inset
and repeat this step.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc28[00]
\end_layout
\end_inset
After Algorithm C has been used to make a copy of a tree,
is the new binary tree
\emph on
equivalent
\emph default
to the original,
or
\emph on
similar
\emph default
to it?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
It's equivalent (and similar).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc30[22]
\end_layout
\end_inset
Design an algorithm that threads an unthreaded tree;
for example,
it should transform (2) into (10).
\emph on
Note:
\emph default
Always use notations like
\begin_inset Formula $\mathtt{P}*$
\end_inset
and
\begin_inset Formula $\mathtt{P}\$$
\end_inset
when possible,
instead of repeating the steps for traversal algorithms like Algorithm T.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
This algorithm threads an unthreaded tree
\begin_inset Formula $\mathtt{T}$
\end_inset
.
The fields
\begin_inset Formula $\mathtt{LTAG}$
\end_inset
and
\begin_inset Formula $\mathtt{RTAG}$
\end_inset
in the nodes of
\begin_inset Formula $\mathtt{T}$
\end_inset
are considered to initially contain arbitrary values that we do not need to preserve.
\end_layout
\begin_layout Enumerate
[Initialize list head and variables.] Get
\begin_inset Formula $\mathtt{P}\Leftarrow\mathtt{AVAIL}$
\end_inset
and set
\begin_inset Formula $\mathtt{LTAG(P)}\gets\mathtt{RTAG(P)}\gets0$
\end_inset
,
\begin_inset Formula $\mathtt{LLINK(P)}\gets\mathtt{T}$
\end_inset
,
\begin_inset Formula $\mathtt{RLINK(P)}\gets\mathtt{P}$
\end_inset
,
\begin_inset Formula $\mathtt{T}\gets\mathtt{P}$
\end_inset
,
and
\begin_inset Formula $\mathtt{Q}\gets\mathtt{P}\$$
\end_inset
.
\emph on
(We'll use
\begin_inset Formula $\mathtt{Q}$
\end_inset
as a pointer to the node being considered and
\begin_inset Formula $\mathtt{P}$
\end_inset
and
\begin_inset Formula $\mathtt{R}$
\end_inset
as pointers to the next and previous nodes,
respectively.
We only ever compute the next node in inorder from the last node calculated this way,
which makes it trivial to use algorithm T as a coroutine.)
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:23122b"
\end_inset
[Are we over?] If
\begin_inset Formula $\mathtt{RLINK(Q)}=\mathtt{Q}$
\end_inset
,
the algorithm terminates.
\emph on
(This loop only happens in the list head.)
\end_layout
\begin_layout Enumerate
[Step.] Set
\begin_inset Formula $\mathtt{R}\gets\mathtt{Q}\$$
\end_inset
.
If
\begin_inset Formula $\mathtt{LLINK(Q)}=\Lambda$
\end_inset
,
set
\begin_inset Formula $\mathtt{LTAG(Q)}\gets0$
\end_inset
and
\begin_inset Formula $\mathtt{LLINK(Q)}\gets\mathtt{P}$
\end_inset
,
otherwise set
\begin_inset Formula $\mathtt{LTAG(Q)}\gets1$
\end_inset
.
Similarly,
if
\begin_inset Formula $\mathtt{RLINK(Q)}=\Lambda$
\end_inset
,
set
\begin_inset Formula $\mathtt{RTAG(Q)}\gets0$
\end_inset
and
\begin_inset Formula $\mathtt{RLINK(Q)}\gets\mathtt{R}$
\end_inset
,
otherwise set
\begin_inset Formula $\mathtt{RTAG(Q)}\gets1$
\end_inset
.
Finally set
\begin_inset Formula $\mathtt{P}\gets\mathtt{Q}$
\end_inset
,
\begin_inset Formula $\mathtt{Q}\gets\mathtt{R}$
\end_inset
,
and return to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:23122b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc37[24]
\end_layout
\end_inset
(D.
Ferguson.) If two computer words are necessary to contain two link fields and an
\begin_inset Formula $\mathtt{INFO}$
\end_inset
field,
representation (2) requires
\begin_inset Formula $2n$
\end_inset
words of memory for a tree with
\begin_inset Formula $n$
\end_inset
nodes.
Design a representation scheme for binary trees that uses less space,
assuming that
\emph on
one
\emph default
link and an
\begin_inset Formula $\mathtt{INFO}$
\end_inset
field will fit in a single computer word.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If we allow for a second null value (call it
\begin_inset Formula $\lambda$
\end_inset
,
which could be e.g.
a pointer to a specific word in the program code or to a sentinel constant,
or 4001 in MIX,
or 1 in MMIX),
then we could implement the solution in the book,
which is that,
if
\begin_inset Formula $\mathtt{LINK(P)}=\Lambda$
\end_inset
,
then
\begin_inset Formula $\mathtt{LLINK(P)}=\mathtt{RLINK(P)}=\Lambda$
\end_inset
,
and otherwise
\begin_inset Formula $\mathtt{LLINK(P)}=\mathtt{LINK(P)}$
\end_inset
and
\begin_inset Formula $\mathtt{RLINK(P)}=\mathtt{LINK(P)}+1$
\end_inset
(or
\begin_inset Formula $+\mathtt{sizeof(int)}$
\end_inset
),
except that if
\begin_inset Formula $\mathtt{LINK(LINK(P))}=\lambda$
\end_inset
or
\begin_inset Formula $\mathtt{LINK(LINK(P)}+1\mathtt{)}=\lambda$
\end_inset
then
\begin_inset Formula $\mathtt{LLINK(P)}$
\end_inset
or
\begin_inset Formula $\mathtt{RLINK(P)}$
\end_inset
is respectively
\begin_inset Formula $\Lambda$
\end_inset
.
\end_layout
\end_body
\end_document
|