diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-24 18:53:54 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-24 18:53:54 +0100 |
| commit | de18ff7a6082d8c3ba37b681ba4cc1057cc437f0 (patch) | |
| tree | f624bae8ed9b47f35decd88eff19409642fd80bd | |
| parent | 2ffd2dd6bf328824dd2b47ba1f0d3b8d0eb2d332 (diff) | |
Demos tarea funcional
| -rw-r--r-- | af/n4.lyx | 214 |
1 files changed, 210 insertions, 4 deletions
@@ -3395,11 +3395,184 @@ Teorema de Dunford: \end_inset es holomorfa si y sólo si es débilmente holomorfa. -\begin_inset Note Note +\begin_inset Note Comment +status open + +\begin_layout Itemize +\begin_inset Argument item:1 status open \begin_layout Plain Layout -nproof +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Para +\begin_inset Formula $g\in X^{*}$ +\end_inset + + y +\begin_inset Formula $z_{0}\in\Omega$ +\end_inset + +, por linealidad y continuidad de +\begin_inset Formula $g$ +\end_inset + +, +\begin_inset Formula +\[ +(g\circ f)'(z_{0})=\lim_{z\to z_{0}}\frac{g(f(z))-g(f(z_{0}))}{z-z_{0}}=\lim_{z\to z_{0}}g\left(\frac{f(z)-f(z_{0})}{z-z_{0}}\right)=g(f'(z_{0})). +\] + +\end_inset + + +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Sean +\begin_inset Formula $z_{0}\in\Omega$ +\end_inset + + y, para +\begin_inset Formula $z,w\in\Omega\setminus\{z_{0}\}$ +\end_inset + +, +\begin_inset Formula +\[ +G(z,w)\coloneqq\frac{f(z)-f(z_{0})}{z-z_{0}}-\frac{f(w)-f(z_{0})}{w-z_{0}}, +\] + +\end_inset + +queremos ver que existen +\begin_inset Formula $V\in{\cal E}(z_{0})$ +\end_inset + + y +\begin_inset Formula $M>0$ +\end_inset + + con +\begin_inset Formula $\Vert G(z,w)\Vert\leq M|z-w|$ +\end_inset + +, de modo que se cumple la condición de Cauchy y existe +\begin_inset Formula $\lim_{z\to z_{0}}\frac{f(z)-f(z_{0})}{z-z_{0}}$ +\end_inset + +. + Sean +\begin_inset Formula $r>0$ +\end_inset + + tal que +\begin_inset Formula $B(z_{0},r)\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, +\begin_inset Formula $g\circ f\in{\cal H}(\Omega)$ +\end_inset + + y para +\begin_inset Formula $z\in B(z_{0},r)$ +\end_inset + + se tiene la fórmula de Cauchy +\begin_inset Formula +\[ +(g\circ f)(z)=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{g(f(s))}{s-z}\dif s, +\] + +\end_inset + +donde +\begin_inset Formula $\Gamma:[0,2\pi]\to\mathbb{C}$ +\end_inset + + es la curva +\begin_inset Formula $\Gamma(\theta)\coloneqq z_{0}+r\text{e}^{\text{i}\theta}$ +\end_inset + +. + +\begin_inset Formula $\Gamma([0,2\pi])$ +\end_inset + + es compacto y por tanto, para todo +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, como +\begin_inset Formula $g\circ f$ +\end_inset + + es continua, +\begin_inset Formula $g(f(\Gamma([0,2\pi])))$ +\end_inset + + es compacto y en particular es acotado, de modo que +\begin_inset Formula $f(\Gamma([0,2\pi]))$ +\end_inset + + es acotado y existe +\begin_inset Formula $\alpha\coloneqq\sup_{\theta\in[0,2\pi]}|f(\Gamma(\theta))|$ +\end_inset + +. + Además, para +\begin_inset Formula $z,w\in B(x_{0},\frac{r}{2})$ +\end_inset + +, por un corolario del teorema de Hann-Banach, existe +\begin_inset Formula $g\in S_{X^{*}}$ +\end_inset + + con +\begin_inset Formula $g(G(z,w))=\Vert G(z,w)\Vert$ +\end_inset + +, pero +\begin_inset Formula +\begin{multline*} +g(G(z,w))=\frac{g(f(z))-g(f(z_{0}))}{z-z_{0}}-\frac{g(f(w))-g(f(z_{0}))}{w-z_{0}}=\\ +=\frac{1}{2\pi\text{i}}\int_{\Gamma}\left(\frac{\frac{g(f(s))}{s-z}-\frac{g(f(s))}{s-z_{0}}}{z-z_{0}}-\frac{\frac{g(f(s))}{s-w}-\frac{g(f(s))}{s-z_{0}}}{w-z_{0}}\right)\dif s=\\ +=\frac{1}{2\pi\text{i}}\int_{\Gamma}\left(\frac{g(f(s))}{(s-z)(s-z_{0})}-\frac{g(f(s))}{(s-w)(s-z_{0})}\right)\dif s=\frac{1}{2\pi\text{i}}\int_{\Gamma}\frac{g(f(s))(z-w)}{(s-z)(s-w)(s-z_{0})}\dif s, +\end{multline*} + +\end_inset + +con lo que +\begin_inset Formula +\[ +\Vert G(z,w)\Vert=|g(G(z,w))|\leq\frac{1}{2\pi}\frac{\sup_{\theta\in[0,2\pi]}g(f(\theta))|z-w|}{\frac{r}{2}\frac{r}{2}r}2\pi r=\frac{4}{r^{2}}\alpha|z-w|. +\] + +\end_inset + + \end_layout \end_inset @@ -3433,11 +3606,44 @@ Teorema de Liouville: \end_inset es constante. -\begin_inset Note Note +\begin_inset Note Comment status open \begin_layout Plain Layout -nproof +Como +\begin_inset Formula $f$ +\end_inset + + es débilmente holomorfa, para +\begin_inset Formula $g\in X^{*}$ +\end_inset + +, +\begin_inset Formula $g\circ f$ +\end_inset + + es holomorfa acotada y, por el teorema de Liouville entre espacios complejos, + es constante y +\begin_inset Formula $g(f(\Omega))$ +\end_inset + + es unipuntual, pero como +\begin_inset Formula $X^{*}$ +\end_inset + + separa los puntos de +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $f(\Omega)$ +\end_inset + + es unipuntual y +\begin_inset Formula $f$ +\end_inset + + es constante. \end_layout \end_inset |
