1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc5[18]
\end_layout
\end_inset
Suppose it is known that
\family typewriter
N
\family default
is always 100 or more in Algorithm A.
Would it be a good idea to set
\begin_inset Formula $c=100$
\end_inset
in the modified step
\begin_inset Formula $\text{A4}'$
\end_inset
?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
No,
because while we cannot use that storage
\emph on
right now
\emph default
,
it might be worth it after the next allocated block gets freed.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc6[23]
\end_layout
\end_inset
(
\emph on
Next fit.
\emph default
) After Algorithm A has been used repeatedly,
there will be a strong tendency for blocks of small
\family typewriter
SIZE
\family default
to remain at the front of the
\family typewriter
AVAIL
\family default
list,
so that it will often be necessary to search quite far into the list before finding a block of length
\family typewriter
N
\family default
or more.
For example,
notice how the size of the blocks essentially increases in Fig.
42,
for both reserved and free blocks,
from the beginning of memory to the end.
(The
\family typewriter
AVAIL
\family default
list used while Fig.
42 was being prepared was kept sorted by the order of location,
as required by Algorithm B.) Can you suggest a way to modify Algorithm A so that
\end_layout
\begin_layout Enumerate
short blocks won't need to accumulate in a particular area,
and
\end_layout
\begin_layout Enumerate
the
\family typewriter
AVAIL
\family default
list may still be kept in order of increasing memory locations,
for purposes of algorithms like Algorithm B?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Yes,
we could arrange the free space as a circular list and start each search where the previous one left off.
In more precise terms,
in A1 we would change
\begin_inset Formula $\mathtt{Q}\gets\mathtt{LOC(AVAIL)}$
\end_inset
to
\begin_inset Formula $\mathtt{Q}\gets\mathtt{AVAIL}$
\end_inset
,
in A4 we would add
\begin_inset Formula $\mathtt{AVAIL}\gets\mathtt{Q}$
\end_inset
,
and the test in A2 would be
\begin_inset Formula $\mathtt{Q}=\mathtt{AVAIL}$
\end_inset
rather than
\begin_inset Formula $\mathtt{P}=\Lambda$
\end_inset
and it would be skipped in the first iteration.
Other algorithms that deal with memory management might need to be modified as well to avoid invalidating
\family typewriter
AVAIL
\family default
.
For example,
algorithm B would have to deal with this when freeing the block just before it.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc7[10]
\end_layout
\end_inset
The example (1) shows that first-fit can sometimes be definitely superior to best-fit.
Give a similar example that shows a case where best-fit is superior to first-fit.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\align center
\begin_inset Tabular
<lyxtabular version="3" rows="5" columns="3">
<features tabularvalignment="middle">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<column alignment="center" valignment="top">
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\emph on
memory
\begin_inset Newline newline
\end_inset
request
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\emph on
available areas,
\begin_inset Newline newline
\end_inset
first-fit
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\emph on
available areas,
\begin_inset Newline newline
\end_inset
best-fit
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
—
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1300,
1200
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1300,
1200
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1100
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
200,
1200
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1300,
100
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
250
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
200,
950
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1050,
100
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
1000
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
stuck
\end_layout
\end_inset
</cell>
<cell alignment="center" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
50,
100
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc12[20]
\end_layout
\end_inset
Modify Algorithm A so that it follows the boundary-tag conventions (7)–(9),
uses the modified step A4' described in the text,
and also incorporates the improvement of exercise 6.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\series bold
Algorithm A'
\series default
(
\emph on
Next-fit method with boundary-tag conventions
\emph default
).
Let the heap be stored as in (7)–(9),
\begin_inset Formula $c$
\end_inset
be as in step A4' in the text,
and let
\family typewriter
PTR
\family default
be a variable whose value persists among runs of this algorithm and which starts with the value
\family typewriter
AVAIL
\family default
.
(We could just get rid of the list head in
\family typewriter
LOC(AVAIL)
\family default
and use this
\family typewriter
Q
\family default
instead of
\family typewriter
AVAIL
\family default
,
but let's follow convention (9).) For this algorithm
\begin_inset Formula $\mathtt{N}$
\end_inset
is two more than the number of words we want to allocate.
\end_layout
\begin_layout Enumerate
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\series bold
A1.
\end_layout
\end_inset
[Initialize.] Set
\begin_inset Formula $\mathtt{P}\gets\mathtt{PTR}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\series bold
A2.
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "enu:e2512b"
\end_inset
[Is
\family typewriter
SIZE
\family default
enough?] If
\begin_inset Formula $\mathtt{SIZE(P)}\geq\mathtt{N}$
\end_inset
,
go to
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2512d"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\series bold
A3.
\end_layout
\end_inset
[End of list?] Set
\begin_inset Formula $\mathtt{P}\gets\mathtt{LINK(P)}$
\end_inset
.
If
\begin_inset Formula $\mathtt{P}=\mathtt{PTR}$
\end_inset
,
the algorithm terminates unsuccessfully;
there is no room for a block of
\family typewriter
N
\family default
consecutive blocks.
Otherwise go back to
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2512b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\series bold
A4.
\end_layout
\end_inset
\begin_inset CommandInset label
LatexCommand label
name "enu:e2512d"
\end_inset
[Reserve
\family typewriter
N
\family default
.] Set
\begin_inset Formula $\mathtt{K}\gets\mathtt{SIZE(P)}-\mathtt{N}$
\end_inset
,
but if
\begin_inset Formula $\mathtt{K}<c$
\end_inset
,
set
\begin_inset Formula $\mathtt{K}\gets0$
\end_inset
.
Then,
set
\begin_inset Formula $\mathtt{L}\gets\mathtt{P}+\mathtt{K}$
\end_inset
and
\begin_inset Formula $\mathtt{TAG(L)}\gets\mathtt{TAG(P+SIZE(P)}-1\mathtt{)}\gets\text{``\ensuremath{+}''}$
\end_inset
.
Finally,
if
\begin_inset Formula $\mathtt{K}=0$
\end_inset
,
set
\begin_inset Formula $\mathtt{LINK(LINK(P}+1\mathtt{))}\gets\mathtt{LINK(P)}$
\end_inset
and
\begin_inset Formula $\mathtt{LINK(LINK(P)}+1\mathtt{)}=\mathtt{LINK(P}+1\mathtt{)}$
\end_inset
;
otherwise set
\begin_inset Formula $\mathtt{SIZE(L)}\gets\mathtt{N}$
\end_inset
,
\begin_inset Formula $\mathtt{SIZE(P)}\gets\mathtt{SIZE(L}-1\mathtt{)}\gets\mathtt{K}$
\end_inset
,
and
\begin_inset Formula $\mathtt{TAG(L}-1\mathtt{)}\gets\text{``\ensuremath{-}''}$
\end_inset
.
The result is an allocation of size
\begin_inset Formula $\mathtt{SIZE(L)}-2\geq\mathtt{N}-2$
\end_inset
that spans from
\begin_inset Formula $\mathtt{L}+1$
\end_inset
to
\begin_inset Formula $\mathtt{L}+\mathtt{SIZE(L)}-1$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc15[24]
\end_layout
\end_inset
Show how to speed up Algorithm C at the expense of a slightly longer program,
by not changing any more links than absolutely necessary in each of four cases depending on whether
\begin_inset Formula $\mathtt{TAG(P0}-1\mathtt{)}$
\end_inset
,
\begin_inset Formula $\mathtt{TAG(P0}+\mathtt{SIZE(P0))}$
\end_inset
are plus or minus.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
[Initialize.] Set
\begin_inset Formula $\mathtt{S}\gets\mathtt{SIZE(P0)}$
\end_inset
and
\begin_inset Formula $\mathtt{PU}\gets\mathtt{P0}+\mathtt{S}$
\end_inset
.
\end_layout
\begin_layout Enumerate
[Check lower bound.] If
\begin_inset Formula $\mathtt{TAG(P0}-1\mathtt{)}=\text{``\ensuremath{+}''}$
\end_inset
,
go to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2515e"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
[Move to lower area.] Set
\begin_inset Formula $\mathtt{S}\gets\mathtt{S}+\mathtt{SIZE(P0}-1\mathtt{)}$
\end_inset
and
\begin_inset Formula $\mathtt{P0}\gets\mathtt{P0}-\mathtt{SIZE(P0}-1\mathtt{)}$
\end_inset
.
\end_layout
\begin_layout Enumerate
[Remove upper area.] If
\begin_inset Formula $\mathtt{TAG(PU)}=\text{``\ensuremath{-}''}$
\end_inset
,
set
\begin_inset Formula $\mathtt{P1}\gets\mathtt{LINK(PU)}$
\end_inset
,
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LINK(PU}+1\mathtt{)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P1}+1\mathtt{)}\gets\mathtt{P2}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P2}\mathtt{)}\gets\mathtt{P1}$
\end_inset
,
and
\begin_inset Formula $\mathtt{S}\gets\mathtt{S}+\mathtt{SIZE(PU)}$
\end_inset
.
Go to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2515g"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:e2515e"
\end_inset
[Allocate.] If
\begin_inset Formula $\mathtt{TAG(PU)}=\text{``\ensuremath{+}''}$
\end_inset
,
set
\begin_inset Formula $\mathtt{LINK(P0)}\gets\mathtt{AVAIL}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P0}+1\mathtt{)}\gets\mathtt{LOC(AVAIL)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(AVAIL}+1\mathtt{)}\gets\mathtt{P0}$
\end_inset
,
and
\begin_inset Formula $\mathtt{AVAIL}\gets\mathtt{P0}$
\end_inset
.
\end_layout
\begin_layout Enumerate
[Merge upper area.] Otherwise let
\begin_inset Formula $\mathtt{P1}\gets\mathtt{LINK(P0)}\gets\mathtt{LINK(PU)}$
\end_inset
,
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LINK(P0}+1\mathtt{)}\gets\mathtt{LINK(PU}+1\mathtt{)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P1}+1\mathtt{)}\gets\mathtt{LINK(P2)}\gets\mathtt{P0}$
\end_inset
,
and
\begin_inset Formula $\mathtt{S}\gets\mathtt{SIZE(P0)}+\mathtt{SIZE(PU)}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:e2515g"
\end_inset
[Update size.] Set
\begin_inset Formula $\mathtt{TAG(P0)}\gets\mathtt{TAG(P0}+\mathtt{S}-1\mathtt{)}\gets\text{``\ensuremath{-}''}$
\end_inset
and
\begin_inset Formula $\mathtt{SIZE(P0)}\gets\mathtt{SIZE(P0}+\mathtt{S}-1\mathtt{)}\gets\mathtt{S}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc17[10]
\end_layout
\end_inset
What should the contents of
\begin_inset Formula $\mathtt{LOC(AVAIL)}$
\end_inset
and
\begin_inset Formula $\mathtt{LOC(AVAIL)}+1$
\end_inset
be in (9) when there are no available blocks present?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
They should both point to
\begin_inset Formula $\mathtt{LOC(AVAIL)}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc18[20]
\end_layout
\end_inset
Figures 42 and 43 were obtained using the same data,
and essentially the same algorithms (Algorithms A and B),
except that Fig.
43 was prepared by modifying Algorithm A to choose best-fit instead of first-fit.
Why did this cause Fig.
42 to have a large available area in the
\emph on
higher
\emph default
locations of memory,
while in Fig.
43 there is a large available area in the
\emph on
lower
\emph default
locations?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
Both algorithms allocate at the end of the block of free memory that they choose,
and in the beginning,
both will allocate from higher to lower locations,
leaving a large area at the end.
\end_layout
\begin_layout Standard
However,
as soon as some of the areas allocated are freed,
the best fit method will tend to use those newly freed areas from the higher locations since they will tend to be smaller,
whereas the first fit method will prefer to allocate in the large lower area.
\end_layout
\begin_layout Standard
Eventually the first-fit method fills up the large area and starts allocating at other areas in the lower part,
leaving the higher locations mostly free as the first chunks are freed,
whereas the best fit method continues to avoid filling up this large area.
\end_layout
\begin_layout Standard
Note that this works because most allocations have a limited lifetime;
in other algorithms it might be the case that some of the first allocations are never freed until the end of the algorithm while many other chunks appear and disappear quickly.
In this case,
the first fit method would still show some allocations in the higher locations,
although more sparse than those in lower locations.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc19[24]
\end_layout
\end_inset
Suppose that blocks of memory have the form of (7),
but without the
\family typewriter
TAG
\family default
or
\family typewriter
SIZE
\family default
fields required in the last word of the block.
Suppose further that the following simple algorithm is being used to make a reserved block free again:
\begin_inset Formula $\mathtt{Q}\gets\mathtt{AVAIL}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P0)}\gets\mathtt{Q}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P0}+1\mathtt{)}\gets\mathtt{LOC(AVAIL)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(Q}+1\mathtt{)}\gets\mathtt{P0}$
\end_inset
,
\begin_inset Formula $\mathtt{AVAIL}\gets\mathtt{P0}$
\end_inset
,
\begin_inset Formula $\mathtt{TAG(P0)}\gets\text{``\ensuremath{-}''}$
\end_inset
.
(This algorithm does nothing about collapsing adjacent areas together.)
\end_layout
\begin_layout Standard
Design a reservation algorithm,
similar to Algorithm A,
that does the necessary collapsing of adjacent free blocks while searching the
\family typewriter
AVAIL
\family default
list,
and at the same time avoids any unnecessary fragmentation of memory as in (2),
(3),
and (4).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
The following algorithm reserves a block of size
\begin_inset Formula $\mathtt{N}\geq2$
\end_inset
in the first available area while collapsing adjacent free blocks to find such area.
In order to avoid unnecessary fragmentation,
it allocates in the beginning of the block that is found rather than in the end.
\end_layout
\begin_layout Enumerate
[Initialize.] Set
\begin_inset Formula $\mathtt{P}\gets\mathtt{AVAIL}$
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:e2519b"
\end_inset
[Collapse free blocks.] Let
\begin_inset Formula $\mathtt{PU}\gets\mathtt{P}+\mathtt{SIZE(P)}$
\end_inset
.
If
\begin_inset Formula $\mathtt{TAG(PU)}=\text{``\ensuremath{-}''}$
\end_inset
,
then set
\begin_inset Formula $\mathtt{P1}\gets\mathtt{LINK(PU)}$
\end_inset
,
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LINK(PU}+1\mathtt{)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P1}+1\mathtt{)}\gets\mathtt{P2}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P2)}\gets\mathtt{P1}$
\end_inset
,
\begin_inset Formula $\mathtt{SIZE(P)}\gets\mathtt{SIZE(P)}+\mathtt{SIZE(PU)}$
\end_inset
,
and repeat this step.
\end_layout
\begin_layout Enumerate
[Do we have enough space?] If
\begin_inset Formula $\mathtt{SIZE(P)}<\mathtt{N}$
\end_inset
,
go to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2519e"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
[Advance.] Set
\begin_inset Formula $\mathtt{P}\gets\mathtt{LINK(P)}$
\end_inset
.
If
\begin_inset Formula $\mathtt{P}=\mathtt{LOC(AVAIL)}$
\end_inset
,
terminate unsuccessfully;
otherwise go to step
\begin_inset CommandInset ref
LatexCommand ref
reference "enu:e2519b"
plural "false"
caps "false"
noprefix "false"
nolink "false"
\end_inset
.
\end_layout
\begin_layout Enumerate
\begin_inset CommandInset label
LatexCommand label
name "enu:e2519e"
\end_inset
[Reserve block.] Set
\begin_inset Formula $\mathtt{P1}\gets\mathtt{LINK(P)}$
\end_inset
,
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LINK(P}+1\mathtt{)}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P1}+1\mathtt{)}\gets\mathtt{P2}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(P2)}\gets\mathtt{P1}$
\end_inset
,
and
\begin_inset Formula $\mathtt{TAG(P)}\gets\text{``}+''$
\end_inset
.
\begin_inset Formula $\mathtt{PF}\gets\mathtt{P+N}$
\end_inset
,
\end_layout
\begin_layout Enumerate
[Reclaim extra space.] Let
\begin_inset Formula $\mathtt{K}\gets\mathtt{SIZE(P)}-\mathtt{N}$
\end_inset
and
\begin_inset Formula $\mathtt{PU}\gets\mathtt{P}+\mathtt{SIZE(P)}$
\end_inset
.
If
\begin_inset Formula $\mathtt{K}=0$
\end_inset
,
or
\begin_inset Formula $\mathtt{K}=1$
\end_inset
and
\begin_inset Formula $\mathtt{TAG(P1)}=\text{``\ensuremath{+}''}$
\end_inset
,
then terminate the algorithm.
Otherwise,
set
\begin_inset Formula $\mathtt{P1}\gets\mathtt{AVAIL}$
\end_inset
and
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LOC(AVAIL)}$
\end_inset
if
\begin_inset Formula $\mathtt{TAG(PU)}=\text{``\ensuremath{+}''}$
\end_inset
,
\begin_inset Formula $\mathtt{P1}\gets\mathtt{LINK(PU)}$
\end_inset
and
\begin_inset Formula $\mathtt{P2}\gets\mathtt{LINK(PU}+1\mathtt{)}$
\end_inset
otherwise.
Finally set
\begin_inset Formula $\mathtt{LINK(P1}+1\mathtt{)}\gets\mathtt{LINK(P2)}\gets\mathtt{PF}\gets\mathtt{P}+\mathtt{N}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(PF)}\gets\mathtt{P1}$
\end_inset
,
\begin_inset Formula $\mathtt{LINK(PF}+1\mathtt{)}\gets\mathtt{P2}$
\end_inset
,
\begin_inset Formula $\mathtt{SIZE(PF)}\gets\mathtt{K}$
\end_inset
,
\begin_inset Formula $\mathtt{TAG(PF)}\gets\text{``\ensuremath{-}''}$
\end_inset
,
and
\begin_inset Formula $\mathtt{SIZE(P)}\gets\mathtt{N}$
\end_inset
.
The resulting block is at position
\begin_inset Formula $\mathtt{P}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc20[00]
\end_layout
\end_inset
Why is it desirable to have the
\begin_inset Formula $\mathtt{AVAIL[}k\mathtt{]}$
\end_inset
lists in the buddy system doubly linked instead of simply having straight linear lists?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
To be able to remove arbitrary elements from the lists efficiently in step S2 of the liberation algorithm.
\end_layout
\begin_layout Standard
\begin_inset Note Note
status open
\begin_layout Plain Layout
TODO 22,
23,
25,
26,
36
\end_layout
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc22[21]
\end_layout
\end_inset
The text repeatedly states that the buddy system allows only blocks of size
\begin_inset Formula $2^{k}$
\end_inset
to be used,
and exercise 21 shows this can lead to a substantial increase in the storage required.
But if an 11-word block is needed in connection with the buddy system,
why couldn't we find a 16-word block and divide it into an 11-word piece together with two free blocks of sizes 4 and 1?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
We could indeed modify the algorithms to work like this,
although they would get quite complicated and slower (more blocks would have to be marked as reserved for the liberation algorithm to work).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc23[05]
\end_layout
\end_inset
What is the binary address of the buddy of the block of size 4 whose binary address is 011011110000?
What would it be if the block were of size 15 instead of 4?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
011011110100 and 011011100000,
respectively.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc25[22]
\end_layout
\end_inset
Criticize the following idea:
\begin_inset Quotes eld
\end_inset
Dynamic storage allocation using the buddy system will never reserve a block of size
\begin_inset Formula $2^{m}$
\end_inset
in practical situations (since this would fill the whole memory),
and,
in general,
there is a maximum size
\begin_inset Formula $2^{n}$
\end_inset
for which no blocks of greater size will ever be reserved.
Therefore it is a waste of time to start with such large blocks available,
and to combine buddies in Algorithm S when the combined block has a size larger than
\begin_inset Formula $2^{n}$
\end_inset
.
\begin_inset Quotes erd
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
While this is correct when we actually know the program and the size of the allocations it can make is bounded for any valid input,
there are many situations where this is not the case,
for example when we are writing a library or when the size of some allocation depends on the input;
then the program would spuriously fail for inputs that it could otherwise have processed at least in a some computer.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc26[21]
\end_layout
\end_inset
Explain how the buddy system could be used for dynamic storage allocation in memory locations 0 through
\begin_inset Formula $\mathtt{M}-1$
\end_inset
even when
\family typewriter
M
\family default
does not have the form
\begin_inset Formula $2^{m}$
\end_inset
as required in the text.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
If
\begin_inset Formula $m$
\end_inset
is an integer such that
\begin_inset Formula $2^{m}\leq\mathtt{M}<2^{m+1}$
\end_inset
,
the memory could be split into pieces of size
\begin_inset Formula $2^{k}$
\end_inset
,
\begin_inset Formula $0\leq k\leq m$
\end_inset
,
no more than one piece of the same size.
For example,
for locations 0 to 3999,
we would initially have one free area at 0 of size 2048,
another one at 2048 of size 1024,
another one at 3072 of size 512,
another one at 3584 of size 256,
another one at 3840 of size 128,
and another one at 3968 of size 32.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc36[20]
\end_layout
\end_inset
A certain lunch counter in Hollywood,
California,
contains 23 seats in a row.
Diners enter the shop in groups of one or two,
and a glamorous hostess shows them where to sit.
Prove that she will always be able to seat people immediately without splitting up any pairs,
if no customer who comes alone is assigned to any of the seats numbered 2,
5,
8,
...,
20,
provided that there never are more than 16 customers present at a time.
(Pairs leave together.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
A single customer can always seat,
and they can avoid the
\begin_inset Quotes eld
\end_inset
forbidden
\begin_inset Quotes erd
\end_inset
seats.
Now,
if a pair comes,
there were at most 14 customers already there.
If seats 22 and 23 are free,
then we can sit the pair there.
Otherwise there are at most 13 customers in the seats 1–21,
so if we divide the seats in 7 groups of 3 (1–3,
4–6,
etc.),
at least one of these groups has no more than one seat taken,
and it cannot be the middle one,
so that group has two consecutive free seats where we can seat the pair.
\end_layout
\end_body
\end_document
|