aboutsummaryrefslogtreecommitdiff
path: root/aalg/n2.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /aalg/n2.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'aalg/n2.lyx')
-rw-r--r--aalg/n2.lyx16
1 files changed, 8 insertions, 8 deletions
diff --git a/aalg/n2.lyx b/aalg/n2.lyx
index d6c0241..7fbd7ef 100644
--- a/aalg/n2.lyx
+++ b/aalg/n2.lyx
@@ -252,11 +252,11 @@ Para cambiar coordenadas entre dos referenciales
\end_inset
, si llamamos
-\begin_inset Formula $X_{0}:=[O]_{\Re'}=[\overrightarrow{O'O}]_{{\cal B}'}$
+\begin_inset Formula $X_{0}\coloneqq [O]_{\Re'}=[\overrightarrow{O'O}]_{{\cal B}'}$
\end_inset
y
-\begin_inset Formula $M:=M_{{\cal B}'{\cal B}}$
+\begin_inset Formula $M\coloneqq M_{{\cal B}'{\cal B}}$
\end_inset
, se tiene que:
@@ -371,7 +371,7 @@ característico
\end_layout
\begin_layout Standard
-\begin_inset Formula $P_{f}(x):=\det(xId-f)$
+\begin_inset Formula $P_{f}(x)\coloneqq \det(xId-f)$
\end_inset
es el
@@ -387,7 +387,7 @@ polinomio característico
\series default
, y
-\begin_inset Formula $P_{A}(x):=\det(xI_{n}-A)$
+\begin_inset Formula $P_{A}(x)\coloneqq \det(xI_{n}-A)$
\end_inset
es el polinomio característico de
@@ -756,7 +756,7 @@ Este cambio es solo vectorial, pues no modifica el origen de coordenadas,
, se trata de un giro.
Para la segunda reducción, sea
-\begin_inset Formula $\delta:=\lambda_{1}\lambda_{2}$
+\begin_inset Formula $\delta\coloneqq \lambda_{1}\lambda_{2}$
\end_inset
:
@@ -999,15 +999,15 @@ Dada una cónica con matriz proyectiva
\end_inset
, las cantidades
-\begin_inset Formula $\Delta:=|\overline{A}|$
+\begin_inset Formula $\Delta\coloneqq |\overline{A}|$
\end_inset
,
-\begin_inset Formula $\delta:=|A|$
+\begin_inset Formula $\delta\coloneqq |A|$
\end_inset
y
-\begin_inset Formula $s:=\text{tr}(A)$
+\begin_inset Formula $s\coloneqq \text{tr}(A)$
\end_inset
, llamadas