diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-06-17 14:27:31 +0200 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-06-17 14:27:31 +0200 |
| commit | 4aef9647c7109c24ab795ada00e15add70ee83df (patch) | |
| tree | e0a85ab89683c80f043e76f94aa2d38823a77646 | |
| parent | b5f1a38caff0ba87a8ad8fcb458bab08b11271f0 (diff) | |
Surface topology
| -rw-r--r-- | ts/n3.lyx | 31 | ||||
| -rw-r--r-- | ts/n5.lyx | 145 | ||||
| -rw-r--r-- | ts/n6.lyx | 2075 |
3 files changed, 2119 insertions, 132 deletions
@@ -1234,16 +1234,25 @@ topología producto . \end_layout -\begin_layout Enumerate +\begin_layout Standard \begin_inset Formula $\mathbb{R}^{m}\times\mathbb{R}^{n}\cong\mathbb{R}^{m+n}$ \end_inset + y +\begin_inset Formula $\mathbb{R}\amalg\mathbb{R}\cong\mathbb{R}\times\mathbb{S}^{0}$ +\end_inset + . + \begin_inset Note Comment status open \begin_layout Plain Layout -Claramente + +\series bold +Demostración: +\series default + Para lo primero, claramente \begin_inset Formula $f:\mathbb{R}^{m}\times\mathbb{R}^{n}\to\mathbb{R}^{m+n}$ \end_inset @@ -1298,23 +1307,7 @@ Claramente \end_inset es continua. -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Enumerate -\begin_inset Formula $\mathbb{R}\amalg\mathbb{R}\cong\mathbb{R}\times\mathbb{S}^{0}$ -\end_inset - -. -\begin_inset Note Comment -status open - -\begin_layout Plain Layout -Claramente + Para lo segundo, \begin_inset Formula $f:\mathbb{R}\amalg\mathbb{R}\to\mathbb{R}\times\mathbb{S}^{0}$ \end_inset @@ -2605,117 +2605,6 @@ Demostración. \end_layout \begin_layout Standard -Dadas dos superficies -\begin_inset Formula $X$ -\end_inset - - e -\begin_inset Formula $Y$ -\end_inset - - con subespacios respectivos -\begin_inset Formula $X_{0}$ -\end_inset - - e -\begin_inset Formula $Y_{0}$ -\end_inset - - y homeomorfos a un disco en -\begin_inset Formula $\mathbb{R}^{2}$ -\end_inset - -, dado un homeomorfismo -\begin_inset Formula $h:\partial X_{0}\cong\mathbb{S}^{1}\to\partial Y_{0}\cong\mathbb{S}^{1}$ -\end_inset - -, llamamos -\series bold -suma conexa -\series default - de -\begin_inset Formula $X$ -\end_inset - - e -\begin_inset Formula $Y$ -\end_inset - -, -\begin_inset Formula $X\sharp Y$ -\end_inset - -, a -\begin_inset Formula $((X\setminus\text{\ensuremath{\mathring{X}_{0}}})\amalg(Y\setminus\mathring{Y}_{0}))/\sim$ -\end_inset - -, donde -\begin_inset Formula $x\sim y$ -\end_inset - - si y sólo si -\begin_inset Formula $x=y$ -\end_inset - -, o bien -\begin_inset Formula $x\in X_{0}$ -\end_inset - - e -\begin_inset Formula $y\in Y_{0}$ -\end_inset - - con -\begin_inset Formula $y=h(x)$ -\end_inset - -, o bien al revés. - Como -\series bold -teorema -\series default -, el grupo fundamental del -\series bold -doble toro -\series default -, -\begin_inset Formula $\mathbb{T}\sharp\mathbb{T}$ -\end_inset - -, no es abeliano. - -\begin_inset Note Comment -status open - -\begin_layout Plain Layout -\begin_inset Note Note -status open - -\begin_layout Plain Layout -Demostración. -\end_layout - -\end_inset - - -\end_layout - -\end_inset - - -\begin_inset Note Note -status open - -\begin_layout Plain Layout -Llevar este párrafo al tema 6. -\end_layout - -\end_inset - - -\end_layout - -\begin_layout Standard Una \series bold @@ -2754,8 +2643,38 @@ curva superficie \series default es una 2-variedad. - Así, la esfera, el toro, el plano proyectivo real y el doble toro son superfici -es topológicamente distintas. +\end_layout + +\begin_layout Standard +Ejemplos de superficies son +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + +, el toro +\begin_inset Formula $\mathbb{T}^{2}$ +\end_inset + +, el +\series bold +cilindro abierto +\series default + +\begin_inset Formula $\mathbb{S}^{1}\times(0,1)$ +\end_inset + +, la banda de Möbius, la botella de Klein y el plano proyectivo real +\begin_inset Formula $\mathbb{RP}^{2}$ +\end_inset + + o +\begin_inset Formula $\mathbb{P}^{2}$ +\end_inset + +. \end_layout \end_body diff --git a/ts/n6.lyx b/ts/n6.lyx new file mode 100644 index 0000000..2fb4518 --- /dev/null +++ b/ts/n6.lyx @@ -0,0 +1,2075 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Complejos simpliciales +\end_layout + +\begin_layout Standard +Los puntos +\begin_inset Formula $\{v_{0},\dots,v_{k}\}\subseteq\mathbb{R}^{n}$ +\end_inset + + son +\series bold +afínmente independientes +\series default + o están en +\series bold +posición general +\series default + si no están contenidos en ningún subespacio afín de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + de dimensión menor que +\begin_inset Formula $k$ +\end_inset + +, si y sólo si +\begin_inset Formula $\{v_{1}-v_{0},v_{2}-v_{1},\dots,v_{k}-v_{k-1}\}$ +\end_inset + + son linealmente independientes, si y sólo si +\begin_inset Formula $\{v_{1}-v_{0},v_{2}-v_{0},\dots,v_{k}-v_{0}\}$ +\end_inset + + son linealmente independientes. +\begin_inset Note Comment +status open + +\begin_layout Description +\begin_inset Formula $1\implies3]$ +\end_inset + + Si existieran +\begin_inset Formula $\alpha_{1},\dots,\alpha_{k}\in\mathbb{R}$ +\end_inset + + no todos nulos con +\begin_inset Formula $\alpha_{1}(v_{1}-v_{0})+\dots+\alpha_{k}(v_{k}-v_{0})=0$ +\end_inset + +, si, por ejemplo, +\begin_inset Formula $\alpha_{1}\neq0$ +\end_inset + +, +\begin_inset Formula $v_{1}-v_{0}=\frac{1}{\alpha_{1}}(\alpha_{2}(v_{2}-v_{0})+\dots+\alpha_{k}(v_{k}-v_{0}))$ +\end_inset + +, luego +\begin_inset Formula $v_{1}-v_{0}\in\langle v_{2}-v_{0},\dots,v_{k}-v_{0}\rangle$ +\end_inset + + y +\begin_inset Formula $v_{0},\dots,v_{k}\in v_{0}+\langle v_{2}-v_{0},\dots,v_{k}-v_{0}\rangle\#$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies2]$ +\end_inset + + Podemos expresar una combinación lineal de +\begin_inset Formula $\{v_{1}-v_{0},\dots,v_{k}-v_{k-1}\}$ +\end_inset + + para el 0 como +\begin_inset Formula $(\alpha_{1}+\dots+\alpha_{k})(v_{1}-v_{0})+(\alpha_{2}+\dots+\alpha_{k})(v_{2}-v_{1})+\dots+\alpha_{k}(v_{k}-v_{k-1})=0$ +\end_inset + + con +\begin_inset Formula $\alpha_{1},\dots,\alpha_{k}\in\mathbb{R}$ +\end_inset + +, que será la combinación nula si y sólo si +\begin_inset Formula $\alpha_{1},\dots,\alpha_{k}=0$ +\end_inset + +. + Como +\begin_inset Formula $v_{i}-v_{0}=(v_{i}-v_{i-1})+\dots+(v_{1}-v_{0})$ +\end_inset + +, esto equivale a que +\begin_inset Formula $\alpha_{1}(v_{1}-v_{0})+\dots+\alpha_{k}(v_{k}-v_{0})=0$ +\end_inset + +, luego +\begin_inset Formula $\alpha_{1},\dots,\alpha_{k}=0$ +\end_inset + + y los vectores +\begin_inset Formula $v_{1}-v_{0},\dots,v_{k}-v_{k-1}$ +\end_inset + + son linealmente independientes. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies1]$ +\end_inset + + Si +\begin_inset Formula $v_{0},\dots,v_{k}$ +\end_inset + + estuvieran contenidos en un espacio afín +\begin_inset Formula $x+W$ +\end_inset + + con +\begin_inset Formula $\dim W<k$ +\end_inset + +, cada diferencia de puntos +\begin_inset Formula $v_{i}-v_{j}$ +\end_inset + + estaría en el espacio vectorial +\begin_inset Formula $W$ +\end_inset + +, luego +\begin_inset Formula $\dim\langle v_{1}-v_{0},\dots,v_{k}-v_{k-1}\rangle<k$ +\end_inset + + y por tanto +\begin_inset Formula $v_{1}-v_{0},\dots,v_{k}-v_{k-1}$ +\end_inset + + no serían linealmente independientes. +\begin_inset Formula $\#$ +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La +\series bold +envoltura convexa +\series default + de un conjunto +\begin_inset Formula $W\subseteq\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $\text{conv}W$ +\end_inset + +, es el menor conjunto convexo que contiene a +\begin_inset Formula $W$ +\end_inset + +, la intersección de todos ellos. + Si +\begin_inset Formula $W=:\{v_{1},\dots,v_{k}\}$ +\end_inset + + con +\begin_inset Formula $k>0$ +\end_inset + +, +\begin_inset Formula +\[ +\text{conv}W=\left\{ t_{1}v_{1}+\dots+t_{k}v_{k}:\sum_{i=1}^{k}t_{i}=1,t_{i}\in[0,1]\right\} . +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\subseteq]$ +\end_inset + + +\end_layout + +\end_inset + + El conjunto dado es un convexo que contiene a +\begin_inset Formula $W$ +\end_inset + +, luego contiene a +\begin_inset Formula $\text{conv}W$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\supseteq]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $C$ +\end_inset + + un convexo que contiene a +\begin_inset Formula $\{v_{0},\dots,v_{k}\}$ +\end_inset + +, queremos ver que +\begin_inset Formula $[v_{1},\dots,v_{k}]\subseteq C$ +\end_inset + +. + Sea +\begin_inset Formula $v:=t_{1}v_{1}+\dots+t_{k}v_{k}\in[v_{1},\dots,v_{k}]$ +\end_inset + +. + Si +\begin_inset Formula $k=1$ +\end_inset + +, esto es obvio. + Sea +\begin_inset Formula $k>1$ +\end_inset + + y supongamos probada la propiedad para +\begin_inset Formula $k-1$ +\end_inset + +. + Si +\begin_inset Formula $t_{k}=1$ +\end_inset + +, +\begin_inset Formula $v=v_{k}\in C$ +\end_inset + +. + En otro caso, +\begin_inset Formula $w:=\frac{t_{1}}{1-t_{k}}v_{1}+\dots+\frac{t_{k-1}}{1-t_{k}}v_{k-1}\in\text{conv}\{v_{1},\dots,v_{k-1}\}\subseteq\text{conv}\{v_{1},\dots,v_{k}\}\subseteq C$ +\end_inset + +, luego +\begin_inset Formula $v=(1-t_{k})w+t_{k}v_{k}\in C$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Un +\series bold + +\begin_inset Formula $k$ +\end_inset + +-símplice +\series default + o +\series bold +símplice +\begin_inset Formula $k$ +\end_inset + +-dimensional +\series default + es la envoltura conexa de un conjunto de +\begin_inset Formula $k+1$ +\end_inset + + puntos +\begin_inset Formula $v_{0},\dots,v_{k}$ +\end_inset + +, llamados +\series bold +vértices +\series default +, en posición general, +\begin_inset Formula $[v_{0},\dots,v_{k}]:=\text{conv}\{v_{0},\dots,v_{k}\}$ +\end_inset + +. + Si +\begin_inset Formula $v:=t_{0}v_{0}+\dots+t_{k}v_{k}\in[v_{0},\dots,v_{k}]$ +\end_inset + + con cada +\begin_inset Formula $t_{i}\in[0,1]$ +\end_inset + + y +\begin_inset Formula $\sum_{i}t_{i}=1$ +\end_inset + +, llamamos +\series bold +coordinadas baricéntricas +\series default + de +\begin_inset Formula $v$ +\end_inset + + a los +\begin_inset Formula $(t_{0},\dots,t_{k})$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $W:=\{v_{0},\dots,v_{k}\}$ +\end_inset + + determina un +\begin_inset Formula $k$ +\end_inset + +-símplice +\begin_inset Formula $[v_{0},\dots,v_{k}]$ +\end_inset + +, todo subconjunto +\begin_inset Formula $A\subseteq W$ +\end_inset + + determina un símplice, y decimos que +\begin_inset Formula $\text{conv}A$ +\end_inset + + es un +\series bold +subsímplice +\series default + de +\begin_inset Formula $\text{conv}W$ +\end_inset + +. + Un subsímplice es una +\series bold +cara +\series default + si solo omite un vértice, y la unión de las caras es la +\series bold +frontera +\series default + del símplice. + Si +\begin_inset Formula $k>0$ +\end_inset + +, el +\series bold +interior +\series default + de un +\begin_inset Formula $k$ +\end_inset + +-símplice es el complementario de la frontera, y si +\begin_inset Formula $k=0$ +\end_inset + +, su +\series bold +interior +\series default + es él mismo. +\end_layout + +\begin_layout Standard +Un +\series bold +complejo simplicial +\series default + es un +\series bold +poliedro +\series default + +\begin_inset Formula $K\subseteq\mathbb{R}^{n}$ +\end_inset + + junto a una lista de símplices +\begin_inset Formula $L$ +\end_inset + + tal que +\begin_inset Formula $K=\bigcup_{i}L_{i}$ +\end_inset + +, cada +\begin_inset Formula $x\in K$ +\end_inset + + está en el interior de un único símplice y cada cara de cada +\begin_inset Formula $L_{i}$ +\end_inset + + también está en la lista. + La +\series bold +dimensión +\series default + de +\begin_inset Formula $K$ +\end_inset + + es la máxima dimensión de sus símplices. +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +Una +\series bold +circunferencia simplicial +\series default + es un complejo formado por 3 0-símplices y 3 1-símplices, el borde de un + triángulo. +\end_layout + +\begin_layout Enumerate +Un +\series bold +cuadrado simplicial +\series default + es un complejo formado por 4 0-símplices, 5 1-símplices y 2 2-símplices, + un cuadrilátero. +\end_layout + +\begin_layout Enumerate +Una +\series bold +corona simplicial +\series default + es un complejo formado por 6 0-símplices, 12 1-símplices y 6 2-símplices, + una corona de triángulo. +\end_layout + +\begin_layout Enumerate +Un +\series bold +toro simplicial +\series default + es un complejo formado por 9 0-símplices, 27 1-símplices y 18 2-símplices, + una corona tridimensional de un triángulo donde cada sección de cada lado + de la corona es un triángulo. +\end_layout + +\begin_layout Enumerate +Un +\series bold +tetraedro +\series default + es un complejo formado por 4 0-símplices, 6 1-símplices y 4 2-símplices. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Añadir dibujos. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Número de Euler +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T$ +\end_inset + + es un complejo simplicial +\begin_inset Formula $n$ +\end_inset + +-dimensional con +\begin_inset Formula $i_{k}$ +\end_inset + + +\begin_inset Formula $k$ +\end_inset + +-símplices para cada +\begin_inset Formula $k\in\{0,\dots,n\}$ +\end_inset + +, el +\series bold +número +\series default + o +\series bold +característica de Euler +\series default + de +\begin_inset Formula $T$ +\end_inset + + es +\begin_inset Formula $\chi(T):=i_{0}-i_{1}+\dots+(-1)^{n}i_{n}$ +\end_inset + +. + Así, la circunferencia, la corona y el toro tienen índice 0, y el cuadrado + tiene índice 1. +\end_layout + +\begin_layout Standard +Una +\series bold +triangulación +\series default + de un espacio topológico +\begin_inset Formula $X$ +\end_inset + + es un complejo simplicial +\begin_inset Formula $K\subseteq\mathbb{R}^{n}$ +\end_inset + + junto a un homomorfismo +\begin_inset Formula $H:K\to X$ +\end_inset + +, y si existe, +\begin_inset Formula $X$ +\end_inset + + es +\series bold +triangulable +\series default +. +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $\mathbb{S}^{1}$ +\end_inset + + es triangulable al complejo formado por los puntos +\begin_inset Formula $(0,2)$ +\end_inset + +, +\begin_inset Formula $(\sqrt{3},-1)$ +\end_inset + + y +\begin_inset Formula $(-\sqrt{3},-1)$ +\end_inset + + y los 3 1-símplices entre ellos, al complejo formado por los 4 puntos +\begin_inset Formula $(\pm2,\pm2)$ +\end_inset + + y los 4 1-símplices entre ellos, con el homomorfismo +\begin_inset Formula $(x,y)\mapsto\frac{(x,y)}{\sqrt{x^{2}+y^{2}}}$ +\end_inset + +. + +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + + es triangulable a un tetraedro. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $K'$ +\end_inset + + son triangulaciones de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\chi(K)=\chi(K')$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto, el +\series bold +número de Euler +\series default + de un espacio triangulable +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $\chi(X)$ +\end_inset + +, es el de cualquier complejo simplicial cuyo poliedro es homeomorfo a +\begin_inset Formula $X$ +\end_inset + +, y es un invariante topológico. +\end_layout + +\begin_layout Section +Presentaciones poligonales +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $S:=\overline{B_{d_{1}}}(0;1)$ +\end_inset + +. + +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + + es homeomorfa a +\begin_inset Formula $\mathbb{D}^{2}/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +x\sim y:\iff x=y\lor(x,y\in\mathbb{S}^{1}\land y=\overline{x}), +\] + +\end_inset + +donde +\begin_inset Formula $\overline{x}$ +\end_inset + + es el conjugado complejo de +\begin_inset Formula $x$ +\end_inset + +, y también lo es a +\begin_inset Formula $S/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +x\sim y:\iff x=y\lor(x,y\in\partial S\land y=\overline{x}). +\] + +\end_inset + + +\begin_inset Formula $\mathbb{P}^{2}$ +\end_inset + + es homeomorfo a +\begin_inset Formula $\mathbb{D}^{2}/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +x\sim y:\iff x=y\lor(x,y\in\mathbb{S}^{1}\land x=-y), +\] + +\end_inset + +y también lo es a +\begin_inset Formula $S/\sim$ +\end_inset + + con +\begin_inset Formula +\[ +x\sim y:\iff x=y\lor(x,y\in\partial S\land x=-y). +\] + +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +presentación poligonal +\series default + es una expresión de la forma +\begin_inset Formula ${\cal P}:=\langle S\mid W_{1},\dots,W_{k}\rangle$ +\end_inset + +, donde +\begin_inset Formula $S$ +\end_inset + + un conjunto finito de letras +\begin_inset Formula $\{a_{1,}\dots,a_{n}\}$ +\end_inset + + llamadas +\series bold +aristas +\series default + y +\begin_inset Formula $W_{1},\dots,W_{k}$ +\end_inset + + con +\begin_inset Formula $k\geq1$ +\end_inset + + son palabras en +\begin_inset Formula $\{a_{1},\dots,a_{n},a_{1}^{-1},\dots,a_{n}^{-1}\}^{*}$ +\end_inset + + con longitud mínima 2 llamadas +\series bold +caras +\series default +. + Una presentación poligonal +\begin_inset Formula ${\cal P}$ +\end_inset + + determina un espacio topológico +\begin_inset Formula $|{\cal P}|$ +\end_inset + + salvo isomorfismo, la +\series bold +realización geométrica +\series default + de +\begin_inset Formula ${\cal P}$ +\end_inset + +, de la siguiente forma: +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Lo siguiente es especulativo: en los apuntes de clase hay una explicación + mucho más informal. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Para cada palabra +\begin_inset Formula $W_{i}$ +\end_inset + +, sea +\begin_inset Formula $n_{i}:=|W_{i}|$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $n_{i}\geq3$ +\end_inset + +, tomamos +\begin_inset Formula $n_{i}$ +\end_inset + + vértices +\begin_inset Formula $v_{i1},\dots,v_{in_{i}}\in\mathbb{R}^{2}$ +\end_inset + + no alineados de forma que todo +\begin_inset Formula $v_{ij}\in\partial\text{conv}\{v_{ij}\}_{j=1}^{n_{i}}$ +\end_inset + +; los +\begin_inset Formula $n_{i}$ +\end_inset + + caminos +\begin_inset Formula $a_{i1},\dots,a_{in_{i}}$ +\end_inset + + dados por +\begin_inset Formula $a_{ij}:=[v_{ij},v_{i(j+1)}]$ +\end_inset + + entendiendo +\begin_inset Formula $v_{i(n_{i}+1)}=v_{i1}$ +\end_inset + +, y el polígono +\begin_inset Formula $P_{i}:=\text{conv}\{v_{i1},\dots,v_{in_{i}}\}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $n_{i}=2$ +\end_inset + +, tomamos dos vértices +\begin_inset Formula $v_{i1},v_{i2}\in\mathbb{R}^{2}$ +\end_inset + + distintos; caminos +\begin_inset Formula $a_{i1}$ +\end_inset + + de +\begin_inset Formula $v_{i1}$ +\end_inset + + a +\begin_inset Formula $v_{i2}$ +\end_inset + + y +\begin_inset Formula $a_{i2}$ +\end_inset + + de +\begin_inset Formula $v_{i2}$ +\end_inset + + a +\begin_inset Formula $v_{i1}$ +\end_inset + + disjuntos (salvo en los puntos inicial y final), y +\begin_inset Formula $P_{i}:=\text{conv}\{a_{ij}(s)\}_{s\in[0,1]}^{j\in\{1,2\}}$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Sea +\begin_inset Formula $W_{i}=e_{i1}\cdots e_{in_{i}}$ +\end_inset + +. + Tomamos el espacio topológico +\begin_inset Formula $X:=(P_{1}\amalg\dots\amalg P_{k})/\sim$ +\end_inset + +, donde +\begin_inset Formula $x\sim y$ +\end_inset + + si y sólo si +\begin_inset Formula $x=y$ +\end_inset + + o, para ciertos +\begin_inset Formula $i,j,i',j',t$ +\end_inset + +, bien +\begin_inset Formula $e_{ij}=e_{i'j'}$ +\end_inset + +, +\begin_inset Formula $x=a_{ij}(t)$ +\end_inset + + e +\begin_inset Formula $y=a_{i'j'}(t)$ +\end_inset + +, bien +\begin_inset Formula $e_{ij}=e_{i'j'}^{-1}$ +\end_inset + + (o al revés), +\begin_inset Formula $x=a_{ij}(t)$ +\end_inset + + e +\begin_inset Formula $y=a_{i'j'}(1-t)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $|{\cal P}|$ +\end_inset + + es cualquier espacio homeomorfo al subespacio de +\begin_inset Formula $X$ +\end_inset + + de los puntos que no tienen un entorno en +\begin_inset Formula $X$ +\end_inset + + homeomorfo a un intervalo de +\begin_inset Formula $\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $Y=|{\cal P}|$ +\end_inset + +, +\begin_inset Formula ${\cal P}$ +\end_inset + + es una +\series bold +presentación +\series default + ( +\series bold +poligonal +\series default +) de +\begin_inset Formula $X$ +\end_inset + +. + Si +\begin_inset Formula ${\cal P}$ +\end_inset + + tiene una sola cara, +\begin_inset Formula $X$ +\end_inset + + es conexo. + Ejemplos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{S}^{2}=|\langle a\mid aa^{-1}\rangle|=|\langle a,b\mid abb^{-1}a^{-1}\rangle|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{RP}^{2}=|\langle a\mid aa\rangle|=|\langle a,b\mid abab\rangle|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\mathbb{T}^{2}=|\langle a,b\mid aba^{-1}b^{-1}\rangle|$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +La botella de Klein +\begin_inset Formula $K=|\langle a,b\mid abab^{-1}\rangle|$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Una +\series bold +región poligonal +\series default + es un subespacio compacto de +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + + cuya frontera es una concatenación de segmentos, llamados +\series bold +aristas +\series default +. + Si +\begin_inset Formula $P_{1},\dots,P_{k}$ +\end_inset + + son regiones poligonales, +\begin_inset Formula $P:=P_{1}\amalg\dots\amalg P_{k}$ +\end_inset + + y +\begin_inset Formula $\sim$ +\end_inset + + es una relación de equivalencia en +\begin_inset Formula $P$ +\end_inset + + que identifica cada arista de cada +\begin_inset Formula $P_{i}$ +\end_inset + + con exactamente una arista de algún +\begin_inset Formula $P_{j}$ +\end_inset + + (que puede ser la misma), entonces +\begin_inset Formula $P/\sim$ +\end_inset + + es una superficie compacta. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Orientación +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $\alpha$ +\end_inset + + un camino +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + cerrado sobre una superficie +\begin_inset Formula $S\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $e_{1},e_{2}:[0,1]\to\mathbb{R}^{n}$ +\end_inset + + campos de vectores unitarios tangentes a +\begin_inset Formula $S$ +\end_inset + + tales que +\begin_inset Formula $e_{1}(s)$ +\end_inset + + es tangente a +\begin_inset Formula $\alpha(s)$ +\end_inset + + y +\begin_inset Formula $e_{2}(s)$ +\end_inset + + es perpendicular a +\begin_inset Formula $e_{1}(s)$ +\end_inset + +. + Entonces +\series bold + +\begin_inset Formula $\alpha$ +\end_inset + + preserva la orientación +\series default + si la orientación de +\begin_inset Formula $e_{1}(1)$ +\end_inset + + y +\begin_inset Formula $e_{2}(1)$ +\end_inset + + es la misma que la de +\begin_inset Formula $e_{1}(0)$ +\end_inset + + y +\begin_inset Formula $e_{2}(0)$ +\end_inset + +, e +\series bold +invierte la orientación +\series default + en caso contrario. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿Qué es la orientación? +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una superficie es +\series bold +orientable +\series default + si todo camino +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + cerrado sobre ella preserva la orientación, y es +\series bold +no orientable +\series default + en caso contrario. + Para una superficie +\begin_inset Formula $S\subseteq\mathbb{R}^{3}$ +\end_inset + +, +\begin_inset Formula $S$ +\end_inset + + es orientable si y sólo si existe un campo unitario normal a +\begin_inset Formula $S$ +\end_inset + + definido en todo +\begin_inset Formula $S$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Por ejemplo, son orientables +\begin_inset Formula $\mathbb{S}^{2}$ +\end_inset + +, +\begin_inset Formula $\mathbb{S}^{1}\times(0,1)$ +\end_inset + + y +\begin_inset Formula $\mathbb{T}^{2}$ +\end_inset + +, pero no lo son la banda de Möbius, la botella de Klein y +\begin_inset Formula $\mathbb{RP}^{2}$ +\end_inset + +. +\end_layout + +\begin_layout Section +Suma conexa +\end_layout + +\begin_layout Standard +Dadas dos superficies +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + con subespacios respectivos +\begin_inset Formula $X_{0}$ +\end_inset + + e +\begin_inset Formula $Y_{0}$ +\end_inset + + y homeomorfos a un disco en +\begin_inset Formula $\mathbb{R}^{2}$ +\end_inset + +, dado un homeomorfismo +\begin_inset Formula $h:\partial X_{0}\cong\mathbb{S}^{1}\to\partial Y_{0}\cong\mathbb{S}^{1}$ +\end_inset + +, llamamos +\series bold +suma conexa +\series default + de +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +, +\begin_inset Formula $X\sharp Y$ +\end_inset + +, a +\begin_inset Formula $((X\setminus\text{\ensuremath{\mathring{X}_{0}}})\amalg(Y\setminus\mathring{Y}_{0}))/\sim$ +\end_inset + +, donde +\begin_inset Formula $x\sim y$ +\end_inset + + si y sólo si +\begin_inset Formula $x=y$ +\end_inset + +, o bien +\begin_inset Formula $x\in X_{0}$ +\end_inset + + e +\begin_inset Formula $y\in Y_{0}$ +\end_inset + + con +\begin_inset Formula $y=h(x)$ +\end_inset + +, o bien al revés. + Como +\series bold +teorema +\series default +, el grupo fundamental del +\series bold +doble toro +\series default +, +\begin_inset Formula $\mathbb{T}\sharp\mathbb{T}$ +\end_inset + +, no es abeliano. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Dadas dos superficies +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\sharp Y$ +\end_inset + + es una superficie. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\sharp Y$ +\end_inset + + es independiente de +\begin_inset Formula $X_{0}$ +\end_inset + + e +\begin_inset Formula $Y_{0}$ +\end_inset + + salvo por homeomorfismo. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $X\sharp Y$ +\end_inset + + es orientable si y sólo si lo son +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son triangulables, +\begin_inset Formula $X\sharp Y$ +\end_inset + + también lo es y +\begin_inset Formula $\chi(X\sharp Y)=\chi(X)+\chi(Y)-2$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +Sea $K_1$ una triangulación de $S_1$ y $K_2$ una de $S_2$, y suponemos que + el disco que quitamos es homeomorfo a una cara, por lo que quitamos una + cara. + Entonces al unir, quitamos un 2-simplicial, 3 1-simpliciales y 3 0-simpliciales +, por lo que el n. + de Euler total disminuye en 2. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\chi(\mathbb{S}^{2})=2$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\chi(\mathbb{T}^{2})=0$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\chi(\mathbb{RP}^{2})=1$ +\end_inset + +. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración. +\end_layout + +\end_inset + + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $T_{1},\dots,T_{n}$ +\end_inset + + son toros, +\begin_inset Formula $\chi(T_{1}\sharp\dots\sharp T_{n})=2-2n$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P_{1},\dots,P_{n}$ +\end_inset + + son planos proyectivos, +\begin_inset Formula $\chi(P_{1}\sharp\dots\sharp P_{n})=2-n$ +\end_inset + +. +\end_layout + +\begin_layout Section +Clasificación de superficies +\end_layout + +\begin_layout Standard +Dos presentaciones +\begin_inset Formula ${\cal P}_{1}$ +\end_inset + + y +\begin_inset Formula ${\cal P}_{2}$ +\end_inset + + son +\series bold +topológicamente equivalentes +\series default + si +\begin_inset Formula $|{\cal P}_{1}|\cong|{\cal P}_{2}|$ +\end_inset + +. + Cada una de las siguientes transformaciones sobre una presentación, llamadas + +\series bold +transformaciones elementales +\series default +, produce otra presentación topológicamente equivalente: +\end_layout + +\begin_layout Enumerate + +\series bold +Reetiquetado +\series default +: Cambiar el nombre de una arista (el nuevo nombre no puede ser el de otra + arista). +\end_layout + +\begin_layout Enumerate + +\series bold +Subdivisión +\series default +: Cambiar una arista +\begin_inset Formula $a$ +\end_inset + + por aristas +\begin_inset Formula $a_{1}$ +\end_inset + + y +\begin_inset Formula $a_{2}$ +\end_inset + +, y cambiar cada aparición de +\begin_inset Formula $a$ +\end_inset + + por +\begin_inset Formula $a_{1}a_{2}$ +\end_inset + + y cada una de +\begin_inset Formula $a^{-1}$ +\end_inset + + por +\begin_inset Formula $a_{2}^{-1}a_{1}^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Consolidación +\series default +: Si +\begin_inset Formula $a_{1}$ +\end_inset + + aparece siempre seguida de +\begin_inset Formula $a_{2}$ +\end_inset + + y +\begin_inset Formula $a_{2}^{-1}$ +\end_inset + + de +\begin_inset Formula $a_{1}^{-1}$ +\end_inset + +, contando que la última letra de una palabra va seguida de la primera, + cambiar las aristas +\begin_inset Formula $a_{1}$ +\end_inset + + y +\begin_inset Formula $a_{2}$ +\end_inset + + por +\begin_inset Formula $a$ +\end_inset + +, cada aparición de +\begin_inset Formula $a_{1}a_{2}$ +\end_inset + + por +\begin_inset Formula $a$ +\end_inset + + y cada una de +\begin_inset Formula $a_{2}^{-1}a_{1}^{-1}$ +\end_inset + + por +\begin_inset Formula $a^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Reflejo +\series default + o +\series bold +simetría +\series default +: +\begin_inset Formula $\langle S\mid a_{1}\cdots a_{m},\dots\rangle\Rightarrow\langle S\mid a_{m}^{-1}\cdots a_{1}^{-1},\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Rotación +\series default +: +\begin_inset Formula $\langle S\mid a_{1}\cdots a_{m},\dots\rangle\Rightarrow\langle S\mid a_{2}\cdots a_{m}a_{1},\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Corte +\series default +: +\begin_inset Formula $\langle S\mid W_{1}W_{2},\dots\rangle\Rightarrow\langle S,e\mid W_{1}e,e^{-1}W_{2},\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Pegado +\series default +: +\begin_inset Formula $\langle S,e\mid W_{1}e,e^{-1}W_{2},\dots\rangle\Rightarrow\langle S\mid W_{1}W_{2},\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Doblado +\series default +: +\begin_inset Formula $\langle S,e\mid Wee^{-1},\dots\rangle\Rightarrow\langle S\mid W,\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate + +\series bold +Desdoblado +\series default +: +\begin_inset Formula $\langle S\mid W,\dots\rangle\Rightarrow\langle S,e\mid Wee^{-1},\dots\rangle$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dadas superficies +\begin_inset Formula $M_{1}$ +\end_inset + + y +\begin_inset Formula $M_{2}$ +\end_inset + + con presentaciones poligonales respectivas +\begin_inset Formula $\langle S_{1}\mid W_{1}\rangle$ +\end_inset + + y +\begin_inset Formula $\langle S_{2}\mid W_{2}\rangle$ +\end_inset + + de una sola cara con +\begin_inset Formula $S_{1}$ +\end_inset + + y +\begin_inset Formula $S_{2}$ +\end_inset + + disjuntos, entonces +\begin_inset Formula $\langle S_{1},S_{2}\mid W_{1}W_{2}\rangle$ +\end_inset + + es una presentación de +\begin_inset Formula $M_{1}\sharp M_{2}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, toda superficie compacta admite una presentación poligonal. +\end_layout + +\begin_layout Standard + +\series bold +Teorema de clasificación: +\series default + Toda superficie compacta y conexa es homeomorfa a una esfera, una suma + conexa de toros o una suma conexa de planos proyectivos. + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +\begin_inset Note Note +status open + +\begin_layout Plain Layout +Demostración +\end_layout + +\end_inset + +La demostración usa como lema que +\begin_inset Formula $\mathbb{K}\cong\mathbb{P}^{2}\sharp\mathbb{P}^{2}$ +\end_inset + + ( +\begin_inset Formula $\mathbb{K}$ +\end_inset + + es la botella de Klein) y +\begin_inset Formula $\mathbb{T}^{2}\sharp\mathbb{P}^{2}\cong\mathbb{P}^{2}\sharp\mathbb{P}^{2}\sharp\mathbb{P}^{2}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto, dos superficies compactas son homeomorfas si y sólo si tiene el + mismo número de Euler y la misma orientabilidad. +\end_layout + +\begin_layout Standard +El +\series bold +género +\series default + de una superficie compacta +\begin_inset Formula $M$ +\end_inset + +, o el número de +\series bold +agujeros +\series default +, es +\begin_inset Formula +\[ +g(M):=\begin{cases} +\frac{1}{2}(2-\chi(M)), & M\text{ orientable};\\ +2-\chi(M), & M\text{ no orientable}. +\end{cases} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Tenemos +\begin_inset Formula $g(\mathbb{S}^{2})=0$ +\end_inset + +, +\begin_inset Formula $g(\mathbb{T}^{2})=1$ +\end_inset + + y +\begin_inset Formula $g(\mathbb{RP}^{2})=1$ +\end_inset + +, luego si +\begin_inset Formula $T_{1},\dots,T_{n}$ +\end_inset + + son toros, +\begin_inset Formula $g(T_{1}\sharp\dots\sharp T_{n})=n$ +\end_inset + +, y si +\begin_inset Formula $P_{1},\dots,P_{n}$ +\end_inset + + son planos proyectivos, +\begin_inset Formula $g(P_{1}\sharp\dots\sharp P_{n})=n$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
