aboutsummaryrefslogtreecommitdiff
path: root/vol2/3.3.1.lyx
blob: f2bfc5c5acf2061c8603a8c05c2fd96a116c841e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset FormulaMacro
\newcommand{\stirla}[2]{\genfrac[]{0pt}{}{#1}{#2}}
{\begin{bmatrix}{\textstyle #1}\\
{\textstyle #2}
\end{bmatrix}}
\end_inset


\begin_inset FormulaMacro
\newcommand{\stirlb}[2]{\genfrac\{\}{0pt}{}{#1}{#2}}
{\begin{Bmatrix}{\textstyle #1}\\
{\textstyle #2}
\end{Bmatrix}}
\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc1[00]
\end_layout

\end_inset

What line of the chi-square table should be used to check whether or not the value 
\begin_inset Formula $V=7\frac{7}{48}$
\end_inset

 of Eq.
 (5) is improbably high?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Row 
\begin_inset Formula $\nu=k-1=11-1=10$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc3[23]
\end_layout

\end_inset

Some dice that were loaded as described in the previous exercise were rolled 144 times,
 and the following values were observed:
\begin_inset Formula 
\[
\begin{array}{rrrrrrrrrrrr}
\text{value of }s= & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
\text{observed number, }Y_{s}= & 2 & 6 & 10 & 16 & 18 & 32 & 20 & 13 & 16 & 9 & 2
\end{array}
\]

\end_inset

Apply the chi-square test to 
\emph on
these
\emph default
 values,
 using the probabilities in (1),
 pretending that the dice are not in fact known to be faulty.
 Does the chi-square test detect the bad dice?
 If not,
 explain why not.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

We take the values 
\begin_inset Formula $np_{s}$
\end_inset

 from (2),
 to get:
\begin_inset Formula 
\begin{align*}
V & =\sum_{s=2}^{12}\frac{(Y_{s}-np_{s})^{2}}{np_{s}}=\frac{4}{4}+\frac{4}{8}+\frac{4}{12}+\frac{0}{16}+\frac{4}{20}+\frac{64}{24}+\frac{0}{20}+\frac{9}{16}+\frac{16}{12}+\frac{1}{8}+\frac{4}{4}\\
 & =1+\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+\frac{8}{3}+\frac{9}{16}+\frac{4}{3}+\frac{1}{8}+1=2+\frac{13}{3}+\frac{19}{16}+\frac{1}{5}\\
 & =7+\frac{80+45+48}{240}=7+\frac{173}{240}.
\end{align*}

\end_inset

Using 
\begin_inset Formula $n=10$
\end_inset

 we get a probability between 
\begin_inset Formula $.25$
\end_inset

 and 
\begin_inset Formula $.5$
\end_inset

,
 which is not suspect.
 This seems to be because the bias of one die compensates that of the other,
 smoothing out the probability differences.
 The difference could be discovered with a large enough value of 
\begin_inset Formula $n$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc4[23]
\end_layout

\end_inset

The author actually obtained the data in experiment 1 of (9) by simulating dice in which one was normal,
 the other was loaded so that it always turned up 1 or 6.
 (The latter two possibilities were equally probable.) Compute the probabilities that replace (1) in this case,
 and by using a chi-square test decide if the results of that experiment are consistent with the dice being loaded in this way.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

We compute the table with the sum of the two dice:
\begin_inset Formula 
\[
\begin{array}{r|rrrrrr}
 & 1 & 2 & 3 & 4 & 5 & 6\\
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7\\
6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
\]

\end_inset

This gives us the following table of probabilities:
\begin_inset Formula 
\[
\begin{array}{rrrrrrrrrrrr}
s= & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12\\
144p_{s}= & 12 & 12 & 12 & 12 & 12 & 24 & 12 & 12 & 12 & 12 & 12
\end{array}
\]

\end_inset

Thus,
\begin_inset Formula 
\begin{align*}
V & =\frac{1}{12}\left(8^{2}+2^{2}+2^{2}+1^{2}+8^{2}+\frac{6^{2}}{2}+6^{2}+1^{2}+1^{2}+2^{2}+1^{2}\right)\\
 & =\frac{1}{12}(64+4+4+1+64+18+26+1+1+2+1)=\frac{186}{12}=15+\frac{1}{2}.
\end{align*}

\end_inset

With 
\begin_inset Formula $n=10$
\end_inset

,
 this is somewhat in the middle of 
\begin_inset Formula $p=.75$
\end_inset

 and 
\begin_inset Formula $p=.95$
\end_inset

,
 which is consistent.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc8[00]
\end_layout

\end_inset

The text describes an experiment in which 20 values of the statistic 
\begin_inset Formula $K_{10}^{+}$
\end_inset

 were obtained in the study of a random sequence.
 These values were plotted,
 to obtain Fig.
 4,
 and a KS statistic was computed from the resulting graph.
 Why were the table entries for 
\begin_inset Formula $n=20$
\end_inset

 used to study the resulting statistic,
 instead of the table entries for 
\begin_inset Formula $n=10$
\end_inset

?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Because the value of 
\begin_inset Formula $n$
\end_inset

 to use is not about the underlying probability distribution (which can be an arbitrary real-valued one,
 not just 
\begin_inset Formula $K_{n}^{+}$
\end_inset

 or 
\begin_inset Formula $K_{n}^{-}$
\end_inset

),
 but rather it is the number of observations we make for this distribution,
 which is 20.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc9[20]
\end_layout

\end_inset

The experiment described in the text consisted of plotting 20 values of 
\begin_inset Formula $K_{10}^{+}$
\end_inset

,
 computed from the maximum-of-5 test applied to different parts of a random sequence.
 We could have computed also the corresponding 20 values of 
\begin_inset Formula $K_{10}^{-}$
\end_inset

;
 since 
\begin_inset Formula $K_{10}^{-}$
\end_inset

 has the same distribution as 
\begin_inset Formula $K_{10}^{+}$
\end_inset

,
 we could lump together the 40 values thus obtained (that is,
 20 of the 
\begin_inset Formula $K_{10}^{+}$
\end_inset

's and 20 of the 
\begin_inset Formula $K_{10}^{-}$
\end_inset

's),
 and a KS test could be applied so that we would get new values 
\begin_inset Formula $K_{40}^{+}$
\end_inset

,
 
\begin_inset Formula $K_{40}^{-}$
\end_inset

.
 Discuss the merits of this idea.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

The issue here is that the 40 points would not be independent;
 if the maximum of 5 is low,
 the minimum of 5 must be necessarily lower,
 the probability of it being higher is 0.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc10[20]
\end_layout

\end_inset

Suppose a chi-square test is done by making 
\begin_inset Formula $n$
\end_inset

 observations,
 and the value 
\begin_inset Formula $V$
\end_inset

 is obtained.
 Now we repeat the test on these same 
\begin_inset Formula $n$
\end_inset

 observations over again (getting,
 of course,
 the same results),
 and we put together the data from both tests,
 regarding it as a single chi-square test with 
\begin_inset Formula $2n$
\end_inset

 observations.
 (This procedure violates the text's stipulation that all of the observations must be independent of one another.) How is the second value of 
\begin_inset Formula $V$
\end_inset

 related to the first one?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Let 
\begin_inset Formula $Y'_{s}=2Y_{s}$
\end_inset

 be the number of observations of category 
\begin_inset Formula $s$
\end_inset

 in the second test,
 the second value of 
\begin_inset Formula $V$
\end_inset

 is
\begin_inset Formula 
\[
V'=\sum_{s=1}^{k}\frac{(Y'_{s}-2np_{s})^{2}}{2np_{s}}=\sum_{s=1}^{k}\frac{(2Y_{s}-2np_{s})^{2}}{2np_{s}}=2V.
\]

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc11[10]
\end_layout

\end_inset

Solve exercise 10 substituting the KS test for the chi-square test.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

This time,
 after sorting the 
\begin_inset Formula $2n$
\end_inset

 observations 
\begin_inset Formula $X'_{1},\dots,X'_{2n}$
\end_inset

,
 we have 
\begin_inset Formula $X_{j}=X'_{2j-1}=X'_{2j}$
\end_inset

,
 so
\begin_inset Formula 
\[
K_{2n}^{+}=\sqrt{2n}\max_{1\leq j\leq2n}\left(\frac{j}{2n}-F(X'_{j})\right)=\sqrt{2n}\max_{1\leq j\leq n}\left(\frac{2j}{2n}-F(X_{j})\right)=\sqrt{2}K_{n}^{+},
\]

\end_inset

and similarly,
\begin_inset Formula 
\[
K_{2n}^{-}=\sqrt{2n}\max_{1\leq j\leq2n}\left(F(X'_{j})-\frac{j-1}{2n}\right)=\sqrt{2n}\max_{1\leq j\leq n}\left(F(X_{j})-\frac{2j-2}{2n}\right)=\sqrt{2}K_{n}^{-}.
\]

\end_inset


\end_layout

\end_body
\end_document