aboutsummaryrefslogtreecommitdiff
path: root/vol1/2.3.4.1.lyx
blob: 0eeec27c818347c8d89ae315dc8f4bca313e4084 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc4[M20]
\end_layout

\end_inset

Let 
\begin_inset Formula $G'$
\end_inset

 be a finite free tree in which arrows have been drawn on its edges 
\begin_inset Formula $e_{1},\dots,e_{n-1}$
\end_inset

;
 let 
\begin_inset Formula $E_{1},\dots,E_{n-1}$
\end_inset

 be numbers satisfying Kirchhoff's law (1) in 
\begin_inset Formula $G'$
\end_inset

.
 Show that 
\begin_inset Formula $E_{1}=\dots=E_{n-1}=0$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

We prove this by induction on 
\begin_inset Formula $n$
\end_inset

.
 For 
\begin_inset Formula $n=1$
\end_inset

 it is trivial.
 For 
\begin_inset Formula $n>1$
\end_inset

,
 there always exists a node of degree 1 (in an oriented tree,
 this would be a leaf).
 Let 
\begin_inset Formula $e_{r}$
\end_inset

 be the only edge connected to that node,
 clearly 
\begin_inset Formula $E_{r}=0$
\end_inset

,
 so removing 
\begin_inset Formula $e_{r}$
\end_inset

 leaves us with an isolated node and a free tree of degree 0 which follows Kirchhoff's law and has 
\begin_inset Formula $n-1$
\end_inset

 nodes,
 but then by the induction hypothesis all the other 
\begin_inset Formula $E_{k}$
\end_inset

 are also 0.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc8[M25]
\end_layout

\end_inset

When applying Kirchhoff's first law to program flow charts,
 we usually are interested only in the 
\emph on
vertex flows
\emph default
 (the number of times each box of the flow chart is performed),
 not the edge flows analyzed in the text.
 For example,
 in the graph of exercise 7,
 the vertex flows are 
\begin_inset Formula $A=E_{2}+E_{4}$
\end_inset

,
 
\begin_inset Formula $B=E_{5}$
\end_inset

,
 
\begin_inset Formula $C=E_{3}+E_{7}+E_{8}$
\end_inset

,
 
\begin_inset Formula $D=E_{6}+E_{9}$
\end_inset

.
\end_layout

\begin_layout Standard
If we group some vertices together,
 treating them as one 
\begin_inset Quotes eld
\end_inset

supervertex,
\begin_inset Quotes erd
\end_inset

 we can combine edge flows that correspond to the same vertex flow.
 For example,
 edges 
\begin_inset Formula $e_{2}$
\end_inset

 and 
\begin_inset Formula $e_{4}$
\end_inset

 can be combined in the flow chart above if we also put 
\begin_inset Formula $B$
\end_inset

 with 
\begin_inset Formula $D$
\end_inset

:
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{center}
\end_layout

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=2cm]
\end_layout

\begin_layout Plain Layout


\backslash
node[circle,draw](Start){Start};
\end_layout

\begin_layout Plain Layout


\backslash
node[rectangle,draw,right of=Start](A){$A$};
\end_layout

\begin_layout Plain Layout


\backslash
node[rectangle,draw,right of=A](BD){$B,D$};
\end_layout

\begin_layout Plain Layout


\backslash
node[rectangle,draw,right of=BD](C){$C$};
\end_layout

\begin_layout Plain Layout


\backslash
node[circle,draw,right of=C](Stop){Stop};
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (Start) -- node[above]{$e_1$} (A);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (A) -- node[below]{$e_2+e_4$} (BD);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=2pt}] (BD)--node[above]{$e_5$}(C);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=-2pt}] (C)--node[below]{$e_7$}(BD);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (C) -- node[above]{$e_8$} (Stop);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (BD) to[bend right] node[below]{$e_9$} (Stop);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (BD) to[loop below] node[left]{$e_6$} (BD);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (C) to[bend right] node[above]{$e_3$} (A);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (Stop) to[bend right] node[above]{$e_0$} (Start);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}
\end_layout

\begin_layout Plain Layout


\backslash
end{center}
\end_layout

\end_inset

(Here 
\begin_inset Formula $e_{0}$
\end_inset

 has also been added from Stop to Start,
 as in the text.) Continuing this procedure,
 we can combine 
\begin_inset Formula $e_{3}+e_{7}$
\end_inset

,
 then 
\begin_inset Formula $(e_{3}+e_{7})+e_{8}$
\end_inset

,
 then 
\begin_inset Formula $e_{6}+e_{9}$
\end_inset

,
 until we obtain the 
\emph on
reduced flow chart
\emph default
 having edges 
\begin_inset Formula $s=e_{1}$
\end_inset

,
 
\begin_inset Formula $a=e_{2}+e_{4}$
\end_inset

,
 
\begin_inset Formula $b=e_{5}$
\end_inset

,
 
\begin_inset Formula $c=e_{3}+e_{7}+e_{8}$
\end_inset

,
 
\begin_inset Formula $d=e_{6}+e_{9}$
\end_inset

,
 
\begin_inset Formula $t=e_{0}$
\end_inset

,
 precisely one edge for each vertex in the original flow chart:
\begin_inset Formula $\text{}$
\end_inset


\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
begin{center}
\end_layout

\begin_layout Plain Layout


\backslash
begin{tikzpicture}[node distance=3cm]
\end_layout

\begin_layout Plain Layout


\backslash
node[circle,draw](S){Start};
\end_layout

\begin_layout Plain Layout


\backslash
node[rectangle,draw,right of=S](M){$A,B,D,
\backslash
text{Stop}$};
\end_layout

\begin_layout Plain Layout


\backslash
node[rectangle,draw,right of=M](C){$C$};
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=2pt}] (S) -- node[above]{$s$} (M);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=-2pt}] (M) -- node[below]{$t$} (S);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=2pt}] (M) -- node[above]{$b$} (C);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->,transform canvas={yshift=-2pt}] (C) -- node[below]{$c$} (M);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (M) to[out=120,in=60,looseness=4] node[left]{$a$
\backslash
 
\backslash
 } (M);
\end_layout

\begin_layout Plain Layout


\backslash
draw[->] (M) to[out=300,in=240,looseness=4] node[right]{
\backslash
 $d$} (M);
\end_layout

\begin_layout Plain Layout


\backslash
end{tikzpicture}
\end_layout

\begin_layout Plain Layout


\backslash
end{center}
\end_layout

\end_inset


\end_layout

\begin_layout Standard
By construction,
 Kirchhoff's law holds in this reduced flow chart.
 The new edge flows are the vertex flows of the original;
 hence the analysis in the text,
 applied to the reduced flow chart,
 shows how the original vertex flows depend on each other.
\end_layout

\begin_layout Standard
Prove that this reduction process can be reversed,
 in the sense that any set of flows 
\begin_inset Formula $\{a,b,\dots\}$
\end_inset

 satisfying Kirchhoff's law in the reduced flow chart can be 
\begin_inset Quotes eld
\end_inset

split up
\begin_inset Quotes erd
\end_inset

 into a set of edge flows 
\begin_inset Formula $\{e_{0},e_{1},\dots\}$
\end_inset

 in the original flow chart.
 These flows 
\begin_inset Formula $e_{j}$
\end_inset

 satisfy Kirchhoff's law and combine to yield the given flows 
\begin_inset Formula $\{a,b,\dots\}$
\end_inset

;
 some of them might,
 however,
 be negative.
 (Although the reduction procedure has been illustrated for only one particular flow chart,
 your proof should be valid in general.)
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset


\begin_inset Note Greyedout
status open

\begin_layout Plain Layout
(I had to look up the solution,
 this one is difficult.)
\end_layout

\end_inset

 We only have to show that there exists an assignment in the original flowchart that produces any given set of flows in the reduced flowchart.
\end_layout

\begin_layout Standard
Since we get from one to the other by reductions,
 we only have to prove that we can reverse reductions.
 In these reductions,
 there are two arrows 
\begin_inset Formula $e_{1}$
\end_inset

 from vertex or supervertex 
\begin_inset Formula $a$
\end_inset

 to 
\begin_inset Formula $b$
\end_inset

 and 
\begin_inset Formula $e_{2}$
\end_inset

 from 
\begin_inset Formula $a$
\end_inset

 to 
\begin_inset Formula $c$
\end_inset

,
 to get an edge 
\begin_inset Formula $f=e_{1}+e_{2}$
\end_inset

 from 
\begin_inset Formula $a$
\end_inset

 to 
\begin_inset Formula $b,c$
\end_inset

,
 and reverting means recovering 
\begin_inset Formula $e_{1}$
\end_inset

 and 
\begin_inset Formula $e_{2}$
\end_inset

 from 
\begin_inset Formula $f$
\end_inset

 and the other edges.
\end_layout

\begin_layout Standard
If 
\begin_inset Formula $b=c$
\end_inset

,
 we can just make up 
\begin_inset Formula $e_{1}$
\end_inset

 and set 
\begin_inset Formula $e_{2}$
\end_inset

 to 
\begin_inset Formula $f-e_{1}$
\end_inset

.
 If 
\begin_inset Formula $a=b\neq c$
\end_inset

,
 then 
\begin_inset Formula $e_{2}$
\end_inset

 must be such that Kirchhoff's law is preserved for 
\begin_inset Formula $c$
\end_inset

,
 and we can just set 
\begin_inset Formula $e_{1}=f-e_{2}$
\end_inset

.
 The situation 
\begin_inset Formula $a=c\neq b$
\end_inset

 is symmetrical.
 Finally,
 if the three nodes are distinct,
 setting 
\begin_inset Formula $e_{1}$
\end_inset

 and 
\begin_inset Formula $e_{2}$
\end_inset

 such that they follow Kirchhoff's law for 
\begin_inset Formula $b$
\end_inset

 and 
\begin_inset Formula $c$
\end_inset

 makes 
\begin_inset Formula $e_{1}+e_{2}$
\end_inset

 follow Kirchhoff's law in 
\begin_inset Formula $b,c$
\end_inset

 in the reduced flowchart.
\end_layout

\end_body
\end_document