aboutsummaryrefslogtreecommitdiff
path: root/vol2/4.2.2.lyx
blob: abcc87adc39b19531be81a519dd03935f4272ac5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header

\begin_body

\begin_layout Standard

\emph on
Note:

\emph default
 Normalized floating point arithmetic is assumed unless the contrary is specified.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
exerc4[10]
\end_layout

\end_inset

Is it possible to have floating point numbers 
\begin_inset Formula $u$
\end_inset

,
 
\begin_inset Formula $v$
\end_inset

,
 and 
\begin_inset Formula $w$
\end_inset

 for which exponent overflow occurs during the calculation of 
\begin_inset Formula $u\otimes(v\otimes w)$
\end_inset

 but not during the calculation of 
\begin_inset Formula $(u\otimes v)\otimes w$
\end_inset

?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Yes.
 If,
 say,
 
\begin_inset Formula $b=10$
\end_inset

,
 
\begin_inset Formula $q=8$
\end_inset

,
 and overflow occurs when the exponent reaches 16,
 let 
\begin_inset Formula $u=(15,.10000001)$
\end_inset

,
 
\begin_inset Formula $v=(9,.33333330)$
\end_inset

,
 and 
\begin_inset Formula $w=(9,.30000000)$
\end_inset

.
 Then 
\begin_inset Formula $v\otimes w=(9,.99999990)$
\end_inset

 and 
\begin_inset Formula $u\otimes(v\otimes w)=(16,.10000000)$
\end_inset

,
 which raises an overflow,
 but 
\begin_inset Formula $u\otimes v=(15,.33333333)$
\end_inset

 and 
\begin_inset Formula $(u\otimes v)\otimes w=(15,.99999999)$
\end_inset

,
 which does not raise an overflow.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc8[20]
\end_layout

\end_inset

Let 
\begin_inset Formula $\epsilon=0.0001$
\end_inset

;
 which of the relations
\begin_inset Formula 
\begin{align*}
u & \prec v\quad(\epsilon), & u & \sim v\quad(\epsilon), & u & \succ v\quad(\epsilon), & u & \cong v\quad(\epsilon)
\end{align*}

\end_inset

hold for the following pairs of base 10,
 excess 0,
 eight-digit floating point numbers?
\end_layout

\begin_layout Enumerate
\begin_inset Formula $u=(1,+.31415927)$
\end_inset

,
 
\begin_inset Formula $v=(1,+.31416000)$
\end_inset

;
\end_layout

\begin_layout Enumerate
\begin_inset Formula $u=(0,+.99997000)$
\end_inset

,
 
\begin_inset Formula $v=(1,+.10000039)$
\end_inset

;
\end_layout

\begin_layout Enumerate
\begin_inset Formula $u=(24,+.60221400)$
\end_inset

,
 
\begin_inset Formula $v=(27,+.00060221)$
\end_inset

;
\end_layout

\begin_layout Enumerate
\begin_inset Formula $u=(24,+.60221400)$
\end_inset

,
 
\begin_inset Formula $v=(31,+.00000006)$
\end_inset

;
\end_layout

\begin_layout Enumerate
\begin_inset Formula $u=(24,+.60221400)$
\end_inset

,
 
\begin_inset Formula $v=(28,+.00000000)$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer
\end_layout

\end_inset


\end_layout

\begin_layout Enumerate
\begin_inset Formula $\sim$
\end_inset

,
 
\begin_inset Formula $\approx$
\end_inset

.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $\sim$
\end_inset

,
 
\begin_inset Formula $\approx$
\end_inset

.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $\sim$
\end_inset

,
 
\begin_inset Formula $\approx$
\end_inset

.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $\sim$
\end_inset

.
\end_layout

\begin_layout Enumerate
\begin_inset Formula $\sim$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc10[M25]
\end_layout

\end_inset

(W.
 M.
 Kahan.) A certain computer performs floating point arithmetic without proper rounding,
 and,
 in fact,
 its floating point multiplication routine ignores all but the first 
\begin_inset Formula $p$
\end_inset

 most significant digits of the 
\begin_inset Formula $2p$
\end_inset

-digit product 
\begin_inset Formula $f_{u}f_{v}$
\end_inset

.
 (Thus when 
\begin_inset Formula $f_{u}f_{v}<1/b$
\end_inset

,
 the least-significant digit of 
\begin_inset Formula $u\otimes v$
\end_inset

 always comes out to be zero,
 due to subsequent normalization.) Show that this causes the monotonicity of multiplication to fail;
 in other words,
 exhibit positive normalized floating point numbers 
\begin_inset Formula $u$
\end_inset

,
 
\begin_inset Formula $v$
\end_inset

,
 and 
\begin_inset Formula $w$
\end_inset

 such that 
\begin_inset Formula $u<v$
\end_inset

 but 
\begin_inset Formula $u\otimes w>v\otimes w$
\end_inset

 on this machine.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

Assume 
\begin_inset Formula $p=4$
\end_inset

,
 and let 
\begin_inset Formula $u=.9999<1.000=v$
\end_inset

 and let 
\begin_inset Formula $w=.2222$
\end_inset

.
 Then 
\begin_inset Formula $u\otimes w=.2221>.2220=v\otimes w$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc13[M25]
\end_layout

\end_inset

Some programming languages (and even some computers) make use of floating point arithmetic only,
 with no provision for exact calculations with integers.
 If operations on integers are desired,
 we can,
 of course,
 represent an integer as a floating point number;
 and when the floating point operations satisfy the basic definitions in (9),
 we know that all floating point operations will be exact,
 provided that the operands and the answer can each be represented exactly with 
\begin_inset Formula $p$
\end_inset

 significant digits.
 Therefore—
so long as we know that the numbers aren't too large—
we can add,
 subtract,
 or multiply integers with no inaccuracy due to rounding errors.
\end_layout

\begin_layout Standard
But suppose that a programmer wants to determine if 
\begin_inset Formula $m$
\end_inset

 is an exact multiple of 
\begin_inset Formula $n$
\end_inset

,
 when 
\begin_inset Formula $m$
\end_inset

 and 
\begin_inset Formula $n\neq0$
\end_inset

 are integers.
 Suppose further that a subroutine is available to calculate the quantity 
\begin_inset Formula $\text{round}(u\bmod1)=u\mathring{\bmod}1$
\end_inset

 for any given floating point number 
\begin_inset Formula $u$
\end_inset

,
 as in exercise 4.2.1–15.
 One good way to determine whether or not 
\begin_inset Formula $m$
\end_inset

 is a multiple of 
\begin_inset Formula $n$
\end_inset

 might be to test whether or not 
\begin_inset Formula $(m\oslash n)\mathring{\bmod}1=0$
\end_inset

,
 using the assumed subroutine;
 but perhaps rounding errors in the floating point calculations will invalidate this test in certain cases.
\end_layout

\begin_layout Standard
Find suitable conditions on the range of integer values 
\begin_inset Formula $n\neq0$
\end_inset

 and 
\begin_inset Formula $m$
\end_inset

,
 such that 
\begin_inset Formula $m$
\end_inset

 is a multiple of 
\begin_inset Formula $n$
\end_inset

 if and only if 
\begin_inset Formula $(m\oslash n)\mathring{\bmod}1=0$
\end_inset

.
 In other words,
 show that if 
\begin_inset Formula $m$
\end_inset

 and 
\begin_inset Formula $n$
\end_inset

 are not too large,
 this test is valid.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

A suitable condition would be 
\begin_inset Formula $|m|<2b^{p-1}$
\end_inset

;
 for the proof we may assume 
\begin_inset Formula $m,n\geq0$
\end_inset

 as the signs of the operands do not affect the check.
 In every case,
 if 
\begin_inset Formula $n\mid m$
\end_inset

,
 then 
\begin_inset Formula $m\oslash n=\text{round}(\frac{m}{n})$
\end_inset

 will necessarily be an integer and 
\begin_inset Formula $(m\oslash n)\mathring{\bmod}1=0$
\end_inset

.
 For the reciprocal,
 if 
\begin_inset Formula $n\nmid m$
\end_inset

,
 then 
\begin_inset Formula $m\oslash n=\frac{m}{n}+\delta$
\end_inset

,
 where 
\begin_inset Formula $\delta\leq\frac{1}{2}b^{e_{m\oslash n}-p-q}$
\end_inset

.
 Note that the exponent is not increased after rounding in the division;
 if it were,
 that would mean that 
\begin_inset Formula $b^{e}(1-\frac{1}{2}b^{-p})\leq\frac{m}{n}<b^{e}$
\end_inset

 for some integer 
\begin_inset Formula $e$
\end_inset

,
 but then 
\begin_inset Formula $nb^{e}(1-\frac{1}{2}b^{-p})\leq m<nb^{e}$
\end_inset

 and,
 because both 
\begin_inset Formula $m$
\end_inset

 and 
\begin_inset Formula $nb^{e}$
\end_inset

 are integers,
 
\begin_inset Formula $\frac{1}{2}nb^{e-p}\geq1$
\end_inset

,
 so 
\begin_inset Formula $nb^{e}\geq2b^{p}$
\end_inset

 and 
\begin_inset Formula $m\geq2b^{p}-1>2b^{p-1}\#$
\end_inset

.
 This means that 
\begin_inset Formula $e_{m\oslash n}=\lfloor\log_{b}\frac{m}{n}\rfloor+1+q$
\end_inset

.
 Now,
 since 
\begin_inset Formula $n\nmid m$
\end_inset

,
 
\begin_inset Formula $\log_{b}\frac{m}{n}\notin\mathbb{Z}$
\end_inset

,
 so 
\begin_inset Formula $\lfloor\log_{b}\frac{m}{n}\rfloor+1=\lceil\log_{b}\frac{m}{n}\rceil=\lceil\log_{b}\frac{m}{2}-\log_{b}\frac{n}{2}\rceil\leq\lceil\log_{b}\frac{m}{2}\rceil-\lfloor\log_{b}\frac{n}{2}\rfloor$
\end_inset

.
 With this,
\begin_inset Formula 
\[
\delta\leq\frac{1}{2}b^{\lceil\log_{b}\frac{m}{2}\rceil-\lfloor\log_{b}\frac{n}{2}\rfloor-p}\leq\frac{1}{2}b^{-1}b^{-\lfloor\log_{b}\frac{n}{2}\rfloor}<\frac{1}{2}b^{\cancel{-1}}b^{-(\log_{b}\frac{n}{2}\cancel{-1})}=\frac{1}{n},
\]

\end_inset

but 
\begin_inset Formula $\frac{m}{n}$
\end_inset

 differs from the nearest integer by 
\begin_inset Formula $\frac{1}{n}$
\end_inset

 at most,
 so 
\begin_inset Formula $m\oslash n\notin\mathbb{Z}$
\end_inset

 and 
\begin_inset Formula $(m\oslash n)\mathring{\bmod}1\neq0$
\end_inset

.
 This is assuming that there's no exponent underflow,
 which would be rare because it would mean that 
\begin_inset Formula $q<p-1$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc15[M24]
\end_layout

\end_inset

(H.
 Björk.) Does the computed midpoint of an interval always lie between the endpoints?
 (In other words,
 does 
\begin_inset Formula $u\leq v$
\end_inset

 imply that 
\begin_inset Formula $u\leq(u\oplus v)\oslash2\leq v$
\end_inset

?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

No.
 For example,
 if 
\begin_inset Formula $b=10$
\end_inset

,
 
\begin_inset Formula $p=5$
\end_inset

,
 
\begin_inset Formula $u=5.9998$
\end_inset

,
 and 
\begin_inset Formula $v=5.9999$
\end_inset

,
 then 
\begin_inset Formula $u\oplus v=12.000$
\end_inset

 and 
\begin_inset Formula $(u\oplus v)\oslash2=6.0000>v$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc25[15]
\end_layout

\end_inset

When people speak about inaccuracy in floating point arithmetic they often ascribe errors to 
\begin_inset Quotes eld
\end_inset

cancellation
\begin_inset Quotes erd
\end_inset

 that occurs during the subtraction of nearly equal quantities.
 But when 
\begin_inset Formula $u$
\end_inset

 and 
\begin_inset Formula $v$
\end_inset

 are approximately equal,
 the difference 
\begin_inset Formula $u\ominus v$
\end_inset

 is obtained exactly,
 with no error.
 What do these people really mean?
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset

It really means that,
 if the inputs carry a relative error due to rounding,
 the relative error of the output is potentially much bigger.
 Let 
\begin_inset Formula $u_{0}$
\end_inset

 be the 
\begin_inset Quotes eld
\end_inset

correct
\begin_inset Quotes erd
\end_inset

 value of 
\begin_inset Formula $u$
\end_inset

,
 that is,
 the value it would have if the operations so far had been carried out with infinite precision,
 and let 
\begin_inset Formula $v_{0}$
\end_inset

 be the 
\begin_inset Quotes eld
\end_inset

correct
\begin_inset Quotes erd
\end_inset

 value of 
\begin_inset Formula $v$
\end_inset

,
 similarly defined.
 Let 
\begin_inset Formula $u\eqqcolon u_{0}(1+\delta)$
\end_inset

 and 
\begin_inset Formula $v\eqqcolon v_{0}(1+\delta')$
\end_inset

.
 Then,
 if 
\begin_inset Formula $u$
\end_inset

 and 
\begin_inset Formula $v$
\end_inset

 are nearly equal and 
\begin_inset Formula $u\ominus v$
\end_inset

 is obtained exactly,
 then 
\begin_inset Formula 
\[
\frac{u\ominus v}{u_{0}-v_{0}}=\frac{u_{0}(1+\delta)-v_{0}(1+\delta')}{u_{0}-v_{0}}=1+\frac{u_{0}\delta-v_{0}\delta'}{u_{0}-v_{0}}.
\]

\end_inset

Even if 
\begin_inset Formula $\delta$
\end_inset

 and 
\begin_inset Formula $\delta'$
\end_inset

 are small,
 the new relative error 
\begin_inset Formula $\left|\frac{u_{0}\delta-v_{0}\delta'}{u_{0}-v_{0}}\right|$
\end_inset

 can be quite big,
 as there's no reason for 
\begin_inset Formula $\delta$
\end_inset

 and 
\begin_inset Formula $\delta'$
\end_inset

 to be similar.
 In the worst case where 
\begin_inset Formula $\delta=-\delta'$
\end_inset

,
 the relative error of the inputs is multiplied by 
\begin_inset Formula $\left|\frac{u_{0}+v_{0}}{u_{0}-v_{0}}\right|$
\end_inset

.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
rexerc29[M25]
\end_layout

\end_inset

Give an example to show that the condition 
\begin_inset Formula $b^{p}\geq3$
\end_inset

 is necessary in the previous exercise.
\end_layout

\begin_layout Standard
\begin_inset ERT
status open

\begin_layout Plain Layout


\backslash
answer 
\end_layout

\end_inset


\begin_inset Note Greyedout
status open

\begin_layout Plain Layout
(I had to look up the solution.) 
\end_layout

\end_inset

Here 
\begin_inset Formula $\text{round}(x)=2^{e}$
\end_inset

 for some integer 
\begin_inset Formula $e$
\end_inset

 such that 
\begin_inset Formula $|x-2^{e}|$
\end_inset

 is lowest.
 If 
\begin_inset Formula $f(x)\coloneqq x^{99/100}$
\end_inset

,
 then 
\begin_inset Formula $g(y)\coloneqq y^{100/99}$
\end_inset

.
 Now,
 for integer 
\begin_inset Formula $e$
\end_inset

,
\begin_inset Formula 
\begin{multline*}
\text{round}(f(2^{e}))=\text{round}(2^{e\cdot99/100})<2^{e}\iff(2^{99/100})^{e}<\frac{3}{4}2^{e}\iff\\
\iff(2^{-1/100})^{e}<\frac{3}{4}\iff e>41.
\end{multline*}

\end_inset

Conversely,
\begin_inset Formula 
\begin{multline*}
\text{round}(g(2^{e}))=\text{round}(2^{e\cdot100/99})\leq2^{e}\iff(2^{100/99})^{e}<\frac{3}{2}2^{e}\iff\\
\iff(2^{1/99})^{e}<\frac{3}{2}\iff e<58.
\end{multline*}

\end_inset

Thus,
 if 
\begin_inset Formula $e\in\{42,\dots,58\}$
\end_inset

,
 
\begin_inset Formula $\hat{h}(2^{e})<2^{e}$
\end_inset

,
 and it's easy to see that in fact 
\begin_inset Formula $\hat{h}(2^{e})=2^{e-1}$
\end_inset

.
 Thus 
\begin_inset Formula $\hat{h}^{2}(2^{53})=2^{51}\neq2^{50}=\hat{h}^{3}(2^{53})$
\end_inset

.
\end_layout

\end_body
\end_document