1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO 1,
3,
6 (2pp.,
0:46)
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc1[M10]
\end_layout
\end_inset
The text refers to a set
\begin_inset Formula $S$
\end_inset
containing finite sequences of positive integers,
and states that this set is
\begin_inset Quotes eld
\end_inset
essentially an oriented tree.
\begin_inset Quotes erd
\end_inset
What is the root of this oriented tree,
and what are the arcs?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
The vertices are the elements of
\begin_inset Formula $S$
\end_inset
,
the root is
\begin_inset Formula $\emptyset$
\end_inset
,
and the arcs go from
\begin_inset Formula $(x_{1},\dots,x_{n})$
\end_inset
to
\begin_inset Formula $(x_{1},\dots,x_{n-1})$
\end_inset
,
for every
\begin_inset Formula $(x_{1},\dots,x_{n})\in S\setminus\{\emptyset\}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc3[M23]
\end_layout
\end_inset
If it is possible to tile the upper right quadrant of the plane when given an
\emph on
infinite
\emph default
set of tetrad types,
is it always possible to tile the whole plane?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
No.
For example,
our tiles might be of the form
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
begin{center}
\end_layout
\begin_layout Plain Layout
\backslash
begin{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
draw (0,0) -- (0,2) -- (2,2) -- (2,0) -- (0,0) -- (2,2)
\end_layout
\begin_layout Plain Layout
(0,2) -- (2,0)
\end_layout
\begin_layout Plain Layout
(0.5,1) node{$n$} (1,0.5) node{$n$}
\end_layout
\begin_layout Plain Layout
(1.5,1) node{$n+1$} (1,1.5) node{$n+1$};
\end_layout
\begin_layout Plain Layout
\backslash
end{tikzpicture}
\end_layout
\begin_layout Plain Layout
\backslash
end{center}
\end_layout
\end_inset
for
\begin_inset Formula $n\in\mathbb{N}$
\end_inset
.
Then in the
\begin_inset Formula $(x,y)$
\end_inset
square we might place the tile with
\begin_inset Formula $n=\max\{x,y\}$
\end_inset
and this would tile the upper right quadrant,
but there's obviously no way to tile the whole plane.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc6[M23]
\end_layout
\end_inset
(Otto Schreier.) In a famous paper,
B.
L.
van der Waerden proved the following theorem:
\end_layout
\begin_layout Quote
\shape slanted
If
\begin_inset Formula $k$
\end_inset
and
\begin_inset Formula $m$
\end_inset
are positive integers,
and if we have
\begin_inset Formula $k$
\end_inset
sets
\begin_inset Formula $S_{1},\dots,S_{k}$
\end_inset
of positive integers with every positive integer included in at least one of these sets,
then at least of the sets
\begin_inset Formula $S_{j}$
\end_inset
contains an arithmetic progression of length
\begin_inset Formula $m$
\end_inset
.
\end_layout
\begin_layout Standard
(The latter statement means there exist integers
\begin_inset Formula $a$
\end_inset
and
\begin_inset Formula $\delta>0$
\end_inset
such that
\begin_inset Formula $a+\delta$
\end_inset
,
\begin_inset Formula $a+2\delta$
\end_inset
,
...,
\begin_inset Formula $a+m\delta$
\end_inset
are all in
\begin_inset Formula $S_{j}$
\end_inset
.) If possible,
use this result and the infinity lemma to prove the following stronger statement:
\end_layout
\begin_layout Quote
\shape slanted
If
\begin_inset Formula $k$
\end_inset
and
\begin_inset Formula $m$
\end_inset
are positive integers,
there is a number
\begin_inset Formula $N$
\end_inset
such that if we have
\begin_inset Formula $k$
\end_inset
sets
\begin_inset Formula $S_{1},\dots,S_{k}$
\end_inset
of integers with every integer between 1 and
\begin_inset Formula $N$
\end_inset
included in at least one of these sets,
then at least one of the sets
\begin_inset Formula $S_{j}$
\end_inset
contains an arithmetic progression of length
\begin_inset Formula $m$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
It is enough to prove it when the set that contains every integer between 1 and
\begin_inset Formula $N$
\end_inset
is
\begin_inset Formula $S_{1}$
\end_inset
.
We define a tree whose vertices are the tuples
\begin_inset Formula $(S_{1},\dots,S_{k})$
\end_inset
of finite sets of integers such that,
if
\begin_inset Formula $n=\max\bigcup_{i=1}^{k}S_{i}$
\end_inset
,
every positive integer up to
\begin_inset Formula $n$
\end_inset
is in one of the sets,
and such that no set contains an arithmetic progression of length
\begin_inset Formula $m$
\end_inset
.
The edges go from one such tuple to
\begin_inset Formula $(S_{1}\setminus\{n\},\dots,S_{k}\setminus\{n\})$
\end_inset
,
so the root is
\begin_inset Formula $(\emptyset,\dots,\emptyset)$
\end_inset
and
\begin_inset Formula $n$
\end_inset
is the height of the node in the tree.
\end_layout
\begin_layout Standard
Since each vertex contains a finite number of children (
\begin_inset Formula $2^{k}-1$
\end_inset
,
corresponding to the ways of adding the next number to one or more of the sets),
it follows that if this tree were infinite,
there would be an infinite path.
By van der Waerden theorem,
the component-wise union of this path would give us a tuple
\begin_inset Formula $(S_{1},\dots,S_{k})$
\end_inset
such that some
\begin_inset Formula $S_{j}$
\end_inset
contains an arithmetic progression of length
\begin_inset Formula $m$
\end_inset
,
so by construction one of the nodes in the path would follow this condition.
\begin_inset Formula $\#$
\end_inset
\end_layout
\begin_layout Standard
Thus the tree is finite and we just need to take
\begin_inset Formula $N$
\end_inset
as one plus the depth of the tree.
\end_layout
\end_body
\end_document
|