diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /aalg/n4.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'aalg/n4.lyx')
| -rw-r--r-- | aalg/n4.lyx | 104 |
1 files changed, 52 insertions, 52 deletions
diff --git a/aalg/n4.lyx b/aalg/n4.lyx index 96b456a..c6a789e 100644 --- a/aalg/n4.lyx +++ b/aalg/n4.lyx @@ -202,7 +202,7 @@ Sean \end_inset y -\begin_inset Formula $A:=(a_{ij}:=\langle e_{i},e_{j}\rangle)\in{\cal M}_{n}(\mathbb{K})$ +\begin_inset Formula $A\coloneqq (a_{ij}\coloneqq \langle e_{i},e_{j}\rangle)\in{\cal M}_{n}(\mathbb{K})$ \end_inset , entonces si @@ -277,7 +277,7 @@ forma cuadrática \end_inset dada por -\begin_inset Formula $\langle u,v\rangle:=\frac{1}{2}(q(u+v)-q(u)-q(v))$ +\begin_inset Formula $\langle u,v\rangle\coloneqq \frac{1}{2}(q(u+v)-q(u)-q(v))$ \end_inset es una forma bilineal simétrica en @@ -315,7 +315,7 @@ Llamamos que asocia a cada forma cuadrática su forma polar es biyectiva y su inversa asocia a cada forma bilineal simétrica la forma cuadrática dada por -\begin_inset Formula $q(u):=\langle u,u\rangle$ +\begin_inset Formula $q(u)\coloneqq \langle u,u\rangle$ \end_inset . @@ -328,7 +328,7 @@ Demostración: \end_inset y -\begin_inset Formula $q(u):=\langle u,u\rangle$ +\begin_inset Formula $q(u)\coloneqq \langle u,u\rangle$ \end_inset , es claro que @@ -369,7 +369,7 @@ Sean ahora \begin_layout Standard Esta correspondencia permite asociar una matriz -\begin_inset Formula $A:=(a_{ij})\in{\cal M}_{n}(\mathbb{K})$ +\begin_inset Formula $A\coloneqq (a_{ij})\in{\cal M}_{n}(\mathbb{K})$ \end_inset a una forma cuadrática @@ -409,11 +409,11 @@ Sean \end_inset un espacio bilineal, -\begin_inset Formula ${\cal C}:=(u_{1},\dots,u_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (u_{1},\dots,u_{n})$ \end_inset y -\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\begin_inset Formula ${\cal B}\coloneqq (v_{1},\dots,v_{n})$ \end_inset bases de @@ -425,11 +425,11 @@ Sean \end_inset tiene matrices respectivas -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq (a_{ij})$ \end_inset y -\begin_inset Formula $B:=(b_{ij})$ +\begin_inset Formula $B\coloneqq (b_{ij})$ \end_inset , @@ -751,7 +751,7 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl \end_inset tienen la misma matriz asociada -\begin_inset Formula $C:=(c_{ij})$ +\begin_inset Formula $C\coloneqq (c_{ij})$ \end_inset , entonces @@ -775,11 +775,11 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl \end_inset una isometría y -\begin_inset Formula ${\cal B}:=(v_{1},\dots,v_{n})$ +\begin_inset Formula ${\cal B}\coloneqq (v_{1},\dots,v_{n})$ \end_inset , entonces -\begin_inset Formula ${\cal B}':=(f(v_{1}),\dots,f(v_{n}))$ +\begin_inset Formula ${\cal B}'\coloneqq (f(v_{1}),\dots,f(v_{n}))$ \end_inset es una base de @@ -791,7 +791,7 @@ A\sim A'\iff\langle\cdot\rangle\sim\langle\cdot\rangle'\iff(V,\langle\cdot\rangl \end_inset , ambas formas bilineales tienen la misma matriz -\begin_inset Formula $C:=(c_{ij})$ +\begin_inset Formula $C\coloneqq (c_{ij})$ \end_inset , y entonces @@ -827,7 +827,7 @@ subespacio ortogonal \end_inset al subespacio -\begin_inset Formula $E^{\bot}:=\{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$ +\begin_inset Formula $E^{\bot}\coloneqq \{v\in V\mid \forall e\in E,\langle v,e\rangle=0\}$ \end_inset . @@ -865,7 +865,7 @@ radical \end_inset a -\begin_inset Formula $Rad(V):=V^{\bot}$ +\begin_inset Formula $Rad(V)\coloneqq V^{\bot}$ \end_inset . @@ -1022,7 +1022,7 @@ Demostración: . Sea -\begin_inset Formula ${\cal B}:=(e_{1},\dots,e_{m})$ +\begin_inset Formula ${\cal B}\coloneqq (e_{1},\dots,e_{m})$ \end_inset una base de @@ -1062,12 +1062,12 @@ x_{m} \end_inset tiene solución única y -\begin_inset Formula $x:=\sum x_{i}e_{i}\in E$ +\begin_inset Formula $x\coloneqq \sum x_{i}e_{i}\in E$ \end_inset . Sea -\begin_inset Formula $v:=u-x$ +\begin_inset Formula $v\coloneqq u-x$ \end_inset , @@ -1147,7 +1147,7 @@ Demostración: \end_inset no isótropo y, si -\begin_inset Formula $E:=<e_{1}>$ +\begin_inset Formula $E\coloneqq <e_{1}>$ \end_inset , @@ -1237,7 +1237,7 @@ Si \end_inset , basta tomar -\begin_inset Formula $P:=E_{1}^{t}\cdots E_{k}^{t}$ +\begin_inset Formula $P\coloneqq E_{1}^{t}\cdots E_{k}^{t}$ \end_inset . @@ -1954,11 +1954,11 @@ Reescribir \end_inset Hacer el cambio -\begin_inset Formula $x'_{1}:=x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}}$ +\begin_inset Formula $x'_{1}\coloneqq x_{1}+\frac{p(x_{2},\dots,x_{n})}{2a_{11}}$ \end_inset y -\begin_inset Formula $x'_{j}:=x_{j},j\neq1$ +\begin_inset Formula $x'_{j}\coloneqq x_{j},j\neq1$ \end_inset @@ -2040,7 +2040,7 @@ Demostración: \end_inset y -\begin_inset Formula $U:=V_{(\alpha_{1})}\oplus\dots\oplus V_{(\alpha_{m})}$ +\begin_inset Formula $U\coloneqq V_{(\alpha_{1})}\oplus\dots\oplus V_{(\alpha_{m})}$ \end_inset , siendo @@ -2165,7 +2165,7 @@ rango \end_inset a -\begin_inset Formula $\text{rg}(\langle\cdot\rangle):=\text{rg}(A)=\dim(V)-\dim Rad(\langle\cdot\rangle)$ +\begin_inset Formula $\text{rg}(\langle\cdot\rangle)\coloneqq \text{rg}(A)=\dim(V)-\dim Rad(\langle\cdot\rangle)$ \end_inset . @@ -2239,7 +2239,7 @@ Demostración: \end_inset con -\begin_inset Formula $\lambda:=|P|$ +\begin_inset Formula $\lambda\coloneqq |P|$ \end_inset . @@ -2309,11 +2309,11 @@ Demostración: \end_inset es -\begin_inset Formula $D:=\text{diag}(d_{1},\dots,d_{m},0,\dots,0)$ +\begin_inset Formula $D\coloneqq \text{diag}(d_{1},\dots,d_{m},0,\dots,0)$ \end_inset , siendo -\begin_inset Formula $m:=\text{rg}(\langle\cdot\rangle)$ +\begin_inset Formula $m\coloneqq \text{rg}(\langle\cdot\rangle)$ \end_inset , con @@ -2434,7 +2434,7 @@ positivos . A los elementos de -\begin_inset Formula $-P:=\{-x\}_{x\in P}$ +\begin_inset Formula $-P\coloneqq \{-x\}_{x\in P}$ \end_inset los llamamos @@ -2568,7 +2568,7 @@ Las mismas definiciones se aplican a una forma cuadrática. \end_inset , -\begin_inset Formula $A:=(a_{ij})$ +\begin_inset Formula $A\coloneqq (a_{ij})$ \end_inset la matriz de @@ -2576,7 +2576,7 @@ Las mismas definiciones se aplican a una forma cuadrática. \end_inset en cierta base -\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (e_{1},\dots,e_{n})$ \end_inset y definimos @@ -2608,7 +2608,7 @@ a_{21} & a_{22} Demostración: \series default Sea -\begin_inset Formula $E:=<e_{1},\dots,e_{n-1}>$ +\begin_inset Formula $E\coloneqq <e_{1},\dots,e_{n-1}>$ \end_inset , la matriz de @@ -2675,7 +2675,7 @@ Tenemos . Sea -\begin_inset Formula $\lambda:=|P|$ +\begin_inset Formula $\lambda\coloneqq |P|$ \end_inset , @@ -2691,7 +2691,7 @@ Tenemos \end_inset en la base -\begin_inset Formula $(e_{1},\dots,e_{n-1},w:=\lambda v)$ +\begin_inset Formula $(e_{1},\dots,e_{n-1},w\coloneqq \lambda v)$ \end_inset es como @@ -2773,11 +2773,11 @@ teorema de Sylvester es definida positiva, definida negativa y nula, respectivamente. Además, -\begin_inset Formula $p:=\dim(V_{+})$ +\begin_inset Formula $p\coloneqq \dim(V_{+})$ \end_inset y -\begin_inset Formula $m:=\dim(V_{-})$ +\begin_inset Formula $m\coloneqq \dim(V_{-})$ \end_inset son únicos, y al par @@ -2798,7 +2798,7 @@ signatura Demostración: \series default Sea -\begin_inset Formula ${\cal C}:=(e_{1},\dots,e_{n})$ +\begin_inset Formula ${\cal C}\coloneqq (e_{1},\dots,e_{n})$ \end_inset una base de @@ -3095,7 +3095,7 @@ Si \end_inset , y entonces definimos -\begin_inset Formula $t(w):=-w$ +\begin_inset Formula $t(w)\coloneqq -w$ \end_inset y vemos que @@ -3111,11 +3111,11 @@ Como teorema \series default , si -\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\begin_inset Formula $D_{1}\coloneqq \text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ \end_inset y -\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\begin_inset Formula $D_{2}\coloneqq \text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ \end_inset son matrices con @@ -3190,7 +3190,7 @@ Demostración: \end_inset y -\begin_inset Formula $E:=<s(u_{2}),\dots,s(u_{n})>=<s(u_{1})>^{\bot}=<v_{1}>^{\bot}=<v_{2},\dots,v_{n}>$ +\begin_inset Formula $E\coloneqq <s(u_{2}),\dots,s(u_{n})>=<s(u_{1})>^{\bot}=<v_{1}>^{\bot}=<v_{2},\dots,v_{n}>$ \end_inset . @@ -3309,11 +3309,11 @@ Demostración: \end_inset , si -\begin_inset Formula $D_{1}:=\text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ +\begin_inset Formula $D_{1}\coloneqq \text{diag}(a_{1},\dots,a_{r},b_{r+1},\dots,b_{n})$ \end_inset y -\begin_inset Formula $D_{2}:=\text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ +\begin_inset Formula $D_{2}\coloneqq \text{diag}(a_{1},\dots,a_{r},c_{r+1},\dots,c_{n})$ \end_inset son las matrices de @@ -3430,7 +3430,7 @@ Sean \end_inset es una base y -\begin_inset Formula $v':=\frac{v}{\langle u,v\rangle}$ +\begin_inset Formula $v'\coloneqq \frac{v}{\langle u,v\rangle}$ \end_inset , la matriz de @@ -3453,12 +3453,12 @@ A:=\left(\begin{array}{cc} \end_inset con -\begin_inset Formula $a:=\langle v',v'\rangle$ +\begin_inset Formula $a\coloneqq \langle v',v'\rangle$ \end_inset . Sea ahora -\begin_inset Formula $w:=xu+v'$ +\begin_inset Formula $w\coloneqq xu+v'$ \end_inset tal que @@ -3498,7 +3498,7 @@ B:=\left(\begin{array}{cc} \end_inset con -\begin_inset Formula $b:=\langle w',w'\rangle$ +\begin_inset Formula $b\coloneqq \langle w',w'\rangle$ \end_inset . @@ -3576,7 +3576,7 @@ Si identificamos los vectores con sus coordenadas respecto a la base en \end_inset es isótropo no nulo y, si hubiera un -\begin_inset Formula $v:=(v_{1},v_{2})$ +\begin_inset Formula $v\coloneqq (v_{1},v_{2})$ \end_inset con @@ -3744,7 +3744,7 @@ Demostración: es anisótropo. Si -\begin_inset Formula $n:=\dim(V)\geq2$ +\begin_inset Formula $n\coloneqq \dim(V)\geq2$ \end_inset y @@ -3827,12 +3827,12 @@ cónica proyectiva \end_inset , o de formas cuadráticas no nulas de dimensión 3, bajo la relación -\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}\mid q'=\lambda q$ +\begin_inset Formula $q\sim q':\iff\exists\lambda\in\mathbb{K}\backslash\{0\}:q'=\lambda q$ \end_inset . Escribimos -\begin_inset Formula ${\cal C}_{q}:=[q]$ +\begin_inset Formula ${\cal C}_{q}\coloneqq [q]$ \end_inset , y la identificamos con el conjunto de puntos @@ -3975,7 +3975,7 @@ recta polar \end_inset a -\begin_inset Formula $r_{P}:=\{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$ +\begin_inset Formula $r_{P}\coloneqq \{X\in\mathbb{P}^{2}(\mathbb{K})\mid [P]^{t}\overline{A}[X]=0\}$ \end_inset , y decimos que @@ -4035,7 +4035,7 @@ Una cónica es no degenerada \series default si -\begin_inset Formula $\Delta:=|\overline{A}|\neq0$ +\begin_inset Formula $\Delta\coloneqq |\overline{A}|\neq0$ \end_inset . |
