1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
|
#LyX 2.4 created this file. For more info see https://www.lyx.org/
\lyxformat 620
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\input defs
\end_preamble
\use_default_options true
\maintain_unincluded_children no
\language english
\language_package default
\inputencoding utf8
\fontencoding auto
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_roman_osf false
\font_sans_osf false
\font_typewriter_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\float_placement class
\float_alignment class
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine basic
\cite_engine_type default
\biblio_style plain
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 1
\use_formatted_ref 0
\use_minted 0
\use_lineno 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tablestyle default
\tracking_changes false
\output_changes false
\change_bars false
\postpone_fragile_content false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\docbook_table_output 0
\docbook_mathml_prefix 1
\end_header
\begin_body
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc5[M23]
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
Suppose that the method of (13) is continued until no more
\begin_inset Formula $m_{j}$
\end_inset
can be chosen.
Does this
\begin_inset Quotes eld
\end_inset
greedy
\begin_inset Quotes erd
\end_inset
method give the largest attainable value
\begin_inset Formula $m_{1}m_{2}\dots m_{r}$
\end_inset
such that the
\begin_inset Formula $m_{j}$
\end_inset
are odd positive integers less than 100 that are relatively prime in pairs?
\end_layout
\begin_layout Enumerate
What is the largest possible
\begin_inset Formula $m_{1}m_{2}\dots m_{r}$
\end_inset
when each residue
\begin_inset Formula $u_{j}$
\end_inset
must fit in eight bits of memory?
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
No;
if we substitute,
say,
\begin_inset Formula $m_{3}=95$
\end_inset
with 19 and 25,
which weren't chosen before because they have common factors with
\begin_inset Formula $m_{3}$
\end_inset
,
then we get a modulo that is 5 times as large.
No other number in the sequence has common factors with 19 and 25 since,
if they had,
they would also have common factors with 95.
\end_layout
\begin_layout Enumerate
We need to have each prime number to the greatest power that is at most
\begin_inset Formula $2^{8}=256$
\end_inset
,
so
\begin_inset Formula
\begin{multline*}
2^{8}\cdot3^{5}\cdot5^{3}\cdot7^{2}\cdot11^{2}\cdot13^{2}\cdot17\cdot19\cdot23\cdot29\cdot31\cdot37\cdot\dots\cdot251=\\
=166744908068958426716590087517763853502703245089096518499\\
55453691538889375930032935391666564679008085339616000.
\end{multline*}
\end_inset
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc7[M21]
\end_layout
\end_inset
Show that (24) can be rewritten as follows:
\begin_inset Formula
\begin{align*}
v_{1} & \gets u_{1}\bmod m_{1},\\
v_{2} & \gets(u_{2}-v_{1})c_{12}\bmod m_{2},\\
v_{3} & \gets(u_{3}-(v_{1}+m_{1}v_{2}))c_{13}c_{23}\bmod m_{3},\\
\vdots\\
v_{r} & \gets(u_{r}-(v_{1}+m_{1}(v_{2}+m_{2}(v_{3}+\dots+m_{r-2}v_{r-1})\dots)))c_{1r}\cdots c_{(r-1)r}\bmod m_{r}.
\end{align*}
\end_inset
If the formulas are rewritten in this way,
we see that only
\begin_inset Formula $r-1$
\end_inset
constants
\begin_inset Formula $C_{j}=c_{1j}\cdots c_{(j-1)j}\bmod m_{j}$
\end_inset
are needed instead of
\begin_inset Formula $r(r-1)/2$
\end_inset
constants
\begin_inset Formula $c_{ij}$
\end_inset
as in (24).
Discuss the relative merits of this version of the formula compared to (24),
from the standpoint of computer calculation.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
After expanding some products,
the general formula in the exercise is
\begin_inset Formula
\[
v_{r}=(u_{r}-v_{1}-m_{1}v_{2}-m_{1}m_{2}v_{3}-\dots-m_{1}\cdots m_{r-2}v_{r-1})c_{1r}\cdots c_{(r-1)r}\bmod m_{r},
\]
\end_inset
but for
\begin_inset Formula $1\leq k\leq r$
\end_inset
,
\begin_inset Formula $m_{1}\cdots m_{k}c_{1r}\cdots c_{kr}\equiv1\pmod{m_{r}}$
\end_inset
,
so this is equivalent to
\begin_inset Formula
\begin{multline*}
v_{r}=u_{r}c_{1r}\cdots c_{(r-1)r}-v_{1}c_{1r}\cdots c_{(r-1)r}-v_{2}c_{2r}\cdots c_{(r-1)r}-\\
-v_{3}c_{3r}\cdots c_{(r-1)r}-\dots-v_{r-1}c_{(r-1)r}\bmod m_{r},
\end{multline*}
\end_inset
which is precisely the formula in (24) after expanding all the products.
\end_layout
\begin_layout Standard
With these formulas,
to calculate
\begin_inset Formula $v_{k}$
\end_inset
,
we do
\begin_inset Formula $k-1$
\end_inset
multiplications modulo
\begin_inset Formula $m_{k}$
\end_inset
and
\begin_inset Formula $k-1$
\end_inset
additions,
the same amount as with (24).
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
exerc12[M10]
\end_layout
\end_inset
Prove that,
if
\begin_inset Formula $0\leq u,v<m$
\end_inset
,
the modular addition of
\begin_inset Formula $u$
\end_inset
and
\begin_inset Formula $v$
\end_inset
causes overflow (lies outside the range allowed by the modular representation) if and only if the sum is less than
\begin_inset Formula $u$
\end_inset
.
(Thus the overflow detection problem is equivalent to the comparison problem.)
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Itemize
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\begin_inset Formula $\implies]$
\end_inset
\end_layout
\end_inset
In this case
\begin_inset Formula $u+v\geq m$
\end_inset
but
\begin_inset Formula $u+v<u+m<2m$
\end_inset
(since
\begin_inset Formula $u,v<m$
\end_inset
),
so
\begin_inset Formula $(u+v)\bmod m=u+v-m<u$
\end_inset
.
\end_layout
\begin_layout Itemize
\begin_inset Argument item:1
status open
\begin_layout Plain Layout
\begin_inset Formula $\impliedby]$
\end_inset
\end_layout
\end_inset
If
\begin_inset Formula $u+v<m$
\end_inset
,
because
\begin_inset Formula $u+v\geq0$
\end_inset
,
we would have
\begin_inset Formula $(u+v)\bmod m=u+v\geq u\#$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
rexerc13[M25]
\end_layout
\end_inset
(
\emph on
Automorphic numbers.
\emph default
) An
\begin_inset Formula $n$
\end_inset
-digit decimal number
\begin_inset Formula $x>1$
\end_inset
is called an
\begin_inset Quotes eld
\end_inset
automorph
\begin_inset Quotes erd
\end_inset
by recreational mathematicians if the last
\begin_inset Formula $n$
\end_inset
digits of
\begin_inset Formula $x^{2}$
\end_inset
are equal to
\begin_inset Formula $x$
\end_inset
.
For example,
9376 is a 4-digit automorph,
since
\begin_inset Formula $9376^{2}=87909376$
\end_inset
.
\end_layout
\begin_layout Enumerate
Prove that an
\begin_inset Formula $n$
\end_inset
-digit number
\begin_inset Formula $x>1$
\end_inset
is an automorph if and only if
\begin_inset Formula $x\bmod5^{n}=0\text{ or }1$
\end_inset
and
\begin_inset Formula $x\bmod2^{n}=1\text{ or 0}$
\end_inset
,
respectively.
(Thus,
if
\begin_inset Formula $m_{1}=2^{n}$
\end_inset
and
\begin_inset Formula $m_{2}=5^{n}$
\end_inset
,
the only two
\begin_inset Formula $n$
\end_inset
-digit automorphs are the numbers
\begin_inset Formula $M_{1}$
\end_inset
and
\begin_inset Formula $M_{2}$
\end_inset
in (7).)
\end_layout
\begin_layout Enumerate
Prove that if
\begin_inset Formula $x$
\end_inset
is an
\begin_inset Formula $n$
\end_inset
-digit automorph,
then
\begin_inset Formula $(3x^{2}-2x^{3})\bmod10^{2n}$
\end_inset
is a
\begin_inset Formula $2n$
\end_inset
-digit automorph.
\end_layout
\begin_layout Enumerate
Given that
\begin_inset Formula $cx\equiv1\pmod y$
\end_inset
,
find a simple formula for a number
\begin_inset Formula $c'$
\end_inset
depending on
\begin_inset Formula $c$
\end_inset
and
\begin_inset Formula $x$
\end_inset
but not on
\begin_inset Formula $y$
\end_inset
,
such that
\begin_inset Formula $c'x^{2}\equiv1\pmod{y^{2}}$
\end_inset
.
\end_layout
\begin_layout Standard
\begin_inset ERT
status open
\begin_layout Plain Layout
\backslash
answer
\end_layout
\end_inset
\end_layout
\begin_layout Enumerate
\begin_inset Formula $x$
\end_inset
is an automorph if and only if
\begin_inset Formula $x^{2}\bmod10^{n}=x$
\end_inset
,
if and only if
\begin_inset Formula $x^{2}\bmod5^{n}=x$
\end_inset
and
\begin_inset Formula $x^{2}\bmod2^{n}=x$
\end_inset
,
but
\begin_inset Formula $\mathbb{Z}_{5^{n}}$
\end_inset
and
\begin_inset Formula $\mathbb{Z}_{2^{n}}$
\end_inset
are fields,
so by cancellation,
\begin_inset Formula $x^{2}=x$
\end_inset
in
\begin_inset Formula $\mathbb{Z}_{5^{n}}$
\end_inset
or
\begin_inset Formula $\mathbb{Z}_{2^{n}}$
\end_inset
if and only if
\begin_inset Formula $x=1$
\end_inset
.
The cases where
\begin_inset Formula $x\bmod5^{n}=x\bmod2^{n}=0\text{ or }1$
\end_inset
are excluded because they are precisely
\begin_inset Formula $x=0$
\end_inset
and
\begin_inset Formula $x=1$
\end_inset
.
\end_layout
\begin_layout Enumerate
Let
\begin_inset Formula $k=2\text{ or }5$
\end_inset
and
\begin_inset Formula $a\in\mathbb{Z}$
\end_inset
,
if
\begin_inset Formula $x=ak^{n}$
\end_inset
,
then
\begin_inset Formula
\[
3x^{2}-2x^{3}\equiv0\pmod{k^{2n}},
\]
\end_inset
whereas if
\begin_inset Formula $x=ak^{n}+1$
\end_inset
,
then
\begin_inset Formula
\[
3x^{2}-2x^{3}\equiv6ak^{n}+3-6ak^{n}-2=1\pmod{k^{2n}},
\]
\end_inset
so the values of
\begin_inset Formula $3x^{2}-2x^{3}$
\end_inset
modulo
\begin_inset Formula $2^{2n}$
\end_inset
and
\begin_inset Formula $5^{2n}$
\end_inset
are the same as those of
\begin_inset Formula $x$
\end_inset
if
\begin_inset Formula $x$
\end_inset
is an automorph.
\end_layout
\begin_layout Enumerate
Let
\begin_inset Formula $c'\coloneqq c^{2}(3-2cx)$
\end_inset
,
then
\begin_inset Formula $c'x^{2}=c^{2}x^{2}(3-2cx)=3(cx)^{2}-2(cx)^{3}$
\end_inset
and,
if
\begin_inset Formula $a\in\mathbb{Z}$
\end_inset
is such that
\begin_inset Formula $cx=ay+1$
\end_inset
,
then
\begin_inset Formula
\[
3(cx)^{2}-2(cx)^{3}\equiv6ay+3-6ay-2=1\pmod{y^{2}}.
\]
\end_inset
\end_layout
\end_body
\end_document
|