diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-15 17:06:25 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-04-15 17:06:25 +0200 |
| commit | 488681461f36eba32b7a5a3d62935ae83a76e7c7 (patch) | |
| tree | deb6de03a65b965057dc9f008979d78988e3edf1 | |
| parent | 7140b257af4a749094af66399c62c5e59cf7f56b (diff) | |
Grupos y Anillos: Polinomios
| -rw-r--r-- | ga/n.lyx | 24 | ||||
| -rw-r--r-- | ga/n1.lyx | 448 | ||||
| -rw-r--r-- | ga/n2.lyx | 280 | ||||
| -rw-r--r-- | ga/n3.lyx | 5111 |
4 files changed, 5153 insertions, 710 deletions
@@ -6,6 +6,9 @@ \origin unavailable \textclass book \use_default_options true +\begin_modules +algorithm2e +\end_modules \maintain_unincluded_children false \language spanish \language_package default @@ -131,26 +134,31 @@ Bibliografía: \end_layout \begin_layout Itemize -\begin_inset Note Note -status open - -\begin_layout Plain Layout +Apuntes de clase, Ángel del Río Mateos. +\end_layout +\begin_layout Chapter +Anillos \end_layout +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + \end_inset \end_layout \begin_layout Chapter -Anillos +Divisibilidad en dominios \end_layout \begin_layout Standard \begin_inset CommandInset include LatexCommand input -filename "n1.lyx" +filename "n2.lyx" \end_inset @@ -158,13 +166,13 @@ filename "n1.lyx" \end_layout \begin_layout Chapter -Divisibilidad en dominios +Polinomios \end_layout \begin_layout Standard \begin_inset CommandInset include LatexCommand input -filename "n2.lyx" +filename "n3.lyx" \end_inset @@ -926,146 +926,6 @@ Dada una familia de anillos \end_layout \begin_layout Enumerate -\begin_inset CommandInset label -LatexCommand label -name "enu:series" - -\end_inset - -Llamamos -\begin_inset Formula $A[[X]]$ -\end_inset - - al conjunto de las sucesiones de elementos del anillo -\begin_inset Formula $A$ -\end_inset - - entendidos como -\series bold -series de potencias -\series default - en una -\series bold -indeterminada -\series default - -\begin_inset Formula $X$ -\end_inset - -, -\begin_inset Formula $\sum_{n=0}^{\infty}a_{n}X^{n}$ -\end_inset - -. - Definiendo la suma como -\begin_inset Formula $(a_{n})_{n}+(b_{n})_{n}:=(a_{n}+b_{n})_{n}$ -\end_inset - - y el producto como -\begin_inset Formula $(a_{n})_{n}(b_{n})_{n}:=(\sum_{i=0}^{n}a_{i}b_{n-i})_{n}$ -\end_inset - -, tenemos un anillo. -\end_layout - -\begin_layout Enumerate -Llamamos -\begin_inset Formula $A[X]$ -\end_inset - - al conjunto de las sucesiones de elementos del anillo -\begin_inset Formula $A$ -\end_inset - - con un número finito de elementos no nulos, entendidas como -\series bold -polinomios -\series default - en una -\series bold -indeterminada -\series default - -\begin_inset Formula $X$ -\end_inset - -. - Este es un anillo con las mismas operaciones que en el punto -\begin_inset CommandInset ref -LatexCommand ref -reference "enu:series" -plural "false" -caps "false" -noprefix "false" - -\end_inset - -. - Dado un polinomio -\begin_inset Formula $P(X):=a_{0}+a_{1}X+\dots+a_{n}X^{n}$ -\end_inset - -, llamamos -\series bold -coeficiente -\series default - de -\series bold -grado -\series default - -\begin_inset Formula $i$ -\end_inset - - de -\begin_inset Formula $P$ -\end_inset - - a -\begin_inset Formula $a_{i}$ -\end_inset - - y -\series bold -coeficiente independiente -\series default - de -\begin_inset Formula $P$ -\end_inset - - a -\begin_inset Formula $a_{0}$ -\end_inset - -. - Además, si -\begin_inset Formula $a_{n}\neq0$ -\end_inset - -, decimos que -\begin_inset Formula $P$ -\end_inset - - tiene -\series bold -grado -\series default - -\begin_inset Formula $n$ -\end_inset - - y -\begin_inset Formula $a_{n}$ -\end_inset - - es su -\series bold -coeficiente principal -\series default -. -\end_layout - -\begin_layout Enumerate Si \begin_inset Formula $A$ \end_inset @@ -2315,30 +2175,6 @@ Dado un espacio vectorial \end_layout \begin_layout Enumerate -Todo anillo -\begin_inset Formula $A$ -\end_inset - - es un subanillo de -\begin_inset Formula $A[X]$ -\end_inset - - identificando los elementos de -\begin_inset Formula $A$ -\end_inset - - con los -\series bold -polinomios constantes -\series default -, de la forma -\begin_inset Formula $P(X)=a_{0}$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate Dado un anillo \begin_inset Formula $A$ \end_inset @@ -2948,34 +2784,6 @@ norma . \end_layout -\begin_layout Enumerate -Sea -\begin_inset Formula $A$ -\end_inset - - un anillo y -\begin_inset Formula $b\in A$ -\end_inset - -, definimos el -\series bold -homomorfismo de sustitución -\series default - en -\begin_inset Formula $b$ -\end_inset - - como la función -\begin_inset Formula $S_{b}:A[X]\to A$ -\end_inset - - dada por -\begin_inset Formula $S_{b}(a_{0}+a_{1}X+\dots+a_{n}X^{n}):=a_{0}+a_{1}b+\dots+a_{n}b^{n}$ -\end_inset - -. -\end_layout - \begin_layout Section Ideales \end_layout @@ -3015,13 +2823,6 @@ ideal \end_layout \begin_layout Standard -\begin_inset Newpage pagebreak -\end_inset - - -\end_layout - -\begin_layout Standard Ejemplos: \end_layout @@ -3212,30 +3013,6 @@ Sean . \end_layout -\begin_layout Enumerate -Dado un ideal -\begin_inset Formula $I$ -\end_inset - - de -\begin_inset Formula $A$ -\end_inset - -, -\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ -\end_inset - - y -\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ -\end_inset - - son ideales de -\begin_inset Formula $A[X]$ -\end_inset - -. -\end_layout - \begin_layout Standard Dado un ideal \begin_inset Formula $I$ @@ -3397,11 +3174,16 @@ Demostración: \end_layout \begin_layout Standard -Algunos anillos cociente: -\end_layout +Es claro que +\begin_inset Formula $A/0\cong A$ +\end_inset -\begin_layout Enumerate -Dado + y +\begin_inset Formula $A/A\cong0$ +\end_inset + +. + Dado \begin_inset Formula $n\in\mathbb{Z}^{+}$ \end_inset @@ -3410,11 +3192,7 @@ Dado \end_inset . -\end_layout - -\begin_deeper -\begin_layout Standard -Dado + En efecto, dado \begin_inset Formula $a\in\mathbb{Z}$ \end_inset @@ -3445,60 +3223,6 @@ Dado . \end_layout -\end_deeper -\begin_layout Enumerate -\begin_inset Formula $A/0\cong A$ -\end_inset - - y -\begin_inset Formula $A/A\cong0$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -Dado un anillo -\begin_inset Formula $A$ -\end_inset - -, -\begin_inset Formula $A[X]/(X)\cong A$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -\begin_inset Formula $P,Q\in A[X]$ -\end_inset - - son congruentes módulo -\begin_inset Formula $(X)$ -\end_inset - - si y sólo si el coeficiente independiente de -\begin_inset Formula $P-Q$ -\end_inset - - es 0, si y sólo si -\begin_inset Formula $P$ -\end_inset - - y -\begin_inset Formula $Q$ -\end_inset - - tienen igual coeficiente independiente, y es claro que entonces la composición - de la inclusión con la proyección, -\begin_inset Formula $A\overset{i}{\to}A[X]\overset{\pi}{\to}A[X]/(X)$ -\end_inset - - es un isomorfismo. -\end_layout - -\end_deeper \begin_layout Standard Dado un anillo conmutativo \begin_inset Formula $A$ @@ -4206,10 +3930,6 @@ Si \end_layout \begin_layout Standard -Ejemplos: -\end_layout - -\begin_layout Enumerate Sean \begin_inset Formula $n,m\in\mathbb{Z}$ \end_inset @@ -4227,78 +3947,21 @@ Sean \end_inset . -\end_layout - -\begin_deeper -\begin_layout Standard + En efecto, \begin_inset Formula $(n)(m)=(\{ab\}_{a\in(n),b\in(m)})=(\{pnqm\}_{p,q\in\mathbb{Z}})=(\{knm\})_{k\in\mathbb{Z}}=(nm)$ \end_inset -. - +, \begin_inset Formula $(n)\cap(m)=\{k\in\mathbb{Z}:n,m|k\}=\{k:\text{mcm}(n,m)|k\}=(\text{mcm}(n,m))$ \end_inset -. - + y \begin_inset Formula $(n)+(m)=\{a+b\}_{a\in(n),b\in(m)}=\{pn+qm\}_{p,q\in\mathbb{Z}}=\{k\text{mcd}(n,m)\}_{k\in\mathbb{Z}}=(\text{mcd}(n,m))$ \end_inset . \end_layout -\end_deeper -\begin_layout Enumerate -En -\begin_inset Formula $\mathbb{Z}[X]$ -\end_inset - -, -\begin_inset Formula $(2)+(X)$ -\end_inset - -, formado por los polinomios cuyo término principal es par, no es principal. -\end_layout - -\begin_deeper -\begin_layout Standard -Supongamos que existe -\begin_inset Formula $a\in\mathbb{Z}[X]$ -\end_inset - - con -\begin_inset Formula $(2)+(X)=(a)$ -\end_inset - -. - Entonces -\begin_inset Formula $ba=2\in(2)$ -\end_inset - - para algún polinomio -\begin_inset Formula $b$ -\end_inset - -, luego -\begin_inset Formula $a\in\mathbb{Z}$ -\end_inset - -, y como -\begin_inset Formula $a\in(2,X)$ -\end_inset - -, -\begin_inset Formula $a$ -\end_inset - - es par, luego -\begin_inset Formula $X\notin(a)=(2)+(X)\#$ -\end_inset - -. -\end_layout - -\end_deeper \begin_layout Section Teoremas de isomorfía \end_layout @@ -4435,18 +4098,7 @@ Demostración: \end_layout \begin_layout Standard -\begin_inset Newpage pagebreak -\end_inset - - -\end_layout - -\begin_layout Standard -Así: -\end_layout - -\begin_layout Enumerate -Si +Así, si \begin_inset Formula $A$ \end_inset @@ -4458,12 +4110,7 @@ Si \begin_inset Formula $\frac{A\times B}{0\times B}\cong A$ \end_inset -. -\end_layout - -\begin_deeper -\begin_layout Standard -El homomorfismo de proyección +, pues el homomorfismo de proyección \begin_inset Formula $f:A\times B\to A$ \end_inset @@ -4475,74 +4122,9 @@ El homomorfismo de proyección \begin_inset Formula $0\times B$ \end_inset -, de donde se obtiene el resultado por el primer teorema de isomorfía. -\end_layout - -\end_deeper -\begin_layout Enumerate -Si -\begin_inset Formula $A$ -\end_inset - - es un anillo conmutativo, -\begin_inset Formula $\frac{A[X]}{(X)}\cong A$ -\end_inset - . \end_layout -\begin_deeper -\begin_layout Standard -El homomorfismo de sustitución en el 0 -\begin_inset Formula $f:A[X]\to A$ -\end_inset - -, -\begin_inset Formula $f(\sum_{i=0}^{n}a_{i}X^{i})=a_{0}$ -\end_inset - -, es suprayectivo con núcleo -\begin_inset Formula $(X)$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate -Sea -\begin_inset Formula $I$ -\end_inset - - un ideal de de -\begin_inset Formula $A$ -\end_inset - -, -\begin_inset Formula $\frac{A[X]}{I[X]}\cong(A/I)[X]$ -\end_inset - -. -\end_layout - -\begin_deeper -\begin_layout Standard -La función -\begin_inset Formula $f:A[X]\to(A/I)[X]$ -\end_inset - -, -\begin_inset Formula $f(\sum_{i=0}^{n}a_{i}X^{i})=\sum_{i=0}^{n}[a_{i}]X^{i}$ -\end_inset - -, es un homomorfismo suprayectivo con núcleo -\begin_inset Formula $I[X]=\{\sum_{i=0}^{n}a_{i}X^{i}:a_{i}\in I\}$ -\end_inset - -. -\end_layout - -\end_deeper \begin_layout Standard \series bold @@ -631,90 +631,6 @@ Un producto de anillos no triviales nunca es un dominio. \end_layout \end_deeper -\begin_layout Enumerate -\begin_inset Formula $A[X]$ -\end_inset - - es un dominio si y sólo si lo es -\begin_inset Formula $A$ -\end_inset - -, pero no es un cuerpo. -\end_layout - -\begin_deeper -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\implies]$ -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Formula $A$ -\end_inset - - es subanillo de -\begin_inset Formula $A[X]$ -\end_inset - -. -\end_layout - -\begin_layout Enumerate -\begin_inset Argument item:1 -status open - -\begin_layout Plain Layout -\begin_inset Formula $\impliedby]$ -\end_inset - - -\end_layout - -\end_inset - -Sean -\begin_inset Formula $P,Q\in A[X]$ -\end_inset - - no nulos, como los coeficientes principales respectivos de -\begin_inset Formula $P$ -\end_inset - - y -\begin_inset Formula $Q$ -\end_inset - - no son nulos y -\begin_inset Formula $A$ -\end_inset - - es un dominio, el de -\begin_inset Formula $PQ$ -\end_inset - - tampoco lo es. -\end_layout - -\begin_layout Standard -\begin_inset Formula $A[X]$ -\end_inset - - no es un cuerpo porque -\begin_inset Formula $(X)$ -\end_inset - - es un ideal propio no nulo. -\end_layout - -\end_deeper \begin_layout Section Ideales maximales y primos \end_layout @@ -2590,7 +2506,10 @@ DFU UFD \series default ) si, además, todas las factorizaciones de un mismo elemento son equivalentes. - Ejemplos: +\end_layout + +\begin_layout Standard +Ejemplos: \end_layout \begin_layout Enumerate @@ -3134,6 +3053,13 @@ Un dominio Por tanto las factorizaciones iniciales son equivalentes. \end_layout +\begin_layout Standard +\begin_inset Newpage pagebreak +\end_inset + + +\end_layout + \begin_layout Section Dominios de ideales principales \end_layout @@ -3393,174 +3319,6 @@ El valor absoluto es una función euclídea en \end_layout \begin_layout Enumerate -Si -\begin_inset Formula $\mathbb{K}$ -\end_inset - - es un cuerpo, el grado de un polinomio en -\begin_inset Formula $\mathbb{K}[X]$ -\end_inset - - es una función euclídea. -\end_layout - -\begin_deeper -\begin_layout Standard -La primera condición es clara. - Para la segunda, sean -\begin_inset Formula $D:=\mathbb{K}[X]$ -\end_inset - -, -\begin_inset Formula $a,b\in D$ -\end_inset - - y -\begin_inset Formula $b\neq0$ -\end_inset - -. - Si -\begin_inset Formula $a=0$ -\end_inset - -, tomando -\begin_inset Formula $q=r=0$ -\end_inset - - se tiene el resultado. - Sean -\begin_inset Formula $a\neq0$ -\end_inset - -, -\begin_inset Formula $n$ -\end_inset - - el grado de -\begin_inset Formula $a$ -\end_inset - - y -\begin_inset Formula $m$ -\end_inset - - el de -\begin_inset Formula $b$ -\end_inset - -. - Si -\begin_inset Formula $n<m$ -\end_inset - -, tomamos -\begin_inset Formula $q=0$ -\end_inset - - y -\begin_inset Formula $r=a$ -\end_inset - -, y si -\begin_inset Formula $n=m=0$ -\end_inset - -, tomamos -\begin_inset Formula $q=ab^{-1}$ -\end_inset - - y -\begin_inset Formula $r=0$ -\end_inset - -, lo que prueba la condición para -\begin_inset Formula $n=0$ -\end_inset - -. - Si -\begin_inset Formula $n>0$ -\end_inset - -, supuesto esto probado para grado menor que -\begin_inset Formula $n$ -\end_inset - -, sean -\begin_inset Formula $\alpha$ -\end_inset - - el término principal de -\begin_inset Formula $a$ -\end_inset - - y -\begin_inset Formula $\beta$ -\end_inset - - el término principal de -\begin_inset Formula $b$ -\end_inset - -, -\begin_inset Formula $c:=a-\alpha\beta^{-1}X^{n-m}b$ -\end_inset - - tiene grado -\begin_inset Formula $n-m<n$ -\end_inset - - si -\begin_inset Formula $m>0$ -\end_inset - - o -\begin_inset Formula $n-1$ -\end_inset - - si -\begin_inset Formula $m=0$ -\end_inset - -, luego existen -\begin_inset Formula $q',r'\in D$ -\end_inset - - con -\begin_inset Formula $c:=q'b+r$ -\end_inset - - y o bien -\begin_inset Formula $r=0$ -\end_inset - - o -\begin_inset Formula $r$ -\end_inset - - tiene grado menor que -\begin_inset Formula $b$ -\end_inset - -. - Entonces -\begin_inset Formula $a+\alpha\beta^{-1}X^{n-m}b=q'b+r$ -\end_inset - -, y tomando -\begin_inset Formula $q:=q'-\alpha\beta'X^{n-m}$ -\end_inset - - se tiene -\begin_inset Formula $a=qb+r$ -\end_inset - -. -\end_layout - -\end_deeper -\begin_layout Enumerate El cuadrado del módulo complejo es una función euclídea en \begin_inset Formula $\mathbb{Z}[i]$ \end_inset @@ -4221,22 +3979,6 @@ Así, \begin_inset Formula $\mathbb{Z}$ \end_inset -, y si -\begin_inset Formula $A[X]$ -\end_inset - - es un dominio llamamos -\series bold -cuerpo de las funciones racionales -\series default - sobre -\begin_inset Formula $A$ -\end_inset - - a -\begin_inset Formula $A(X):=D(A[X])$ -\end_inset - . Es fácil ver que función \begin_inset Formula $u:D\to Q(D)$ diff --git a/ga/n3.lyx b/ga/n3.lyx new file mode 100644 index 0000000..284ad50 --- /dev/null +++ b/ga/n3.lyx @@ -0,0 +1,5111 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\begin_modules +algorithm2e +\end_modules +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Dado un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + +, llamamos +\begin_inset Formula $A[[X]]$ +\end_inset + + al anillo conmutativo de las sucesiones de elementos de +\begin_inset Formula $A$ +\end_inset + + entendidos como +\series bold +series de potencias +\series default + en una +\series bold +indeterminada +\series default + +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\sum_{n=0}^{\infty}a_{n}X^{n}$ +\end_inset + +, con las operaciones +\begin_inset Formula +\begin{align*} +(a_{n})_{n}+(b_{n})_{n} & :=(a_{n}+b_{n})_{n}; & (a_{n})_{n}(b_{n})_{n} & :=\left(\sum_{k=0}^{n}a_{k}b_{n-k}\right)_{n}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula $A[X]$ +\end_inset + + al subanillo de +\begin_inset Formula $A[[X]]$ +\end_inset + + formado por las sucesiones con un número finito de elementos no nulos, + a las que llamamos +\series bold +polinomios +\series default + en +\begin_inset Formula $X$ +\end_inset + +. + +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $A[X]$ +\end_inset + + identificando los elementos de +\begin_inset Formula $A$ +\end_inset + + con los +\series bold +polinomios constantes +\series default +, de la forma +\begin_inset Formula $P(X)=a_{0}$ +\end_inset + +. + Dado un ideal +\begin_inset Formula $I$ +\end_inset + + de +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0}\in I\}$ +\end_inset + + e +\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}\in A[X]:a_{0},\dots,a_{n}\in I\}$ +\end_inset + + son ideales de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $p:=\sum_{k\in\mathbb{N}}p_{k}X^{k}\in A[X]\setminus\{0\}$ +\end_inset + +, llamamos +\series bold +grado +\series default + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $\text{gr}(p):=\max\{k\in\mathbb{N}:p_{k}\neq0\}$ +\end_inset + +, +\series bold +coeficiente +\series default + de +\series bold +grado +\series default + +\begin_inset Formula $k$ +\end_inset + + de +\begin_inset Formula $p$ +\end_inset + + a +\begin_inset Formula $p_{k}$ +\end_inset + +, +\series bold +coeficiente independiente +\series default + al de grado 0 y +\series bold +coeficiente principal +\series default + al de grado +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +. + Decimos que el polinomio 0 tiene grado +\begin_inset Formula $-\infty$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $P,Q\in A[X]\setminus\{0\}$ +\end_inset + + tienen coeficientes principales +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + respectivamente: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(P+Q)\leq\max\{\text{gr}(P),\text{gr}(Q)\}$ +\end_inset + +, con desigualdad estricta si y sólo si +\begin_inset Formula $\text{gr}(P)=\text{gr}(Q)$ +\end_inset + + y +\begin_inset Formula $p+q=0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $P=:\sum_{k}a_{k}X^{k}$ +\end_inset + + y +\begin_inset Formula $Q=:\sum_{k}b_{k}X^{k}$ +\end_inset + + con grados respectivos +\begin_inset Formula $m$ +\end_inset + + y +\begin_inset Formula $n$ +\end_inset + + y +\begin_inset Formula $t:=\max\{m,n\}$ +\end_inset + +, entonces +\begin_inset Formula $P+Q=\sum_{k}(a_{k}+b_{k})X^{k}$ +\end_inset + +, pero +\begin_inset Formula $a_{k}+b_{k}=0+0=0$ +\end_inset + + para +\begin_inset Formula $k>m,n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si la desigualdad es estricta, +\begin_inset Formula $a_{t}+b_{t}=0$ +\end_inset + +. + Como al menos +\begin_inset Formula $a_{t}$ +\end_inset + + o +\begin_inset Formula $b_{t}$ +\end_inset + + no es nulo, el otro tampoco puede serlo, luego +\begin_inset Formula $m,n\geq t$ +\end_inset + + y por tanto +\begin_inset Formula $m=n=t$ +\end_inset + +, +\begin_inset Formula $a_{t}=p$ +\end_inset + + y +\begin_inset Formula $b_{t}=q$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +El coeficiente de grado +\begin_inset Formula $t$ +\end_inset + + de +\begin_inset Formula $P+Q$ +\end_inset + + es +\begin_inset Formula $a_{t}+b_{t}=a_{m}+b_{n}=p+q=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $\text{gr}(PQ)\leq\text{gr}(P)+\text{gr}(Q)$ +\end_inset + +, con igualdad si y sólo si +\begin_inset Formula $pq\neq0$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para +\begin_inset Formula $N>n+m$ +\end_inset + +, el coeficiente de grado +\begin_inset Formula $N$ +\end_inset + + de +\begin_inset Formula $PQ$ +\end_inset + + es +\begin_inset Formula +\[ +\sum_{k=0}^{N}a_{k}b_{N-k}=\sum_{k=0}^{m}a_{k}b_{N-k}+\sum_{k=m+1}^{N}a_{k}b_{N-k}=\sum_{k=0}^{m}a_{k}\cdot0+\sum_{k=m+1}^{N}0\cdot b_{N-k}=0. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +El coeficiente de grado +\begin_inset Formula $n+m$ +\end_inset + + de +\begin_inset Formula $PQ$ +\end_inset + + es +\begin_inset Formula $a_{m}b_{n}=pq$ +\end_inset + +, luego la igualdad se da si y sólo si esto es no nulo. +\end_layout + +\end_deeper +\begin_layout Standard +\begin_inset Formula $A[X]$ +\end_inset + + no es un cuerpo, pues +\begin_inset Formula $(X)$ +\end_inset + + es un ideal propio no nulo. + Es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +, en cuyo caso llamamos +\series bold +cuerpo de las funciones racionales +\series default + sobre +\begin_inset Formula $A$ +\end_inset + + al cuerpo de fracciones de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + es subanillo de +\begin_inset Formula $A[X]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $P,Q\in A[X]\setminus\{0\}$ +\end_inset + +, como los coeficientes principales de +\begin_inset Formula $P$ +\end_inset + + y +\begin_inset Formula $Q$ +\end_inset + + no son nulos y +\begin_inset Formula $A$ +\end_inset + + es un dominio, el de +\begin_inset Formula $PQ$ +\end_inset + + tampoco lo es. +\end_layout + +\begin_layout Section +Propiedad universal +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $u:A\to A[X]$ +\end_inset + + el homomorfismo inclusión: +\end_layout + +\begin_layout Enumerate + +\series bold +Propiedad universal del anillo de polinomios +\series default + ( +\series bold +PUAP +\series default +) +\series bold +: +\series default + Para cada homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el único homomorfismo +\begin_inset Formula $\tilde{f}:A[X]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}(X)=b$ +\end_inset + + y +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + es +\begin_inset Formula +\[ +\tilde{f}\left(\sum_{n}p_{n}X^{n}\right):=\sum_{n}f(p_{n})b^{n}. +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $\tilde{f}$ +\end_inset + + cumple las condiciones, +\begin_inset Formula +\[ +\tilde{f}\left(\sum_{n\in\mathbb{N}}p_{n}X^{n}\right)=\sum_{n\in\mathbb{N}}\tilde{f}(u(p_{n}))\tilde{f}(X)^{n}=\sum_{n\in\mathbb{N}}f(p_{n})b^{n}, +\] + +\end_inset + +lo que prueba la unicidad. + Es claro que +\begin_inset Formula $\tilde{f}(1)=1$ +\end_inset + +. + Para +\begin_inset Formula $p,q\in A[X]$ +\end_inset + +, +\begin_inset Formula +\begin{align*} +\tilde{f}(p+q) & =\sum_{n\in\mathbb{N}}f(p_{n}+q_{n})b^{n}=\sum_{n\in\mathbb{N}}f(p_{n})b^{n}+\sum_{n\in\mathbb{N}}f(q_{n})b^{n}=\tilde{f}(p)+\tilde{f}(q);\\ +\tilde{f}(pq) & =\sum_{n\in\mathbb{N}}f\left(\sum_{k=0}^{n}p_{k}q_{n-k}\right)b^{n}=\sum_{n\in\mathbb{N}}\sum_{k=0}^{n}f(p_{k})f(q_{n-k})b^{n}=\\ + & =\sum_{i,j\in\mathbb{N}}f(p_{i})f(q_{j})b^{i+j}=\left(\sum_{i\in\mathbb{N}}f(p_{i})b^{i}\right)\left(\sum_{j\in\mathbb{N}}f(q_{j})b^{j}\right)=\tilde{f}(p)\tilde{f}(q). +\end{align*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $A[X]$ +\end_inset + + y +\begin_inset Formula $u$ +\end_inset + + están determinados salvo isomorfismos por la propiedad universal: dados + un homomorfismo de anillos +\begin_inset Formula $v:A\to P$ +\end_inset + + y +\begin_inset Formula $t\in P$ +\end_inset + + tales que, para cada homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, existe un único +\begin_inset Formula $\tilde{f}:P\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(t)=b$ +\end_inset + +, existe un isomorfismo +\begin_inset Formula $\phi:A[X]\to P$ +\end_inset + + tal que +\begin_inset Formula $\phi\circ u=v$ +\end_inset + + y +\begin_inset Formula $\phi(X)=t$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Tomando +\begin_inset Formula $v$ +\end_inset + + como homomorfismo en la propiedad universal, existe +\begin_inset Formula $\tilde{v}:A[X]\to P$ +\end_inset + + tal que +\begin_inset Formula $\tilde{v}\circ u=v$ +\end_inset + + y +\begin_inset Formula $\tilde{v}(X)=t$ +\end_inset + +, y tomando +\begin_inset Formula $u$ +\end_inset + +, existe +\begin_inset Formula $\tilde{u}:P\to A[X]$ +\end_inset + + con +\begin_inset Formula $\tilde{u}\circ v=u$ +\end_inset + + y +\begin_inset Formula $\tilde{u}(t)=X$ +\end_inset + +. + Entonces +\begin_inset Formula $(\tilde{u}\circ\tilde{v})\circ u=\tilde{u}\circ v=u$ +\end_inset + + y +\begin_inset Formula $(\tilde{u}\circ\tilde{v})(X)=\tilde{u}(t)=X$ +\end_inset + +, y por la unicidad en la propiedad universal, +\begin_inset Formula $\tilde{u}\circ\tilde{v}=1_{A[X]}$ +\end_inset + +. + Del mismo modo, +\begin_inset Formula $(\tilde{v}\circ\tilde{u})\circ v=\tilde{v}\circ u=v$ +\end_inset + + y +\begin_inset Formula $(\tilde{v}\circ\tilde{u})(t)=\tilde{v}(X)=t$ +\end_inset + +, luego +\begin_inset Formula $\tilde{v}\circ\tilde{u}=1_{P}$ +\end_inset + + y +\begin_inset Formula $\tilde{v}$ +\end_inset + + es el isomorfismo buscado. +\end_layout + +\end_deeper +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + + y +\begin_inset Formula $b\in B$ +\end_inset + +, el +\series bold +homomorfismo de sustitución +\series default + o +\series bold +de evaluación +\series default + en +\begin_inset Formula $b$ +\end_inset + + es +\begin_inset Formula $S_{b}:A[X]\to B$ +\end_inset + + dado por +\begin_inset Formula +\[ +S_{b}(p):=p(b):=\sum_{n}p_{n}b^{n}, +\] + +\end_inset + +y su imagen es el subanillo generado por +\begin_inset Formula $A\cup\{b\}$ +\end_inset + +, llamado +\begin_inset Formula $A[b]$ +\end_inset + +. + Todo +\begin_inset Formula $p\in A[X]$ +\end_inset + + induce una +\series bold +función polinómica +\series default + +\begin_inset Formula $\hat{p}:B\to B$ +\end_inset + + dada por +\begin_inset Formula $\hat{p}(b):=S_{b}(p)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $S_{b}$ +\end_inset + + se obtiene al aplicar la PUAP a la inclusión. +\end_layout + +\end_deeper +\begin_layout Enumerate +Dado +\begin_inset Formula $a\in A$ +\end_inset + +, el homomorfismo de sustitución +\begin_inset Formula $S_{X+a}$ +\end_inset + + es un automorfismo de +\begin_inset Formula $A[X]$ +\end_inset + + con inverso +\begin_inset Formula $S_{X-a}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $S_{X-a}(S_{X+a}(X))=S_{X-a}(X+a)=X$ +\end_inset + + y, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $S_{X-a}(S_{X+a}(a))=S_{X-a}(a)=a$ +\end_inset + +. + Análogamente, +\begin_inset Formula $S_{X+a}(S_{X-a}(X))=X$ +\end_inset + + y, para +\begin_inset Formula $a\in A$ +\end_inset + +, +\begin_inset Formula $S_{X+a}(S_{X-a}(a))=a$ +\end_inset + +, luego por unicidad de la PUAP, +\begin_inset Formula $S_{X-a}\circ S_{X+a}=S_{X+a}\circ S_{X-a}=1_{A[X]}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un anillo conmutativo, +\begin_inset Formula $\frac{A[X]}{(X)}\cong A$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +El homomorfismo +\begin_inset Formula $A[X]\to A$ +\end_inset + + de sustitución en el 0 es suprayectivo con núcleo +\begin_inset Formula $(X)$ +\end_inset + +, y basta aplicar el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Enumerate +Todo homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X]\to B[X]$ +\end_inset + + dado por +\begin_inset Formula +\[ +\hat{f}(p)=\sum_{n}f(p_{n})X^{n}, +\] + +\end_inset + +que es inyectivo o suprayectivo si lo es +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se obtiene de aplicar la PUAP a la composición de la inclusión +\begin_inset Formula $B\to B[X]$ +\end_inset + + con +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un subanillo de +\begin_inset Formula $B$ +\end_inset + +, +\begin_inset Formula $A[X]$ +\end_inset + + lo es de +\begin_inset Formula $B[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Basta aplicar lo anterior al homomorfismo inyectivo inclusión. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $I$ +\end_inset + + es un ideal de +\begin_inset Formula $A$ +\end_inset + +, el +\series bold +homomorfismo de reducción de coeficientes módulo +\begin_inset Formula $I$ +\end_inset + + +\series default + es +\begin_inset Formula $\tilde{\pi}:A[X]\to(A/I)[X]$ +\end_inset + + dado por +\begin_inset Formula +\[ +\tilde{\pi}(p):=\sum_{n}(p_{n}+I)X^{n}. +\] + +\end_inset + +Su núcleo es +\begin_inset Formula $I[X]:=\{a_{0}+a_{1}X+\dots+a_{n}X^{n}:a_{0},\dots,a_{n}\in I\}$ +\end_inset + +, por lo que +\begin_inset Formula $(A/I)[X]\cong\frac{A[X]}{I[X]}$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Se obtiene de aplicar la PUAP a la proyección +\begin_inset Formula $A\to A/I$ +\end_inset + +. + Es fácil ver que +\begin_inset Formula $I[X]$ +\end_inset + + es un ideal, y entonces basta aplicar el primer teorema de isomorfía. +\end_layout + +\end_deeper +\begin_layout Section +Raíces de polinomios +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $f,g\in A[X]$ +\end_inset + +, si el coeficiente principal de +\begin_inset Formula $g$ +\end_inset + + es invertible en +\begin_inset Formula $A$ +\end_inset + +, existen dos únicos polinomios +\begin_inset Formula $q,r\in A[X]$ +\end_inset + +, llamados respectivamente +\series bold +cociente +\series default + y +\series bold +resto +\series default + de la +\series bold +división +\series default + de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $g$ +\end_inset + +, tales que +\begin_inset Formula $f=gq+r$ +\end_inset + + y +\begin_inset Formula $\text{gr}(r)<\text{gr}(g)$ +\end_inset + +, y se obtienen con el algoritmo +\begin_inset CommandInset ref +LatexCommand ref +reference "alg:poly-div" +plural "false" +caps "false" +noprefix "false" + +\end_inset + +. + +\series bold +Demostración: +\series default + Para la existencia, basta ver que +\begin_inset Formula $d:=\mathtt{dividir}$ +\end_inset + + termina y los valores +\begin_inset Formula $(q,r)$ +\end_inset + + devueltos cumplen +\begin_inset Formula $f=g(q-acc)+r$ +\end_inset + + y +\begin_inset Formula $\text{gr}(r)<\text{gr}(q)$ +\end_inset + +. + Si +\begin_inset Formula $n<m$ +\end_inset + +, incluyendo si +\begin_inset Formula $f=0$ +\end_inset + +, +\begin_inset Formula $d(f,acc)=(acc,f)$ +\end_inset + +, y si +\begin_inset Formula $n=m=0$ +\end_inset + +, +\begin_inset Formula $d(f,acc)=d(f-\frac{f_{0}}{g_{0}}g,acc+\frac{f_{0}}{g_{0}})=(acc+\frac{f}{g},0)$ +\end_inset + +, y como en ambos casos se cumple la condición, esto queda probado para + +\begin_inset Formula $n=0$ +\end_inset + +. + Para +\begin_inset Formula $n>0$ +\end_inset + +, +\begin_inset Formula $n\geq m$ +\end_inset + +, suponiendo esto probado para grado menor que +\begin_inset Formula $n$ +\end_inset + +, sea +\begin_inset Formula $p:=\frac{f_{n}}{g_{m}}X^{n-m}$ +\end_inset + +, +\begin_inset Formula $(q,r):=d(f,acc)=d(f-pg,acc+p)$ +\end_inset + +, pero como +\begin_inset Formula $pg$ +\end_inset + + tiene grado +\begin_inset Formula $n$ +\end_inset + + y coeficiente principal +\begin_inset Formula $f_{n}$ +\end_inset + +, +\begin_inset Formula $\text{gr}(f-pg)<\text{gr}(f)$ +\end_inset + +, luego por hipótesis de inducción el algoritmo termina, +\begin_inset Formula $\text{gr}(r)<\text{gr}(g)$ +\end_inset + + y +\begin_inset Formula $f-pg=g(q-acc-p)+r$ +\end_inset + +, y despejando, +\begin_inset Formula $f=g(q-acc)+r$ +\end_inset + +. + Para la unicidad, si +\begin_inset Formula $q,r,q',r'$ +\end_inset + + son tales que +\begin_inset Formula $f=gq+r=gq'+r'$ +\end_inset + + y +\begin_inset Formula $\text{gr}(r),\text{gr}(r')<\text{gr}(g)$ +\end_inset + +, +\begin_inset Formula $\text{gr}(g)+\text{gr}(q-q')=\text{gr}(g(q-q'))=\text{gr}(r'-r)\leq\max\{\text{gr}(r),\text{gr}(r')\}<\text{gr}(g)$ +\end_inset + +, luego +\begin_inset Formula $\text{gr}(q-q')<0$ +\end_inset + + y por tanto +\begin_inset Formula $q=q'$ +\end_inset + +, y despejando +\begin_inset Formula $r=r'$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Float algorithm +wide false +sideways false +status open + +\begin_layout Plain Layout +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +Entrada{Polinomios $f$ y $g +\backslash +neq0$ con coeficiente principal de $g$ invertible.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +Salida{Cociente $q$ y resto $r$ de $f$ entre $g$.} +\end_layout + +\begin_layout Plain Layout + + +\backslash +SetKwProg{Fn}{función}{}{fin} +\end_layout + +\begin_layout Plain Layout + + +\backslash +SetKwFunction{dividir}{dividir} +\end_layout + +\begin_layout Plain Layout + +$m:= +\backslash +text{gr}(g)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +Fn( +\backslash +tcp*[h]{{ +\backslash +rm $acc$ acumula términos de $q$.}}){ +\backslash +dividir{$f,acc$}}{ +\end_layout + +\begin_layout Plain Layout + + $n:= +\backslash +text{gr}(f)$ +\backslash +; +\end_layout + +\begin_layout Plain Layout + + +\backslash +lSSi{$n<m$}{$(acc,f)$} +\end_layout + +\begin_layout Plain Layout + + +\backslash +lEnOtroCaso{ +\backslash +dividir{$f-{f_n +\backslash +over g_m}X^{n-m}g,acc+{f_n +\backslash +over g_m}X^{n-m}$}} +\end_layout + +\begin_layout Plain Layout + +} +\end_layout + +\begin_layout Plain Layout + +$q,r +\backslash +gets$ +\backslash +, +\backslash +dividir{$f,0$} +\backslash +; +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Plain Layout +\begin_inset Caption Standard + +\begin_layout Plain Layout +\begin_inset CommandInset label +LatexCommand label +name "alg:poly-div" + +\end_inset + +División de polinomios. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema del resto: +\series default + Dados +\begin_inset Formula $f\in A[X]$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, el resto de +\begin_inset Formula $f$ +\end_inset + + entre +\begin_inset Formula $X-a$ +\end_inset + + es +\begin_inset Formula $f(a)$ +\end_inset + +. + En efecto, si +\begin_inset Formula $f=q(X-a)+r$ +\end_inset + + para ciertos +\begin_inset Formula $p,q\in A[X]$ +\end_inset + + con +\begin_inset Formula $\text{gr}(r)<1$ +\end_inset + +, +\begin_inset Formula $r$ +\end_inset + + es constante y +\begin_inset Formula $r=r(a)=f(a)-q(a)(a-a)=f(a)$ +\end_inset + +. + De aquí se obtiene el +\series bold +teorema de Ruffini +\series default +, que dice que +\begin_inset Formula $f$ +\end_inset + + es divisible por +\begin_inset Formula $X-a$ +\end_inset + + si y sólo si +\begin_inset Formula $f(a)=0$ +\end_inset + +, en cuyo caso decimos que +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz +\series default + de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $f\in A[X]\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $a\in A$ +\end_inset + +, existe +\begin_inset Formula $m:=\max\{k\in\mathbb{N}:(X-a)^{k}\mid f\}$ +\end_inset + +, pues +\begin_inset Formula $(X-a)^{0}\mid f$ +\end_inset + + y si +\begin_inset Formula $(X-a)^{k}\mid f$ +\end_inset + +, +\begin_inset Formula $k=\text{gr}((X-a)^{k})\leq\text{gr}(f)$ +\end_inset + +. + Llamamos a +\begin_inset Formula $m$ +\end_inset + + +\series bold +multiplicidad +\series default + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + +, y +\begin_inset Formula $a$ +\end_inset + + es raíz de +\begin_inset Formula $f$ +\end_inset + + si y sólo si +\begin_inset Formula $m\geq1$ +\end_inset + +. + Decimos que +\begin_inset Formula $a$ +\end_inset + + es una +\series bold +raíz simple +\series default + de +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $m=1$ +\end_inset + + y que es una +\series bold +raíz compuesta +\series default + si +\begin_inset Formula $m>1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $f$ +\end_inset + + es el único natural +\begin_inset Formula $m$ +\end_inset + + tal que +\begin_inset Formula $f=(X-a)^{m}g$ +\end_inset + + para algún +\begin_inset Formula $g\in A[X]$ +\end_inset + + del que +\begin_inset Formula $a$ +\end_inset + + no es raíz. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $n$ +\end_inset + + la multiplicidad. + Entonces +\begin_inset Formula $f=(X-a)^{m}h$ +\end_inset + + para algún +\begin_inset Formula $h\in A[X]$ +\end_inset + +, y si fuera +\begin_inset Formula $X-a\mid h$ +\end_inset + +, para algún +\begin_inset Formula $h'$ +\end_inset + +, +\begin_inset Formula $f=(X-a)^{m+1}h'\#$ +\end_inset + +. + Para la unicidad, si +\begin_inset Formula $f=(X-a)^{m}g$ +\end_inset + +, +\begin_inset Formula $(X-a)^{m}\mid f$ +\end_inset + + y +\begin_inset Formula $n\ge m$ +\end_inset + +, pero como +\begin_inset Formula $X-a$ +\end_inset + + es mónico, es cancelable en +\begin_inset Formula $A[X]$ +\end_inset + + y de +\begin_inset Formula $(X-a)^{m}g=(X-a)^{n}h$ +\end_inset + + obtenemos +\begin_inset Formula $g=(X-a)^{n-m}h$ +\end_inset + +, y como +\begin_inset Formula $X-a\nmid g$ +\end_inset + +, +\begin_inset Formula $n-m=0$ +\end_inset + + y +\begin_inset Formula $n=m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $f\in D[X]\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $a_{1},\dots,a_{n}$ +\end_inset + + son +\begin_inset Formula $n$ +\end_inset + + elementos de +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $\alpha_{1},\dots,\alpha_{n}\in\mathbb{Z}^{>0}$ +\end_inset + + con +\begin_inset Formula $(X-a_{k})^{\alpha_{k}}\mid f$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + +, entonces +\begin_inset Formula $(X-a_{1})^{\alpha_{1}}\cdots(X-a_{n})^{\alpha_{n}}\mid f$ +\end_inset + +, por lo que +\begin_inset Formula $\sum_{k=1}^{n}\alpha_{k}\leq\text{gr}(f)$ +\end_inset + + y, en particular, la suma de las multiplicidades de las raíces de +\begin_inset Formula $f$ +\end_inset + +, y el número de raíces, son no superiores a +\begin_inset Formula $\text{gr}(f)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $s:=\sum_{k=1}^{n}\alpha_{k}=1$ +\end_inset + + es evidente. + Para +\begin_inset Formula $s>1$ +\end_inset + +, sabemos que existen +\begin_inset Formula $g,h\in D[X]$ +\end_inset + + con +\begin_inset Formula $g(X-a_{1})^{\alpha_{1}}=f=h(X-a_{1})^{\alpha_{1}-1}(X-a_{2})^{\alpha_{2}}\cdots(X-a_{n})^{\alpha_{n}}$ +\end_inset + +, luego cancelando +\begin_inset Formula $(X-a_{1})^{\alpha_{1}-1}$ +\end_inset + +, +\begin_inset Formula $X-a_{1}\mid h(X-a_{2})^{\alpha_{2}}\cdots(X-a_{n})^{\alpha_{n}}$ +\end_inset + +. + Para +\begin_inset Formula $a,b\in D[X]$ +\end_inset + +, si +\begin_inset Formula $X-a_{1}\mid ab$ +\end_inset + +, +\begin_inset Formula $a(a_{1})b(a_{1})=(ab)(a_{1})=0$ +\end_inset + +, luego o +\begin_inset Formula $a(a_{1})=0$ +\end_inset + + y +\begin_inset Formula $X-a_{1}\mid a$ +\end_inset + + o +\begin_inset Formula $b(a_{1})=0$ +\end_inset + + y +\begin_inset Formula $X-a_{1}\mid b$ +\end_inset + +, con lo que +\begin_inset Formula $X-a_{1}$ +\end_inset + + es primo, y como no divide a ninguno de +\begin_inset Formula $X-a_{2},\dots,X-a_{n}$ +\end_inset + +, divide a +\begin_inset Formula $h$ +\end_inset + +, de donde se obtiene el resultado. + +\end_layout + +\begin_layout Standard + +\series bold +Principio de las identidades polinómicas: +\series default + Sea +\begin_inset Formula $D$ +\end_inset + + un dominio: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $f,g\in D[X]$ +\end_inset + +, si las funciones polinómicas +\begin_inset Formula $f,g:D\to D$ +\end_inset + + coinciden en +\begin_inset Formula $m$ +\end_inset + + elementos de +\begin_inset Formula $D$ +\end_inset + + con +\begin_inset Formula $m>\text{gr}(f),\text{gr}(g)$ +\end_inset + +, los polinomios +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + son iguales. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $a_{1},\dots,a_{m}$ +\end_inset + + estos elementos, +\begin_inset Formula $(X-a_{1})\cdots(X-a_{m})\mid f-g$ +\end_inset + +, pero +\begin_inset Formula $\text{gr}(f-g)\leq\max\{\text{gr}(f),\text{gr}(g)\}<m$ +\end_inset + +, luego debe ser +\begin_inset Formula $f-g=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $D$ +\end_inset + + es infinito si y sólo si dos polinomios distintos cualesquiera en +\begin_inset Formula $D[X]$ +\end_inset + + definen funciones polinómicas distintas en +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si hubiera +\begin_inset Formula $f,g\in D[X]$ +\end_inset + + con iguales funciones polinómicas, coincidirían en infinitos puntos y, + por lo anterior, +\begin_inset Formula $f=g$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $D$ +\end_inset + + fuera finito, habría infinitos polinomios pero una cantidad finita de funciones + polinómicas. +\end_layout + +\end_deeper +\begin_layout Standard +Como ejemplo de lo anterior, por el teorema pequeño de Fermat, dado un primo + +\begin_inset Formula $p$ +\end_inset + +, todos los elementos de +\begin_inset Formula $\mathbb{Z}_{p}$ +\end_inset + + son raíces de 0 y +\begin_inset Formula $X^{p}-X$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + +, definimos la +\series bold +derivada +\series default + de +\begin_inset Formula $P:=\sum_{k}a_{k}X^{k}\in A[X]$ +\end_inset + + como +\begin_inset Formula $P':=D(P):=\sum_{k}ka_{k}X^{k-1}$ +\end_inset + +, y escribimos +\begin_inset Formula $P^{(0)}:=P$ +\end_inset + + y +\begin_inset Formula $P^{(n+1)}:=P^{(n)\prime}$ +\end_inset + +. + Dados +\begin_inset Formula $a,b\in A$ +\end_inset + + y +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(aP+bQ)'=aP'+bQ'$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula +\begin{multline*} +D(aP+bQ)=D\left(a\sum_{k}p_{k}X^{k}+b\sum_{k}q_{k}X^{k}\right)=D\left(\sum_{k}(ap_{k}+bq_{k})X^{k}\right)=\\ +=\sum_{k}k(ap_{k}+bq_{k})X^{k-1}=a\sum_{k}kp_{k}X^{k-1}+b\sum_{k}kq_{k}X^{k-1}=aD(P)+bD(Q). +\end{multline*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(PQ)'=P'Q+PQ'$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula +\begin{multline*} +D(PQ)=D\left(\left(\sum_{k}p_{k}X^{k}\right)\left(\sum_{k}q_{k}X^{k}\right)\right)=D\left(\sum_{k}\left(\sum_{i=0}^{k}p_{i}q_{k-i}\right)X^{k}\right)=\\ +=\sum_{k}\sum_{i=0}^{k}kp_{i}q_{k-i}X^{k-1}=\sum_{i,j}(i+j)p_{i}q_{j}X^{i+j-1}=\\ +=\sum_{i,j}ip_{i}q_{j}X^{i-1}X^{j}+\sum_{i,j}jp_{i}q_{j}X^{i}X^{j-1}=\\ +=\left(\sum_{i}ip_{i}X^{i-1}\right)\left(\sum_{j}q_{j}X^{j}\right)+\left(\sum_{i}p_{i}X^{i}\right)\left(\sum_{j}q_{j}X^{j-1}\right)=D(P)Q+PD(Q). +\end{multline*} + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $(P^{n})'=nP^{n-1}P'$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $P^{n-1}$ +\end_inset + + está definido para +\begin_inset Formula $n\in\mathbb{N}\setminus\{0\}$ +\end_inset + +. + Para +\begin_inset Formula $n=1$ +\end_inset + +, +\begin_inset Formula $1P^{1-1}P'=1\cdot1\cdot P'=(P^{1})'$ +\end_inset + +. + Para +\begin_inset Formula $n>1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n-1$ +\end_inset + +, +\begin_inset Formula $(P^{n})'=(P^{n-1}P)'=(P^{n-1})'P+P^{n-1}P'=(n-1)P^{n-1}P'+P^{n-1}P'=nP^{n-1}P'$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Dados un dominio +\begin_inset Formula $D$ +\end_inset + + de característica 0, +\begin_inset Formula $P\in D[X]\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $a\in D$ +\end_inset + +, la multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $P$ +\end_inset + + es el menor +\begin_inset Formula $m\in\mathbb{N}_{0}$ +\end_inset + + con +\begin_inset Formula $P^{(m)}(a)\neq0$ +\end_inset + +. + +\series bold +Demostración: +\series default + Veamos primero que, para +\begin_inset Formula $k>0$ +\end_inset + +, si +\begin_inset Formula $P=(X-a)Q$ +\end_inset + + para un cierto +\begin_inset Formula $Q$ +\end_inset + +, +\begin_inset Formula $P^{(k)}=kQ^{(k-1)}+(X-a)Q^{(k)}$ +\end_inset + +. + Para +\begin_inset Formula $k=1$ +\end_inset + +, +\begin_inset Formula $P'=((X-a)Q)'=Q+(X-a)Q'$ +\end_inset + +, y supuesto esto probado para un cierto +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $P^{(k+1)}=P^{(k)\prime}=(kQ^{(k-1)}+(X-a)Q^{(k)})'=kQ^{(k)}+Q^{(k)}+(X-a)Q^{(k+1)}=(k+1)Q^{(k)}+(X-a)Q^{(k+1)}$ +\end_inset + +. + Sea ahora +\begin_inset Formula $m$ +\end_inset + + la multiplicidad. + Para +\begin_inset Formula $m=0$ +\end_inset + + es claro que el enunciado se cumple. + Sea ahora +\begin_inset Formula $m>0$ +\end_inset + + y supongamos esto probado para +\begin_inset Formula $m-1$ +\end_inset + +. + Entonces +\begin_inset Formula $P=(X-a)Q$ +\end_inset + + para un cierto +\begin_inset Formula $Q$ +\end_inset + + y la multiplicidad de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $Q$ +\end_inset + + es +\begin_inset Formula $m-1$ +\end_inset + +, luego +\begin_inset Formula $Q^{(k)}(a)=0$ +\end_inset + + para +\begin_inset Formula $k<m-1$ +\end_inset + + y +\begin_inset Formula $Q^{(m-1)}(a)\neq0$ +\end_inset + +. + Así, +\begin_inset Formula $P^{(0)}(a)=0$ +\end_inset + +, y por la propiedad probada al principio, +\begin_inset Formula $P^{(t)}(a)=tQ^{(t-1)}+(a-a)Q^{(t)}=tQ^{(t-1)}$ +\end_inset + +, luego para +\begin_inset Formula $1\leq k<m$ +\end_inset + +, +\begin_inset Formula $P^{(k)}(a)=kQ^{(k-1)}(a)=0$ +\end_inset + +, y +\begin_inset Formula $P^{(m)}(a)=kQ^{(m-1)}(a)\neq0$ +\end_inset + +. +\end_layout + +\begin_layout Section +Divisibilidad en anillos de polinomios +\end_layout + +\begin_layout Standard +Dado un anillo +\begin_inset Formula $A$ +\end_inset + +, +\begin_inset Formula $A[X]$ +\end_inset + + es un dominio euclídeo si y sólo si es un DIP, si y sólo si +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Si +\begin_inset Formula $X=PQ$ +\end_inset + +, +\begin_inset Formula $\text{gr}P+\text{gr}Q=1$ +\end_inset + +, y si, por ejemplo, +\begin_inset Formula $\text{gr}Q=0$ +\end_inset + +, el coeficiente principal de +\begin_inset Formula $P$ +\end_inset + + es +\begin_inset Formula $Q^{-1}$ +\end_inset + +, luego +\begin_inset Formula $Q$ +\end_inset + + es unidad. + Entonces +\begin_inset Formula $X$ +\end_inset + + es irreducible, y al ser +\begin_inset Formula $A[X]$ +\end_inset + + DIP, +\begin_inset Formula $(X)$ +\end_inset + + es maximal. + Para +\begin_inset Formula $a\in A\setminus\{0\}$ +\end_inset + +, +\begin_inset Formula $a\notin(X)$ +\end_inset + +, luego al ser +\begin_inset Formula $(X)$ +\end_inset + + maximal es +\begin_inset Formula $(a,X)=A[X]$ +\end_inset + + y por tanto +\begin_inset Formula $1=aP+XQ$ +\end_inset + + para ciertos +\begin_inset Formula $P,Q\in A[X]$ +\end_inset + +, luego +\begin_inset Formula $1=aP(0)$ +\end_inset + + y +\begin_inset Formula $a$ +\end_inset + + es invertible en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies1]$ +\end_inset + + El grado es una función euclídea en +\begin_inset Formula $A[X]$ +\end_inset + +. + En efecto, sea +\begin_inset Formula $D:=A[X]$ +\end_inset + +, es claro que +\begin_inset Formula $\forall a,b\in D\setminus\{0\},(a\mid b\implies\text{gr}(a)\leq\text{gr}(b))$ +\end_inset + +, y para la otra condición basta tomar el cociente y el resto teniendo en + cuenta que todos los elementos de +\begin_inset Formula $A\setminus\{0\}$ +\end_inset + + son invertibles. +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $D$ +\end_inset + + un dominio y +\begin_inset Formula $p\in D$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $p$ +\end_inset + + es irreducible en +\begin_inset Formula $D$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si hubiera +\begin_inset Formula $Q\in D[X]$ +\end_inset + + con +\begin_inset Formula $pQ=1$ +\end_inset + + sería +\begin_inset Formula $\text{gr}Q=0$ +\end_inset + + y +\begin_inset Formula $Q\in D$ +\end_inset + +, pero sabemos que +\begin_inset Formula $p$ +\end_inset + + no es unidad en +\begin_inset Formula $D\#$ +\end_inset + +. + Si +\begin_inset Formula $p=PQ$ +\end_inset + + con +\begin_inset Formula $P,Q\in D[X]$ +\end_inset + +, como +\begin_inset Formula $P,Q\neq0$ +\end_inset + +, +\begin_inset Formula $\text{gr}P=\text{gr}Q=0$ +\end_inset + +, luego +\begin_inset Formula $P,Q\in D$ +\end_inset + + y uno de +\begin_inset Formula $P$ +\end_inset + + o +\begin_inset Formula $Q$ +\end_inset + + es unidad. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Se obtiene de que +\begin_inset Formula $D\subseteq D[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $p$ +\end_inset + + es primo en +\begin_inset Formula $D[X]$ +\end_inset + +, lo es en +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $a,b\in D$ +\end_inset + + con +\begin_inset Formula $p\mid ab$ +\end_inset + +, +\begin_inset Formula $p\mid a$ +\end_inset + + o +\begin_inset Formula $p\mid b$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + +, pero si, por ejemplo, +\begin_inset Formula $pt=a$ +\end_inset + + para un +\begin_inset Formula $t\in D[X]$ +\end_inset + +, entonces +\begin_inset Formula $\text{gr}t=0$ +\end_inset + + y +\begin_inset Formula $p\mid a$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, y para +\begin_inset Formula $b$ +\end_inset + + es análogo. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU, +\begin_inset Formula $p$ +\end_inset + + es irreducible en +\begin_inset Formula $D$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +, si y sólo si es primo en +\begin_inset Formula $D$ +\end_inset + +, si y sólo si lo es en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $3\implies1,4\implies2]$ +\end_inset + + Por ser +\begin_inset Formula $D$ +\end_inset + + y +\begin_inset Formula $D[X]$ +\end_inset + + dominios. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Por ser +\begin_inset Formula $D$ +\end_inset + + un DFU. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\iff2,4\implies3]$ +\end_inset + + Son los puntos anteriores. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Si +\begin_inset Formula $p$ +\end_inset + + es primo en +\begin_inset Formula $D$ +\end_inset + +, sean +\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n},b:=b_{0}+\dots+b_{m}X^{m}\in D[X]$ +\end_inset + + tales que +\begin_inset Formula $p\nmid a,b$ +\end_inset + +, +\begin_inset Formula $i$ +\end_inset + + el menor índice con +\begin_inset Formula $p\nmid a_{i}$ +\end_inset + + y +\begin_inset Formula $j$ +\end_inset + + el menor índice con +\begin_inset Formula $p\nmid b_{j}$ +\end_inset + +, el coeficiente de grado +\begin_inset Formula $i+j$ +\end_inset + + de +\begin_inset Formula $ab$ +\end_inset + + es +\begin_inset Formula $a_{0}b_{i+j}+\dots+a_{i-1}b_{j+1}+a_{i}b_{j}+a_{i+1}b_{j-1}+\dots+a_{i+j}b_{0}$ +\end_inset + +, y +\begin_inset Formula $p$ +\end_inset + + divide a todos los sumandos de esta fórmula salvo a +\begin_inset Formula $a_{i}b_{j}$ +\end_inset + + por ser +\begin_inset Formula $p$ +\end_inset + + primo en +\begin_inset Formula $D$ +\end_inset + +, de donde +\begin_inset Formula $p\nmid ab$ +\end_inset + + y por tanto +\begin_inset Formula $p$ +\end_inset + + es primo en +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Standard +Sea +\begin_inset Formula $D$ +\end_inset + + un DFU, definimos +\begin_inset Formula $\varphi:D\setminus0\to\mathbb{N}$ +\end_inset + + tal que +\begin_inset Formula $\varphi(a)$ +\end_inset + + es el número de factores irreducibles en la factorización por irreducibles + de +\begin_inset Formula $a$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, contando repetidos, y para +\begin_inset Formula $a,b\in D\setminus0$ +\end_inset + +, +\begin_inset Formula $\varphi(ab)=\varphi(a)+\varphi(b)$ +\end_inset + + y +\begin_inset Formula $\varphi(a)=0\iff a\in D^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU y +\begin_inset Formula $K$ +\end_inset + + es su cuerpo de fracciones, +\begin_inset Formula $f\in D[X]$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +, es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si no lo fuera, existirían +\begin_inset Formula $G,H\in K[X]$ +\end_inset + + con +\begin_inset Formula $f=GH$ +\end_inset + + y +\begin_inset Formula $\text{gr}(G),\text{gr}(H)>0$ +\end_inset + +, pues los elementos de grado 0 son nulos o unidades. + Si tomamos representantes de los coeficientes de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $b\in D\setminus0$ +\end_inset + + múltiplo común de los denominadores en estos representantes, +\begin_inset Formula $g:=bG\in D[X]$ +\end_inset + +, y si hacemos lo mismo con +\begin_inset Formula $H$ +\end_inset + + obtenemos un +\begin_inset Formula $c\in D\setminus0$ +\end_inset + + con +\begin_inset Formula $h:=cH\in D[X]$ +\end_inset + +. + Entonces +\begin_inset Formula $bcf=gh$ +\end_inset + +, y basta ver que existen +\begin_inset Formula $g',h'\in D[X]$ +\end_inset + + con +\begin_inset Formula $f=g'h'$ +\end_inset + +, +\begin_inset Formula $\text{gr}(g')=\text{gr}(g)$ +\end_inset + + y +\begin_inset Formula $\text{gr}(h')=\text{gr}(h)$ +\end_inset + +, pues entonces +\begin_inset Formula $f$ +\end_inset + + no es irreducible en +\begin_inset Formula $D[X]\#$ +\end_inset + +. + Para +\begin_inset Formula $\varphi(bc)=0$ +\end_inset + +, podemos tomar +\begin_inset Formula $g':=a^{-1}g$ +\end_inset + + y +\begin_inset Formula $h':=h$ +\end_inset + +. + Si +\begin_inset Formula $n:=\varphi(bc)>0$ +\end_inset + +, probado esto para +\begin_inset Formula $\varphi(bc)=n-1$ +\end_inset + +, existen +\begin_inset Formula $p,d\in D$ +\end_inset + + con +\begin_inset Formula $bc=pd$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + primo, luego +\begin_inset Formula $p\mid bcf=gh$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + + y, por estar en un DFU, +\begin_inset Formula $p\mid g$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\tilde{g}\in D[X]$ +\end_inset + + con +\begin_inset Formula $g=p\tilde{g}$ +\end_inset + +, y por tanto +\begin_inset Formula $\text{gr}(g)=\text{gr}(\tilde{g})$ +\end_inset + +, es +\begin_inset Formula $pdf=bcf=gh=p\tilde{g}h$ +\end_inset + + y +\begin_inset Formula $df=\tilde{g}h$ +\end_inset + +, y como +\begin_inset Formula $\varphi(d)=\varphi(bc)-1=n-1$ +\end_inset + +, existen +\begin_inset Formula $g',h'\in D[X]$ +\end_inset + + con +\begin_inset Formula $f=g'h'$ +\end_inset + +, +\begin_inset Formula $\text{gr}(g')=\text{gr}(\tilde{g})=\text{gr}(g)$ +\end_inset + + y +\begin_inset Formula $\text{gr}(h')=\text{gr}(h)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, +\begin_inset Formula $D$ +\end_inset + + es un DFU si y sólo si lo es +\begin_inset Formula $D[X]$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Primero vemos que todo +\begin_inset Formula $a:=a_{0}+\dots+a_{n}X^{n}\in D[X]$ +\end_inset + + con +\begin_inset Formula $a_{n}\neq0$ +\end_inset + + no invertible es producto de irreducibles. + Si +\begin_inset Formula $n+\varphi(a_{n})=0$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + es unidad. + Para +\begin_inset Formula $n+\varphi(a_{n})=1$ +\end_inset + +, tanto si +\begin_inset Formula $n=0$ +\end_inset + + y +\begin_inset Formula $\varphi(a_{n})=1$ +\end_inset + + como si +\begin_inset Formula $n=1$ +\end_inset + + y +\begin_inset Formula $\varphi(a_{n})=0$ +\end_inset + +, +\begin_inset Formula $a$ +\end_inset + + sería irreducible. + Supongamos que +\begin_inset Formula $n+\varphi(a_{n})>1$ +\end_inset + + y que esto se cumple para valores de +\begin_inset Formula $n+\varphi(a_{n})$ +\end_inset + + menores. + Si +\begin_inset Formula $a$ +\end_inset + + es irreducible o si +\begin_inset Formula $n=0$ +\end_inset + + es obvio. + De lo contrario existen +\begin_inset Formula $b:=b_{0}+\dots+b_{m}X^{m},c:=c_{0}+\dots+c_{k}X^{k}\in D[X]$ +\end_inset + + no invertibles ni unidades con +\begin_inset Formula $b_{m},c_{k}\neq0$ +\end_inset + +, luego +\begin_inset Formula $0<m+\varphi(b_{m}),k+\varphi(c_{k})<m+k+\varphi(b_{m})+\varphi(c_{k})=n+\varphi(a_{n})$ +\end_inset + +, y aplicando la hipótesis de inducción a +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + y +\begin_inset Quotes cld +\end_inset + +pegando +\begin_inset Quotes crd +\end_inset + + las factorizaciones se obtiene el resultado. +\end_layout + +\begin_deeper +\begin_layout Standard +Queda ver que todo irreducible +\begin_inset Formula $f$ +\end_inset + + de +\begin_inset Formula $D[X]$ +\end_inset + + es primo. + Para +\begin_inset Formula $\text{gr}(f)=0$ +\end_inset + + ya lo tenemos. + De lo contrario, sean +\begin_inset Formula $g,h\in D[X]$ +\end_inset + + con +\begin_inset Formula $f\mid gh$ +\end_inset + +, entonces +\begin_inset Formula $f\mid gh$ +\end_inset + + en +\begin_inset Formula $K[X]$ +\end_inset + +, y +\begin_inset Formula $f$ +\end_inset + + es irreducible y por tanto primo en +\begin_inset Formula $K[X]$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $f\mid g$ +\end_inset + + en +\begin_inset Formula $K[X]$ +\end_inset + +, existe +\begin_inset Formula $G\in K[X]$ +\end_inset + + con +\begin_inset Formula $g=fG$ +\end_inset + +, y queda ver que +\begin_inset Formula $G\in D[X]$ +\end_inset + +, para lo cual, si +\begin_inset Formula $a\in D$ +\end_inset + + cumple +\begin_inset Formula $aG\in D[X]$ +\end_inset + + con +\begin_inset Formula $\varphi(a)$ +\end_inset + + mínimo, basta ver que +\begin_inset Formula $\varphi(a)=0$ +\end_inset + +. + Supongamos +\begin_inset Formula $\varphi(a)>0$ +\end_inset + + y sean +\begin_inset Formula $p,b\in D$ +\end_inset + + con +\begin_inset Formula $a=pb$ +\end_inset + + y +\begin_inset Formula $p$ +\end_inset + + primo, con lo que +\begin_inset Formula $p\mid ag=afG$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + +. + Si fuera +\begin_inset Formula $p\mid f$ +\end_inset + +, sería +\begin_inset Formula $p\mid f_{k}$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + + y, como +\begin_inset Formula $\text{gr}(f)\geq1$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + no sería irreducible +\begin_inset Formula $\#$ +\end_inset + +, luego +\begin_inset Formula $p\mid aG$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + +. + Sea +\begin_inset Formula $h\in D[X]$ +\end_inset + + con +\begin_inset Formula $aG=ph$ +\end_inset + +, entonces +\begin_inset Formula $pbG=ph$ +\end_inset + + y +\begin_inset Formula $bG=h\in D[X]$ +\end_inset + +, pero +\begin_inset Formula $\varphi(b)<\varphi(a)$ +\end_inset + +, luego +\begin_inset Formula $\varphi(a)$ +\end_inset + + no es mínimo. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + + +\begin_inset Formula $D$ +\end_inset + + es un dominio y cada +\begin_inset Formula $a\in D\setminus(D^{*}\cup\{0\})$ +\end_inset + + es producto de irreducibles de +\begin_inset Formula $D[X]$ +\end_inset + +, que tendrán grado 0 por tenerlo +\begin_inset Formula $a$ +\end_inset + + y serán primos por ser +\begin_inset Formula $D[X]$ +\end_inset + + un DFU, por lo que serán también primos en +\begin_inset Formula $D$ +\end_inset + +. + Por tanto +\begin_inset Formula $D$ +\end_inset + + es un DFU. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU y +\begin_inset Formula $K$ +\end_inset + + es su cuerpo de fracciones, definimos la relación de equivalencia +\begin_inset Formula $x\sim y:\iff\exists u\in D^{*}:y=ux$ +\end_inset + +, con lo que +\begin_inset Formula $[x]=xD^{*}$ +\end_inset + + y, en particular, si +\begin_inset Formula $x\in D$ +\end_inset + +, +\begin_inset Formula $[x]$ +\end_inset + + es el conjunto de los asociados de +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +. + Definimos +\begin_inset Formula $\cdot:K\times(K/\sim)\to K/\sim$ +\end_inset + + como +\begin_inset Formula $a(bD^{*})=(ab)D^{*}$ +\end_inset + +. + Esto está bien definido, pues si +\begin_inset Formula $b_{1}\sim b_{2}$ +\end_inset + + (por ejemplo, +\begin_inset Formula $b_{1}=ub_{2}$ +\end_inset + +), entonces +\begin_inset Formula $(ab_{2})D^{*}=(aub_{1})D^{*}=\{ab_{1}uv\}_{v\in D^{*}}=\{ab_{1}v\}_{v\in D^{*}}=(ab_{1})D^{*}$ +\end_inset + +. + Además, +\begin_inset Formula $a(b(cD^{*}))=(ab)(cD^{*})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Definimos +\begin_inset Formula $c:K[X]\to K/\sim$ +\end_inset + + tal que, para +\begin_inset Formula $p:=\sum_{k\geq0}p_{k}X^{k}\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(p):=\{x:x=\text{mcd}_{k\geq0}p_{k}\}$ +\end_inset + +, y para +\begin_inset Formula $p\in K[X]$ +\end_inset + +, si +\begin_inset Formula $a\in D\setminus\{0\}$ +\end_inset + + cumple +\begin_inset Formula $ap\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(p):=a^{-1}c(ap)$ +\end_inset + +. + Esto está bien definido, pues si +\begin_inset Formula $a_{1}p,a_{2}p\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(a_{1}a_{2}p)=a_{1}c(a_{2}p)=a_{2}c(a_{1}p)$ +\end_inset + + y por tanto +\begin_inset Formula $a_{1}^{-1}c(a_{1}p)=a_{2}^{-1}c(a_{2}p)$ +\end_inset + +. + Si +\begin_inset Formula $c(p)=aD^{*}$ +\end_inset + +, decimos que +\begin_inset Formula $a$ +\end_inset + + es el +\series bold +contenido +\series default + de +\begin_inset Formula $p$ +\end_inset + + ( +\begin_inset Formula $a=c(p)$ +\end_inset + +). +\end_layout + +\begin_layout Standard +Propiedades: +\begin_inset Formula $\forall a\in K,p\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a\in D$ +\end_inset + + y +\begin_inset Formula $p\in D[X]$ +\end_inset + +, +\begin_inset Formula $a\mid p$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + + si y sólo si +\begin_inset Formula $a\mid c(p)$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $a\mid p$ +\end_inset + + en +\begin_inset Formula $D[X]$ +\end_inset + + si y sólo si divide a cada coeficiente de +\begin_inset Formula $p$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, si y sólo si divide a su máximo común divisor, que es +\begin_inset Formula $c(p)$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $c(ap)=ac(p)$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Si +\begin_inset Formula $a\in D$ +\end_inset + + y +\begin_inset Formula $p=:\sum_{k=0}^{n}p_{k}X^{k}\in D[X]$ +\end_inset + +, +\begin_inset Formula $c(ap)=\text{mcd}(ap_{0},\dots,ap_{n})=a\text{mcd}(p_{0},\dots,p_{n})=ac(p)$ +\end_inset + +. + En otro caso basta multiplicar por un +\begin_inset Formula $b$ +\end_inset + + tal que +\begin_inset Formula $p,ap\in D[X]$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +\begin_inset Formula $p\in D[X]\iff c(p)\in D$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Obvio. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $p=:\sum_{k}\frac{r_{k}}{s_{k}}X^{k}$ +\end_inset + + de forma que para todo +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $r_{k}$ +\end_inset + + y +\begin_inset Formula $s_{k}$ +\end_inset + + son coprimos y +\begin_inset Formula $r_{k}=0\implies s_{k}=1$ +\end_inset + +. + Si +\begin_inset Formula $p\notin D[X]$ +\end_inset + +, existiría un +\begin_inset Formula $s_{k}\notin D^{*}$ +\end_inset + +, con lo que existe un irreducible +\begin_inset Formula $q\mid s_{k}$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + + y por tanto +\begin_inset Formula $q\nmid r_{k}$ +\end_inset + +. + Sean +\begin_inset Formula $n_{k}\in\mathbb{N}$ +\end_inset + + y +\begin_inset Formula $h_{k}\in D$ +\end_inset + + con +\begin_inset Formula $q^{n_{k}}h_{k}=s_{k}$ +\end_inset + + y +\begin_inset Formula $q\nmid h_{k}$ +\end_inset + + para cada +\begin_inset Formula $k$ +\end_inset + +, +\begin_inset Formula $n:=n_{i}:=\max_{k}n_{k}\geq1$ +\end_inset + +, +\begin_inset Formula $m:=\text{mcm}_{k}s_{k}$ +\end_inset + + y +\begin_inset Formula $m=:q^{n}h$ +\end_inset + +, entonces +\begin_inset Formula $q\nmid h$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, +\begin_inset Formula $mp\in D[X]$ +\end_inset + + y +\begin_inset Formula $c(mp)=mc(p)$ +\end_inset + +, pero el coeficiente +\begin_inset Formula $i$ +\end_inset + +-ésimo de +\begin_inset Formula $mp$ +\end_inset + +, +\begin_inset Formula $m\frac{r_{i}}{s_{i}}=\frac{q^{n}hr_{i}}{q^{n}h_{i}}=\frac{hr_{i}}{h_{i}}\in D$ +\end_inset + +, no es múltiplo de +\begin_inset Formula $q$ +\end_inset + +, luego +\begin_inset Formula $mc(p)$ +\end_inset + +, el máximo común divisor de estos coeficientes, no es múltiplo de +\begin_inset Formula $q$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, pese a que +\begin_inset Formula $m=\text{mcm}_{k}s_{k}$ +\end_inset + + sí lo es. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Un polinomio +\begin_inset Formula $p$ +\end_inset + + es +\series bold +primitivo +\series default + si +\begin_inset Formula $c(p)=1$ +\end_inset + +, esto es, si +\begin_inset Formula $p\in D[X]$ +\end_inset + + y +\begin_inset Formula $\text{mcd}_{k}p_{k}=1$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Lema de Gauss: +\series default + Para +\begin_inset Formula $f,g\in K[X]$ +\end_inset + +, +\begin_inset Formula $c(fg)=c(f)c(g)$ +\end_inset + +, y en particular +\begin_inset Formula $fg$ +\end_inset + + es primitivo si y sólo si +\begin_inset Formula $f$ +\end_inset + + y +\begin_inset Formula $g$ +\end_inset + + lo son. + +\series bold +Demostración: +\series default + +\begin_inset Formula $f':=f/c(f)$ +\end_inset + + es primitivo, pues +\begin_inset Formula $c(f')=c(c(f)^{-1}f)=c(f)^{-1}c(f)=1$ +\end_inset + +, y análogamente +\begin_inset Formula $g':=g/c(g)$ +\end_inset + + es primitivo, luego +\begin_inset Formula $fg=c(f)c(g)f'g'$ +\end_inset + + y basta ver que +\begin_inset Formula $f'g'\in D[X]$ +\end_inset + + es primitivo. + Si no lo fuera, +\begin_inset Formula $c(f'g')$ +\end_inset + + tendría un divisor irreducible, y por tanto primo, +\begin_inset Formula $p$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, luego +\begin_inset Formula $p\mid f'g'$ +\end_inset + + y entonces +\begin_inset Formula $p\mid f'$ +\end_inset + + o +\begin_inset Formula $p\mid g'$ +\end_inset + +, con lo que +\begin_inset Formula $p\mid c(f')=1$ +\end_inset + + o +\begin_inset Formula $p\mid c(g')=1\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dado +\begin_inset Formula $f\in D[X]\setminus D$ +\end_inset + + primitivo, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + + si y sólo si lo es en +\begin_inset Formula $K[X]$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall G,H\in K[X],(f=GH\implies\text{gr}(G)=0\lor\text{gr}(H)=0)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall g,h\in D[X],(f=gh\implies\text{gr}(g)=0\lor\text{gr}(h)=0)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $1\implies2\implies3]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Visto. +\end_layout + +\begin_layout Description +\begin_inset Formula $4\implies1]$ +\end_inset + + Como +\begin_inset Formula $f$ +\end_inset + + es primitivo, sus únicos divisores de grado 0 son unidades, por lo que + para +\begin_inset Formula $g,h\in D[X]$ +\end_inset + + con +\begin_inset Formula $f=gh$ +\end_inset + +, +\begin_inset Formula $g$ +\end_inset + + o +\begin_inset Formula $h$ +\end_inset + + es unidad. +\end_layout + +\begin_layout Standard +De aquí que si +\begin_inset Formula $D$ +\end_inset + + es un DFU con cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, los irreducibles de +\begin_inset Formula $D[X]$ +\end_inset + + son precisamente los de +\begin_inset Formula $D$ +\end_inset + + y los polinomios primitivos de +\begin_inset Formula $D[X]\setminus D$ +\end_inset + + irreducibles en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_layout Section +Factorización en el anillo de polinomios de un DFU +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $K$ +\end_inset + + un cuerpo y +\begin_inset Formula $f\in K[X]$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)=1$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $g,h\in K[X]$ +\end_inset + + con +\begin_inset Formula $f=gh$ +\end_inset + +, podemos suponer +\begin_inset Formula $\text{gr}g=0$ +\end_inset + +, con lo que +\begin_inset Formula $g$ +\end_inset + + es unidad. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)>1$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + tiene una raíz en +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + no es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Sean +\begin_inset Formula $a$ +\end_inset + + la raíz y +\begin_inset Formula $g\in K[X]$ +\end_inset + + tal que +\begin_inset Formula $f=(X-a)g$ +\end_inset + +, entonces +\begin_inset Formula $\text{gr}g=1$ +\end_inset + +, luego ni +\begin_inset Formula $X-a$ +\end_inset + + ni +\begin_inset Formula $g$ +\end_inset + + son unidades. +\end_layout + +\end_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $\text{gr}(f)\in\{2,3\}$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + si y sólo si no tiene raíces en +\begin_inset Formula $K$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Es el contrarrecíproco de lo anterior. +\end_layout + +\begin_layout Enumerate +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +De haber +\begin_inset Formula $g,h\in K[X]$ +\end_inset + + con +\begin_inset Formula $f=gh$ +\end_inset + + y +\begin_inset Formula $\text{gr}(g),\text{gr}(h)>0$ +\end_inset + +, o +\begin_inset Formula $g$ +\end_inset + + o +\begin_inset Formula $h$ +\end_inset + + tendría grado 1. + Si, por ejemplo, +\begin_inset Formula $g=aX+b$ +\end_inset + + con +\begin_inset Formula $a,b\in K$ +\end_inset + +, entonces +\begin_inset Formula $f=(X+\frac{b}{a})(ah)$ +\end_inset + + y +\begin_inset Formula $\frac{b}{a}$ +\end_inset + + sería raíz. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Si +\begin_inset Formula $D$ +\end_inset + + es un DFU con cuerpo de fracciones +\begin_inset Formula $K$ +\end_inset + +, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + y +\begin_inset Formula $n:=\text{gr}(f)$ +\end_inset + +, todas las raíces de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $K$ +\end_inset + + son de la forma +\begin_inset Formula $\frac{r}{s}$ +\end_inset + + con +\begin_inset Formula $r\mid a_{0}$ +\end_inset + + y +\begin_inset Formula $s\mid a_{n}$ +\end_inset + +. + En efecto, sea +\begin_inset Formula $t=\frac{r}{s}$ +\end_inset + + con +\begin_inset Formula $r,s\in D$ +\end_inset + + coprimos una raíz de +\begin_inset Formula $f$ +\end_inset + +, multiplicando +\begin_inset Formula $f(t)=0$ +\end_inset + + por +\begin_inset Formula $s^{n}$ +\end_inset + + obtenemos +\begin_inset Formula $a_{0}s^{n}+a_{1}rs^{n-1}+\dots+a_{n-1}r^{n-1}s+a_{n}r^{n}=0$ +\end_inset + +, luego +\begin_inset Formula $r\mid a_{0}s^{n}$ +\end_inset + + y +\begin_inset Formula $s\mid a_{n}r^{n}$ +\end_inset + + y, por ser +\begin_inset Formula $r$ +\end_inset + + y +\begin_inset Formula $s$ +\end_inset + + coprimos, +\begin_inset Formula $r\mid a_{0}$ +\end_inset + + y +\begin_inset Formula $s\mid a_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de reducción: +\series default + Sean +\begin_inset Formula $\phi:D\to K$ +\end_inset + + un homomorfismo de anillos donde +\begin_inset Formula $D$ +\end_inset + + es un DFU y +\begin_inset Formula $K$ +\end_inset + + es un cuerpo, +\begin_inset Formula $\hat{\phi}:D[X]\to K[X]$ +\end_inset + + el homomorfismo inducido por +\begin_inset Formula $\phi$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + un polinomio primitivo de +\begin_inset Formula $D[X]\setminus D$ +\end_inset + +, si +\begin_inset Formula $\hat{\phi}(f)$ +\end_inset + + es irreducible en +\begin_inset Formula $K[X]$ +\end_inset + + y +\begin_inset Formula $\text{gr}(\hat{\phi}(f))=\text{gr}(f)$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $g,h\in D[X]$ +\end_inset + + con +\begin_inset Formula $f=gh$ +\end_inset + + y +\begin_inset Formula $a$ +\end_inset + +, +\begin_inset Formula $b$ +\end_inset + + y +\begin_inset Formula $c$ +\end_inset + + los coeficientes principales respectivos de +\begin_inset Formula $f$ +\end_inset + +, +\begin_inset Formula $g$ +\end_inset + + y +\begin_inset Formula $h$ +\end_inset + +, +\begin_inset Formula $a=bc\notin\ker\phi$ +\end_inset + +, luego +\begin_inset Formula $b,c\notin\ker\phi$ +\end_inset + +, +\begin_inset Formula $\text{gr}(\phi(g))=\text{gr}(g)$ +\end_inset + + y +\begin_inset Formula $\text{gr}(\phi(h))=\text{gr}(h)$ +\end_inset + +, y como +\begin_inset Formula $\hat{\phi}(f)$ +\end_inset + + es irreducible en el cuerpo +\begin_inset Formula $K[X]$ +\end_inset + + y +\begin_inset Formula $\hat{\phi}(f)=\hat{\phi}(g)\hat{\phi}(h)$ +\end_inset + +, +\begin_inset Formula $\text{gr}(\phi(g))=0$ +\end_inset + + o +\begin_inset Formula $\text{gr}(\phi(h))=0$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +En particular, si +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + es primo, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in\mathbb{Z}[X]$ +\end_inset + + es primitivo y +\begin_inset Formula $n:=\text{gr}(f)$ +\end_inset + +, si +\begin_inset Formula $p\nmid a_{n}$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}_{p}[X]$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $\mathbb{Z}[X]$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de Eisenstein: +\series default + Sean +\begin_inset Formula $D$ +\end_inset + + un DFU, +\begin_inset Formula $f:=\sum_{k}a_{k}X^{k}\in D[X]$ +\end_inset + + primitivo y +\begin_inset Formula $n:=\text{gr}f$ +\end_inset + +, si existe un irreducible +\begin_inset Formula $p\in D$ +\end_inset + + tal que +\begin_inset Formula $\forall k\in\{0,\dots,n-1\},p\mid a_{k}$ +\end_inset + + y +\begin_inset Formula $p^{2}\nmid a_{0}$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es irreducible en +\begin_inset Formula $D[X]$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $g:=b_{0}+\dots+b_{m}X^{m},h:=c_{0}+\dots+c_{k}X^{k}\in D[X]$ +\end_inset + + con +\begin_inset Formula $b_{m},c_{k}\neq0$ +\end_inset + + y +\begin_inset Formula $f=gh$ +\end_inset + +, como +\begin_inset Formula $p^{2}\nmid a_{0}=b_{0}c_{0}$ +\end_inset + +, +\begin_inset Formula $p\nmid b_{0}$ +\end_inset + + o +\begin_inset Formula $p\nmid c_{0}$ +\end_inset + +. + Si, por ejemplo, +\begin_inset Formula $p\nmid c_{0}$ +\end_inset + +, como +\begin_inset Formula $f$ +\end_inset + + es primitivo, +\begin_inset Formula $p\nmid g$ +\end_inset + +, pues si fuera +\begin_inset Formula $p\mid g$ +\end_inset + + sería +\begin_inset Formula $p\mid c(g)\mid c(f)\#$ +\end_inset + +, luego existe +\begin_inset Formula $i:=\min\{j:p\nmid b_{j}\}$ +\end_inset + + y entonces +\begin_inset Formula $p\nmid a_{i}=\sum_{j=0}^{i-1}b_{j}c_{i-j}+b_{i}c_{0}$ +\end_inset + +, luego +\begin_inset Formula $i=n$ +\end_inset + +, +\begin_inset Formula $\text{gr}(g)=n$ +\end_inset + + y +\begin_inset Formula $\text{gr}(h)=0$ +\end_inset + +. + Para +\begin_inset Formula $p\nmid b_{0}$ +\end_inset + + es análogo. +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a\in\mathbb{Z}$ +\end_inset + + y existe +\begin_inset Formula $p\in\mathbb{Z}$ +\end_inset + + cuya multiplicidad en +\begin_inset Formula $a$ +\end_inset + + es 1, +\begin_inset Formula $X^{n}-a$ +\end_inset + + es irreducible. +\end_layout + +\begin_deeper +\begin_layout Standard +\begin_inset Formula $X^{n}-a$ +\end_inset + + es primitivo, +\begin_inset Formula $p\mid a$ +\end_inset + + y +\begin_inset Formula $p^{2}\nmid a$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $n\geq3$ +\end_inset + +, llamamos +\series bold +raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de la unidad +\series default + o +\series bold +de 1 +\series default + a las raíces de +\begin_inset Formula $X^{n}-1$ +\end_inset + + en +\begin_inset Formula $\mathbb{C}$ +\end_inset + +, que son los +\begin_inset Formula $n$ +\end_inset + + vértices del +\begin_inset Formula $n$ +\end_inset + +-ágono regular inscrito en el círculo unidad de +\begin_inset Formula $\mathbb{C}$ +\end_inset + + con un vértice en el 1. + +\begin_inset Formula $X^{n}-1=(X-1)\Phi_{n}(X)$ +\end_inset + +, donde +\begin_inset Formula $\Phi_{n}(X):=X^{n-1}+X^{n-2}+\dots+X+1$ +\end_inset + + es el +\series bold + +\begin_inset Formula $n$ +\end_inset + +-ésimo polinomio ciclotómico +\series default + y sus raíces en +\begin_inset Formula $\mathbb{C}$ +\end_inset + + son las raíces +\begin_inset Formula $n$ +\end_inset + +-ésimas de 1 distintas de 1. + En +\begin_inset Formula $\mathbb{Q}$ +\end_inset + +, +\begin_inset Formula $X+1\mid\Phi_{4}(X)$ +\end_inset + +, pero si +\begin_inset Formula $n$ +\end_inset + + es primo, +\begin_inset Formula $\Phi_{n}(X)$ +\end_inset + + es irreducible. +\end_layout + +\begin_deeper +\begin_layout Standard +Usando el automorfismo de sustitución en +\begin_inset Formula $X+1$ +\end_inset + +, +\begin_inset Formula +\[ +\Phi_{p}(X+1)=\frac{(X+1)^{n}-1}{(X+1)-1}=\frac{(X+1)^{n}-1}{X}=X^{n-1}+{n \choose n-1}X^{n-2}+\dots+{n \choose 2}X+{n \choose 1}. +\] + +\end_inset + +Entonces +\begin_inset Formula $\Phi_{p}(X+1)$ +\end_inset + + es primitivo, +\begin_inset Formula $n^{2}\nmid n$ +\end_inset + + y, para +\begin_inset Formula $k\in\{1,\dots,n-1\}$ +\end_inset + +, +\begin_inset Formula $n$ +\end_inset + + no divide a +\begin_inset Formula $k!$ +\end_inset + + ni a +\begin_inset Formula $(n-k)!$ +\end_inset + +, por lo que divide a +\begin_inset Formula $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ +\end_inset + + y podemos aplicar el criterio de Eisenstein. +\end_layout + +\end_deeper +\begin_layout Section +Polinomios en varias indeterminadas +\end_layout + +\begin_layout Standard +Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $n\geq2$ +\end_inset + +, definimos el +\series bold +anillo de polinomios +\series default + en +\begin_inset Formula $n$ +\end_inset + + indeterminadas con coeficientes en +\begin_inset Formula $A$ +\end_inset + + como +\begin_inset Formula $A[X_{1},\dots,X_{n}]:=A[X_{1},\dots,X_{n-1}][X_{n}]$ +\end_inset + +. + Llamamos +\series bold +indeterminadas +\series default + a los símbolos +\begin_inset Formula $X_{1},\dots,X_{n}$ +\end_inset + + y +\series bold +polinomios en +\begin_inset Formula $n$ +\end_inset + + indeterminadas +\series default + a los elementos de +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + +. + Dados un anillo conmutativo +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + +, por inducción: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + no es un cuerpo. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un dominio si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es un dominio, +\begin_inset Formula $A[X_{1},\dots,X_{n}]^{*}=A^{*}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un DFU si y sólo si lo es +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + es un DIP si y sólo si +\begin_inset Formula $n=1$ +\end_inset + + y +\begin_inset Formula $A$ +\end_inset + + es un cuerpo. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $a\in A$ +\end_inset + + e +\begin_inset Formula $i:=(i_{1},\dots,i_{n})\in\mathbb{N}^{n}$ +\end_inset + +, llamamos a +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}\in A[X_{1},\dots,X_{n}]$ +\end_inset + + +\series bold +monomio +\series default + de +\series bold +tipo +\series default + +\begin_inset Formula $i$ +\end_inset + + y coeficiente +\begin_inset Formula $a$ +\end_inset + +. + Todo +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]$ +\end_inset + + se escribe de forma única como suma de monomios de distinto tipo, +\begin_inset Formula +\[ +p:=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}, +\] + +\end_inset + +con +\begin_inset Formula $p_{i}=0$ +\end_inset + + para casi todo +\begin_inset Formula $i\in\mathbb{N}^{n}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n=1$ +\end_inset + + es obvio. + Para +\begin_inset Formula $n>1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n-1$ +\end_inset + +, +\begin_inset Formula $p$ +\end_inset + + es de la forma +\begin_inset Formula $\sum_{t\in\mathbb{N}}p_{t}X_{n}^{t}=:\sum_{t\in\mathbb{N}}(\sum_{i\in\mathbb{N}^{n-1}}p_{it}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}})X_{n}^{t}=\sum_{i\in\mathbb{N}^{n}}p_{(i_{1},\dots,i_{n-1}),i_{n}}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}}X_{n}^{i_{n}}$ +\end_inset + +, con casi todos los coeficientes nulos. + Si fuera +\begin_inset Formula +\[ +p=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}=\sum_{i\in\mathbb{N}^{n}}q_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}, +\] + +\end_inset + + para +\begin_inset Formula $n=1$ +\end_inset + + es obvio que +\begin_inset Formula $p_{i}=q_{i}$ +\end_inset + + para todo +\begin_inset Formula $i$ +\end_inset + +, y para +\begin_inset Formula $n>1$ +\end_inset + +, supuesto esto probado para +\begin_inset Formula $n-1$ +\end_inset + +, +\begin_inset Formula $\sum_{t\in\mathbb{N}}\left(\sum_{i\in\mathbb{N}^{n-1}}p_{i_{1},\dots,i_{n-1},t}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}}\right)X_{n}^{t}=\sum_{i\in\mathbb{N}^{n}}p_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}=\sum_{i\in\mathbb{N}^{n}}q_{i}X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}=\sum_{t\in\mathbb{N}}\left(\sum_{i\in\mathbb{N}^{n-1}}p_{i_{1},\dots,i_{n-1}t}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}}\right)X_{n}^{t}$ +\end_inset + +, luego para cada +\begin_inset Formula $t$ +\end_inset + + es +\begin_inset Formula +\[ +\sum_{i\in\mathbb{N}^{n-1}}p_{i_{1},\dots,i_{n-1},t}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}}=\sum_{i\in\mathbb{N}^{n-1}}q_{i_{1},\dots,i_{n-1},t}X_{1}^{i_{1}}\cdots X_{n-1}^{i_{n-1}} +\] + +\end_inset + + y, por la hipótesis de inducción, para cada +\begin_inset Formula $i\in\mathbb{N}^{n}$ +\end_inset + +, +\begin_inset Formula $p_{i}=q_{i}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo conmutativo, +\begin_inset Formula $n\in\mathbb{N}^{*}$ +\end_inset + + y +\begin_inset Formula $u:A\to A[X_{1},\dots,X_{n}]$ +\end_inset + + la inclusión, por inducción: +\end_layout + +\begin_layout Enumerate + +\series bold +PUAP en +\begin_inset Formula $n$ +\end_inset + + indeterminadas: +\series default + Dados un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, existe un único homomorfismo de anillos +\begin_inset Formula $\tilde{f}:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ u=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(X_{k})=b_{k}$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dados un anillo conmutativo +\begin_inset Formula $P$ +\end_inset + +, +\begin_inset Formula $T_{1},\dots,T_{n}\in P$ +\end_inset + + y un homomorfismo +\begin_inset Formula $v:A\to P$ +\end_inset + + tales que, dados un homomorfismo de anillos +\begin_inset Formula $f:A\to B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, existe un único homomorfismo +\begin_inset Formula $\tilde{f}:P\to B$ +\end_inset + + tal que +\begin_inset Formula $\tilde{f}\circ v=f$ +\end_inset + + y +\begin_inset Formula $\tilde{f}(T_{k})=b_{k}$ +\end_inset + + para +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +, existe un isomorfismo +\begin_inset Formula $\phi:A[X_{1},\dots,X_{n}]\to P$ +\end_inset + + tal que +\begin_inset Formula $\phi\circ u=v$ +\end_inset + + y +\begin_inset Formula $\phi(X_{k})=T_{k}$ +\end_inset + + para cada +\begin_inset Formula $k\in\{1,\dots,n\}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{samepage} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +Dados dos anillos conmutativos +\begin_inset Formula $A\subseteq B$ +\end_inset + + y +\begin_inset Formula $b_{1},\dots,b_{n}\in B$ +\end_inset + +, el +\series bold +homomorfismo de sustitución +\series default + +\begin_inset Formula $S:A[X_{1},\dots,X_{n}]\to B$ +\end_inset + + viene dado por +\begin_inset Formula $p(b_{1},\dots,b_{n}):=S(p):=\sum_{i\in\mathbb{N}^{n}}p_{i}b_{1}^{i_{1}}\cdots b_{n}^{i_{n}}$ +\end_inset + +. + Su imagen es el subanillo de +\begin_inset Formula $B$ +\end_inset + + generado por +\begin_inset Formula $A\cup\{b_{1},\dots,b_{n}\}$ +\end_inset + +, +\begin_inset Formula $A[b_{1},\dots,b_{n}]$ +\end_inset + +, y dados dos homomorfismos de anillos +\begin_inset Formula $f,g:A[b_{1},\dots,b_{n}]\to C$ +\end_inset + +, +\begin_inset Formula $f=g$ +\end_inset + + si y sólo si +\begin_inset Formula $f|_{A}=g|_{A}$ +\end_inset + + y +\begin_inset Formula $f(b_{k})=g(b_{k})$ +\end_inset + + para todo +\begin_inset Formula $k$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $A$ +\end_inset + + un anillo y +\begin_inset Formula $\sigma$ +\end_inset + + una permutación de +\begin_inset Formula $\mathbb{N}_{n}$ +\end_inset + + con inversa +\begin_inset Formula $\tau:=\sigma^{-1}$ +\end_inset + +, tomando +\begin_inset Formula $B=A[X_{1},\dots,X_{n}]$ +\end_inset + + y +\begin_inset Formula $b_{k}=X_{\sigma(k)}$ +\end_inset + + en el punto anterior obtenemos un automorfismo +\begin_inset Formula $\hat{\sigma}$ +\end_inset + + en +\begin_inset Formula $A[X_{1},\dots,X_{n}]$ +\end_inset + + con inversa +\begin_inset Formula $\hat{\tau}$ +\end_inset + + que permuta las indeterminadas. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A[X_{1},\dots,X_{n},Y_{1},\dots,Y_{m}]\cong A[X_{1},\dots,X_{n}][Y_{1},\dots,Y_{m}]\cong A[Y_{1},\dots,Y_{m}][X_{1},\dots,X_{m}]$ +\end_inset + +, por lo que en la práctica no distinguimos entre estos anillos. +\end_layout + +\begin_layout Enumerate +Todo homomorfismo de anillos conmutativos +\begin_inset Formula $f:A\to B$ +\end_inset + + induce un homomorfismo +\begin_inset Formula $\hat{f}:A[X_{1},\dots,X_{n}]\to B[X_{1},\dots,X_{n}]$ +\end_inset + + dado por +\begin_inset Formula $\hat{f}(p):=\sum_{i\in\mathbb{N}^{n}}f(p_{i})X_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +grado +\series default + de un monomio +\begin_inset Formula $aX_{1}^{i_{1}}\cdots X_{n}^{i_{n}}$ +\end_inset + + a +\begin_inset Formula $i_{1}+\dots+i_{n}$ +\end_inset + +, y grado de +\begin_inset Formula $p\in A[X_{1},\dots,X_{n}]\setminus0$ +\end_inset + +, +\begin_inset Formula $\text{gr}(p)$ +\end_inset + +, al mayor de los grados de los monomios en la expresión por monomios de + +\begin_inset Formula $p$ +\end_inset + +. + Entonces +\begin_inset Formula $\text{gr}(p+q)\leq\max\{\text{gr}(p),\text{gr}(q)\}$ +\end_inset + + y +\begin_inset Formula $\text{gr}(pq)\leq\text{gr}(p)+\text{gr}(q)$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un polinomio es +\series bold +homogéneo +\series default + de grado +\begin_inset Formula $n$ +\end_inset + + si es suma de monomios de grado +\begin_inset Formula $n$ +\end_inset + +. + Todo polinomio se escribe de modo único como suma de polinomios homogéneos + de distintos grados, sin más que agrupar los monomios de igual grado en + la expresión como suma de monomios. + Así, si +\begin_inset Formula $D$ +\end_inset + + es un dominio, +\begin_inset Formula $\text{gr}(pq)=\text{gr}(p)+\text{gr}(q)$ +\end_inset + + para cualesquiera +\begin_inset Formula $p,q\in D[X_{1},\dots,X_{n}]$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
