aboutsummaryrefslogtreecommitdiff
path: root/vol2/3.3.4.lyx
blob: 1c06b606fa69832ddbe52fae679a7c5778dcf338 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc1[M10]
\end_layout

\end_inset

To what does the spectral test reduce in 
\emph on
one
\emph default
 dimension?
 (In other words,
 what happens when 
\begin_inset Formula $t=1$
\end_inset

?)
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

In this case 
\begin_inset Formula $\nu_{1}^{-1}$
\end_inset

 is the maximum distance between points in 
\begin_inset Formula $\{x/m\}_{x=0}^{m-1}$
\end_inset

,
 which is 
\begin_inset Formula $m^{-1}$
\end_inset

,
 so 
\begin_inset Formula $\nu_{1}=m$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc4[M23]
\end_layout

\end_inset

Let 
\begin_inset Formula $u_{11}$
\end_inset

,
 
\begin_inset Formula $u_{12}$
\end_inset

,
 
\begin_inset Formula $u_{21}$
\end_inset

,
 
\begin_inset Formula $u_{22}$
\end_inset

 be elements of a 
\begin_inset Formula $2\times2$
\end_inset

 integer matrix such that 
\begin_inset Formula $u_{11}+au_{12}\equiv u_{21}+au_{22}\equiv0\pmod m$
\end_inset

 and 
\begin_inset Formula $u_{11}u_{22}-u_{21}u_{12}=m$
\end_inset

.
\end_layout

\begin_layout Enumerate
Prove that all integer solutions 
\begin_inset Formula $(y_{1},y_{2})$
\end_inset

 to the congruence 
\begin_inset Formula $y_{1}+ay_{2}\equiv0\pmod m$
\end_inset

 have the form 
\begin_inset Formula $(y_{1},y_{2})=(x_{1}u_{11}+x_{2}u_{21},x_{1}u_{12}+x_{2}u_{22})$
\end_inset

 for integer 
\begin_inset Formula $x_{1}$
\end_inset

,
 
\begin_inset Formula $x_{2}$
\end_inset

.
\end_layout

\begin_layout Enumerate
If,
 in addition,
 
\begin_inset Formula $2|u_{11}u_{21}+u_{12}u_{22}|\leq u_{11}^{2}+u_{12}^{2}\leq u_{21}^{2}+u_{22}^{2}$
\end_inset

,
 prove that 
\begin_inset Formula $(y_{1},y_{2})=(u_{11},u_{12})$
\end_inset

 minimizes 
\begin_inset Formula $y_{1}^{2}+y_{2}^{2}$
\end_inset

 over all nonzero solutions to the congruence.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Assume 
\begin_inset Formula $a\in\mathbb{Z}$
\end_inset

 and 
\begin_inset Formula $m\in\mathbb{N}^{*}$
\end_inset

.
\end_layout

\begin_layout Enumerate
Clearly all pairs of integers 
\begin_inset Formula $(p,q)$
\end_inset

 can be written as 
\begin_inset Formula $(p,q)=z_{1}(m,0)+z_{2}(-a,1)+z_{3}(1,0)$
\end_inset

 for some 
\begin_inset Formula $z_{1},z_{2},z_{3}\in\mathbb{Z}$
\end_inset

 with 
\begin_inset Formula $0\leq z_{3}<m$
\end_inset

.
 Moreover,
 solutions to the congruence are precisely those pairs with 
\begin_inset Formula $z_{3}=0$
\end_inset

,
 and we just have to prove that 
\begin_inset Formula $(m,0)$
\end_inset

 and 
\begin_inset Formula $(-a,1)$
\end_inset

 can be expressed as an integer linear combination of 
\begin_inset Formula $(u_{11},u_{12})$
\end_inset

 and 
\begin_inset Formula $(u_{21},u_{22})$
\end_inset

.
 
\end_layout

\begin_deeper
\begin_layout Standard
For 
\begin_inset Formula $(m,0)$
\end_inset

,
 
\begin_inset Formula $u_{22}(u_{11},u_{12})-u_{12}(u_{21},u_{22})=(m,0)$
\end_inset

.
 For 
\begin_inset Formula $(a,-1)$
\end_inset

,
 if 
\begin_inset Formula $j,k\in\mathbb{Z}$
\end_inset

 are such that 
\begin_inset Formula $u_{11}=jm-au_{12}$
\end_inset

 and 
\begin_inset Formula $u_{21}=km-au_{22}$
\end_inset

,
 we can expand to get 
\begin_inset Formula $m=u_{11}u_{22}-u_{21}u_{12}=ju_{22}m-ku_{12}m$
\end_inset

,
 so 
\begin_inset Formula $ju_{22}-ku_{12}=1$
\end_inset

,
 and then 
\begin_inset Formula $ju_{21}-ku_{11}=-aju_{22}+aku_{12}=-a(ju_{22}-ku_{12})=-a$
\end_inset

,
 so 
\begin_inset Formula $(-a,1)=-k(u_{11},u_{12})+j(u_{21},u_{22})$
\end_inset

.
\end_layout

\end_deeper
\begin_layout Enumerate
If 
\begin_inset Formula $x_{1},x_{2}\in\mathbb{Z}$
\end_inset

 are not both 0,
 then
\begin_inset Formula 
\begin{multline*}
(x_{1}u_{11}+x_{2}u_{21})^{2}+(x_{1}u_{12}+x_{2}u_{22})^{2}=\\
=x_{1}^{2}(u_{11}^{2}+u_{12}^{2})+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})+2x_{1}x_{2}(u_{11}u_{21}+u_{21}u_{22}).
\end{multline*}

\end_inset

If 
\begin_inset Formula $x_{1}x_{2}(u_{11}u_{21}+u_{21}u_{22})\geq0$
\end_inset

,
 then this is greater or equal to
\begin_inset Formula 
\[
x_{1}^{2}(u_{11}^{2}+u_{12}^{2})+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq(x_{1}^{2}+x_{2}^{2})(u_{11}^{2}+u_{12}^{2})\geq u_{11}^{2}+u_{12}^{2}.
\]

\end_inset

Otherwise 
\begin_inset Formula $x_{1},x_{2}\neq0$
\end_inset

 and,
 if 
\begin_inset Formula $|x_{1}|\leq|x_{2}|$
\end_inset

,
 then the above is greater than or equal to
\begin_inset Formula 
\[
x_{1}^{2}(u_{11}^{2}+u_{12}^{2}-2(u_{11}u_{21}+u_{21}u_{22}))+x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq x_{2}^{2}(u_{21}^{2}+u_{22}^{2})\geq u_{11}^{2}+u_{12}^{2},
\]

\end_inset

whereas the case with 
\begin_inset Formula $|x_{1}|\geq|x_{2}|$
\end_inset

 is analogous.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc15[M20]
\end_layout

\end_inset

Let 
\begin_inset Formula $U$
\end_inset

 be an integer vector satisfying (15).
 How many of the 
\begin_inset Formula $(t-1)$
\end_inset

-dimensional hyperplanes defined by 
\begin_inset Formula $U$
\end_inset

 intersect the unit hypercube 
\begin_inset Formula $\{(x_{1},\dots,x_{t})\mid0\leq x_{j}<1\text{ for }1\leq j\leq t\}$
\end_inset

?
 (This is approximately the number of hyperplanes in the family that will suffice to cover 
\begin_inset Formula $L_{0}$
\end_inset

.)
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

The hyperplanes are defined by 
\begin_inset Formula $\{\{X\mid X\cdot U=q\}\}_{q\in\mathbb{Z}}$
\end_inset

,
 so we need to find the maximum and minimum integer values for 
\begin_inset Formula $X\cdot U$
\end_inset

 when 
\begin_inset Formula $X\in[0,1)^{n}$
\end_inset

,
 which exist because 
\begin_inset Formula $0\cdot U=0\in\mathbb{Z}$
\end_inset

.
 The maximum and minimum real values when 
\begin_inset Formula $X\in[0,1]^{n}$
\end_inset

 are,
 respectively,
 
\begin_inset Formula $M\coloneqq u_{1}\frac{1+\text{sgn}u_{1}}{2}+\dots+u_{t}\frac{1+\text{sgn}u_{t}}{2}$
\end_inset

 and 
\begin_inset Formula $m\coloneqq u_{1}\frac{1-\text{sgn}u_{1}}{2}+\dots+u_{t}\frac{1-\text{sgn}u_{t}}{2}$
\end_inset

,
 which happen to be integers,
 so we have 
\begin_inset Formula 
\[
M-m+1=u_{1}\text{sgn}u_{1}+\dots+u_{t}\text{sgn}u_{t}+1=|u_{1}|+\dots+|u_{t}|+1
\]

\end_inset

hyperplanes.
\end_layout

\begin_layout Standard
However,
 one of these hyperplanes might only cover points in 
\begin_inset Formula $[0,1]^{n}\setminus[0,1)^{n}$
\end_inset

.
 This happens precisely when 
\begin_inset Formula $(1,\dots,1)\cdot U=u_{1}+\dots+u_{t}$
\end_inset

 is either 
\begin_inset Formula $M$
\end_inset

 or 
\begin_inset Formula $m$
\end_inset

,
 that is,
 when all of the 
\begin_inset Formula $u_{i}$
\end_inset

 are nonnegative or nonpositive.
 Thus,
 the actual number of hyperplanes is
\begin_inset Formula 
\[
|u_{1}|+\dots+|u_{t}|+1-[u_{1},\dots,u_{t}\leq0]-[u_{1},\dots,u_{t}\geq0].
\]

\end_inset


\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc19[HM25]
\end_layout

\end_inset

Suppose step S5 were changed slightly,
 so that a transformation with 
\begin_inset Formula $q=1$
\end_inset

 would be performed when 
\begin_inset Formula $2V_{i}\cdot V_{j}=V_{j}\cdot V_{j}$
\end_inset

.
 (Thus,
 
\begin_inset Formula $q=\lfloor(V_{i}\cdot V_{j}/V_{j}\cdot V_{j})+\frac{1}{2}\rfloor$
\end_inset

 whenever 
\begin_inset Formula $i\neq j$
\end_inset

.) Would it still be possible for Algorithm S to get into an infinite loop?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

No.
 If 
\begin_inset Formula $2|V_{i}\cdot V_{j}|>V_{j}\cdot V_{j}$
\end_inset

 in some step,
 then
\begin_inset Formula 
\[
(V_{i}-qV_{j})\cdot(V_{i}-qV_{j})=V_{i}\cdot V_{i}-2qV_{i}\cdot V_{j}+V_{j}\cdot V_{j}<V_{i}\cdot V_{i},
\]

\end_inset

because 
\begin_inset Formula $q$
\end_inset

 has the same sign as 
\begin_inset Formula $V_{i}\cdot V_{j}$
\end_inset

 and therefore 
\begin_inset Formula $V_{j}\cdot V_{j}<2|V_{i}\cdot V_{j}|\leq2qV_{i}\cdot V_{j}$
\end_inset

,
 so 
\begin_inset Formula $V_{i}\cdot V_{i}$
\end_inset

 decreases and,
 since it is an integer,
 it cannot decrease for infinitely many steps.
 Thus,
 an infinite loop would eventually only contain steps where 
\begin_inset Formula $2V_{i}\cdot V_{j}=V_{j}\cdot V_{j}$
\end_inset

,
 which are the ones we allow now,
 and since there are only finitely many integer vectors with a given norm,
 
\begin_inset Formula $V$
\end_inset

 would have to repeat at some point.
 However,
 in these cases 
\begin_inset Formula $q=1$
\end_inset

,
 so the steps are equivalent to multiplying 
\begin_inset Formula $V$
\end_inset

 by an elementary matrix with 1s at the diagonal and at some other value and 0s everywhere else.
 These matrices cannot result in an identity matrix when multiplying them because they don't have negative entries.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc32[M21]
\end_layout

\end_inset

Let 
\begin_inset Formula $m_{1}=2^{31}-1$
\end_inset

 and 
\begin_inset Formula $m_{2}=2^{31}-249$
\end_inset

 be the moduli of generator (38).
\end_layout

\begin_layout Enumerate
Show that if 
\begin_inset Formula $U_{n}=(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1$
\end_inset

,
 we have 
\begin_inset Formula $U_{n}\approx Z_{n}/m_{1}$
\end_inset

.
\end_layout

\begin_layout Enumerate
Let 
\begin_inset Formula $W_{0}=(X_{0}m_{2}-Y_{0}m_{1})\bmod m$
\end_inset

 and 
\begin_inset Formula $W_{n+1}=aW_{n}\bmod m$
\end_inset

,
 where 
\begin_inset Formula $a$
\end_inset

 and 
\begin_inset Formula $m$
\end_inset

 have the values stated in the text following (38).
 Prove that there is a simple relation between 
\begin_inset Formula $W_{n}$
\end_inset

 and 
\begin_inset Formula $U_{n}$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer
\end_layout

\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $Z_{n}/m_{1}=(X_{n}/m_{1}-Y_{n}/m_{1})\bmod1\approx(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1=U_{n}$
\end_inset

.
 The difference is at most 
\begin_inset Formula $|Y_{n}/m_{1}-Y_{n}/m_{2}|=Y_{n}\left|\frac{1}{2^{31}-1}-\frac{1}{2^{31}-249}\right|=Y_{n}\frac{248}{(2^{31}-1)(2^{31}-249)}<\frac{248}{2^{31}-1}<2^{-23}$
\end_inset

.
\end_layout

\begin_layout Enumerate
We have 
\begin_inset Formula $mU_{0}=(X_{0}m/m_{1}-Y_{0}m/m_{2})\bmod m=(X_{0}m_{2}-Y_{0}m_{1})\bmod m=W_{0}$
\end_inset

,
 and also
\begin_inset Formula 
\begin{multline*}
U_{n+1}=(aX_{n}\bmod m_{1}/m_{1}-aY_{n}\bmod m_{2}/m_{2})\bmod1=\\
=a(X_{n}/m_{1}-Y_{n}/m_{2})\bmod1=aU_{n}\bmod1,
\end{multline*}

\end_inset

so by induction 
\begin_inset Formula $W_{n}\equiv mU_{n}$
\end_inset

.
\end_layout

\end_body
\end_document