aboutsummaryrefslogtreecommitdiff
path: root/ac
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-10-16 19:42:55 +0200
committerJuan Marin Noguera <juan@mnpi.eu>2022-10-16 19:44:33 +0200
commit49f2ff845803fc3309a5b55b31c818c4b8e73337 (patch)
treee3b0bbc546d8507dc37c08d09be0feb2e5a0b436 /ac
parentadb0f628e2db4cf4d248241947fec08ff4b0b785 (diff)
AC tema 2
Diffstat (limited to 'ac')
-rw-r--r--ac/n1.lyx514
-rw-r--r--ac/n2.lyx512
2 files changed, 886 insertions, 140 deletions
diff --git a/ac/n1.lyx b/ac/n1.lyx
index 1d91f9d..4d02078 100644
--- a/ac/n1.lyx
+++ b/ac/n1.lyx
@@ -998,10 +998,6 @@ Dados anillos
\end_inset
.
-\begin_inset Quotes crd
-\end_inset
-
-
\end_layout
\begin_layout Standard
@@ -2383,14 +2379,7 @@ Dados anillos
\end_inset
.
-\begin_inset Quotes crd
-\end_inset
-
-
-\begin_inset Quotes cld
-\end_inset
-
-Si
+ Si
\begin_inset Formula $e\in A$
\end_inset
@@ -3823,6 +3812,55 @@ Sean
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{exinfo}
+\end_layout
+
+\end_inset
+
+Dados
+\begin_inset Formula $I,J,J'\trianglelefteq A$
+\end_inset
+
+ con
+\begin_inset Formula $I\subseteq J,J'$
+\end_inset
+
+,
+\begin_inset Formula $\frac{J}{I}+\frac{J'}{I}=\frac{J+J'}{I}$
+\end_inset
+
+,
+\begin_inset Formula $\frac{J}{I}\cap\frac{J'}{I}=\frac{J\cap J'}{I}$
+\end_inset
+
+ y
+\begin_inset Formula $\frac{J}{I}\frac{J'}{I}=\frac{JJ'}{I}$
+\end_inset
+
+.
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Hay tantos ideales de
\begin_inset Formula $\mathbb{Z}_{n}$
\end_inset
@@ -4199,8 +4237,170 @@ comaximales
\end_inset
.
+ Propiedades:
+\end_layout
+
+\begin_layout Enumerate
+Si
+\begin_inset Formula $I\trianglelefteq A$
+\end_inset
+
+ es comaximal con
+\begin_inset Formula $J_{1},\dots,J_{n}\trianglelefteq A$
+\end_inset
+
+, lo es con
+\begin_inset Formula $J_{1}\cdots J_{n}$
+\end_inset
+
+ y con
+\begin_inset Formula $J_{1}\cap\dots\cap J_{n}$
+\end_inset
+
+.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+Basta verlo para el producto, pues la intersección es más grande.
+ Para
+\begin_inset Formula $n\in\{0,1\}$
+\end_inset
+
+ es claro.
+ Para
+\begin_inset Formula $n=2$
+\end_inset
+
+, existen
+\begin_inset Formula $a,a'\in I$
+\end_inset
+
+,
+\begin_inset Formula $b\in J_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $b'\in J_{2}$
+\end_inset
+
+ con
+\begin_inset Formula $1=a+b=a'+b'$
+\end_inset
+
+, luego
+\begin_inset Formula $1=aa'+ab'+ba'+bb'$
+\end_inset
+
+ con
+\begin_inset Formula $bb'\in J_{1}J_{2}$
+\end_inset
+
+ y el resto de sumandos en
+\begin_inset Formula $I$
+\end_inset
+
+.
+ Para
+\begin_inset Formula $n>2$
+\end_inset
+
+ se hace inducción.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+Si
+\begin_inset Formula $I_{1},\dots,I_{n}\trianglelefteq A$
+\end_inset
+
+ son comaximales dos a dos,
+\begin_inset Formula $I_{1}\cdots I_{n}=I_{1}\cap\dots\cap I_{n}$
+\end_inset
+
+.
\end_layout
+\begin_deeper
+\begin_layout Standard
+Para
+\begin_inset Formula $n\in\{0,1\}$
+\end_inset
+
+ es claro.
+ Para
+\begin_inset Formula $n=2$
+\end_inset
+
+, sea
+\begin_inset Formula $x\in I_{1}\cap I_{2}$
+\end_inset
+
+, existen
+\begin_inset Formula $a\in I_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $b\in I_{2}$
+\end_inset
+
+ con
+\begin_inset Formula $a+b=1$
+\end_inset
+
+, luego
+\begin_inset Formula $x=ax+bx$
+\end_inset
+
+, pero
+\begin_inset Formula $a\in I_{1}$
+\end_inset
+
+ y
+\begin_inset Formula $x\in I_{2}$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $ax\in I_{1}I_{2}$
+\end_inset
+
+, y del mismo modo
+\begin_inset Formula $bx\in I_{1}I_{2}$
+\end_inset
+
+, luego
+\begin_inset Formula $I_{1}\cap I_{2}\subseteq I_{1}I_{2}$
+\end_inset
+
+ y ya sabíamos que
+\begin_inset Formula $I_{1}I_{2}\subseteq I_{1}\cap I_{2}$
+\end_inset
+
+.
+ Para
+\begin_inset Formula $n>2$
+\end_inset
+
+, supuesto esto probado para
+\begin_inset Formula $n$
+\end_inset
+
+ menor, por lo anterior
+\begin_inset Formula $I_{1}\cdots I_{n-1}=I_{1}\cap\dots\cap I_{n-1}$
+\end_inset
+
+ es comaximal con
+\begin_inset Formula $I_{n}$
+\end_inset
+
+ y basta usar el caso
+\begin_inset Formula $n=2$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
\begin_layout Standard
\begin_inset ERT
status open
@@ -4215,6 +4415,19 @@ begin{exinfo}
\end_inset
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Argument item:1
+status open
+
+\begin_layout Plain Layout
+3.
+\end_layout
+
+\end_inset
+
+
\begin_inset Formula $I,J\trianglelefteq A$
\end_inset
@@ -4235,6 +4448,9 @@ begin{exinfo}
\end_inset
son comaximales.
+\end_layout
+
+\begin_layout Standard
\begin_inset ERT
status open
@@ -4320,75 +4536,20 @@ Para
\end_inset
.
- Primero vemos que
-\begin_inset Formula $K_{1}$
-\end_inset
-
- es comaximal con
-\begin_inset Formula $K_{2}\cdots K_{n}$
-\end_inset
-
-.
- Si
-\begin_inset Formula $n=2$
-\end_inset
-
- esto es claro.
- Si
-\begin_inset Formula $n=3$
-\end_inset
-
-, existen
-\begin_inset Formula $a,a'\in K_{1}$
-\end_inset
-
-,
-\begin_inset Formula $b\in K_{2}$
-\end_inset
-
- y
-\begin_inset Formula $b'\in K_{3}$
-\end_inset
-
- con
-\begin_inset Formula $1=a+b=a'+b'$
-\end_inset
-
-, luego
-\begin_inset Formula $1=aa'+ab'+ba'+bb'$
-\end_inset
-
- con
-\begin_inset Formula $bb'\in K_{2}K_{3}$
+ Al ser los
+\begin_inset Formula $K_{i}$
\end_inset
- y el resto de sumandos en
+ comaximales,
\begin_inset Formula $K_{1}$
\end_inset
-.
- Si
-\begin_inset Formula $n>3$
-\end_inset
-
- basta hacer inducción.
- Al ser
+ es comaximal con
\begin_inset Formula $K_{2}\cap\dots\cap K_{n}$
\end_inset
- más grande que
-\begin_inset Formula $K_{2}\cdots K_{n}$
-\end_inset
-
-, también es comaximal con
-\begin_inset Formula $K_{1}$
-\end_inset
-
.
-\end_layout
-
-\begin_layout Standard
-Sean ahora
+ Sean ahora
\begin_inset Formula $a\in K_{1}$
\end_inset
@@ -4479,69 +4640,11 @@ Sean ahora
\end_inset
es suprayectiva.
-\end_layout
-
-\begin_layout Standard
-Veamos ahora que
+ Entonces
\begin_inset Formula $\ker\phi=K_{1}\cap\dots\cap K_{n}=K_{1}\cdots K_{n}$
\end_inset
-.
- Para
-\begin_inset Formula $n=2$
-\end_inset
-
-, sea
-\begin_inset Formula $x\in K_{1}\cap K_{2}$
-\end_inset
-
-, existen
-\begin_inset Formula $a\in K_{1}$
-\end_inset
-
- y
-\begin_inset Formula $b\in K_{2}$
-\end_inset
-
- con
-\begin_inset Formula $a+b=1$
-\end_inset
-
-, luego
-\begin_inset Formula $x=1x=ax+bx$
-\end_inset
-
-, pero como
-\begin_inset Formula $a\in K_{1}$
-\end_inset
-
- y
-\begin_inset Formula $x\in K_{2}$
-\end_inset
-
-,
-\begin_inset Formula $ax\in K_{1}K_{2}$
-\end_inset
-
-, y análogamente
-\begin_inset Formula $xb\in K_{1}K_{2}$
-\end_inset
-
-, luego
-\begin_inset Formula $x\in K_{1}K_{2}$
-\end_inset
-
- y
-\begin_inset Formula $K_{1}\cap K_{2}\subseteq K_{1}K_{2}$
-\end_inset
-
-, y la otra inclusión la sabemos.
- Para
-\begin_inset Formula $n>2$
-\end_inset
-
- basta hacer inducción.
- La última afirmación se debe al primer teorema de isomorfía.
+, y para la última afirmación basta aplicar el primer teorema de isomorfía.
\end_layout
\end_deeper
@@ -4929,6 +5032,7 @@ anillo local
\end_inset
.
+
\end_layout
\begin_layout Standard
@@ -4966,6 +5070,43 @@ Sean
\end_inset
es el único irreducible salvo asociados.
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $(A,(p))$
+\end_inset
+
+ es un anillo local con
+\begin_inset Formula $p\neq0$
+\end_inset
+
+ y
+\begin_inset Formula $\bigcap_{n\in\mathbb{N}}(p)^{n}=0$
+\end_inset
+
+, cada
+\begin_inset Formula $a\in A\setminus0$
+\end_inset
+
+ es de la forma
+\begin_inset Formula $up^{n}$
+\end_inset
+
+ para ciertos
+\begin_inset Formula $u\in A^{*}$
+\end_inset
+
+ y
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+, y en particular
+\begin_inset Formula $A$
+\end_inset
+
+ es un DIP con un único irreducible salvo asociados.
\end_layout
\begin_layout Standard
@@ -5038,6 +5179,66 @@ end{exinfo}
\end_layout
+\begin_layout Standard
+\begin_inset Formula $I\trianglelefteq A$
+\end_inset
+
+ es
+\series bold
+nilpotente
+\series default
+ si existe
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+ tal que
+\begin_inset Formula $I^{n}=0$
+\end_inset
+
+, donde
+\begin_inset Formula $I^{0}\coloneqq A$
+\end_inset
+
+ y, para
+\begin_inset Formula $n>0$
+\end_inset
+
+,
+\begin_inset Formula $I^{n}\coloneqq II^{n-1}$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{exinfo}
+\end_layout
+
+\end_inset
+
+Todo ideal nil finitamente generado es nilpotente.
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
\begin_layout Section
Ideales primos
\end_layout
@@ -5510,6 +5711,18 @@ status open
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+vspace{6pt}
+\end_layout
+
+\end_inset
+
Dados un homomorfismo
\begin_inset Formula $f:A\to B$
\end_inset
@@ -5893,6 +6106,22 @@ radical
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Propiedades:
\end_layout
@@ -5968,6 +6197,22 @@ Sea
\end_deeper
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{samepage}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
Un
\series bold
subconjunto multiplicativo
@@ -5981,9 +6226,12 @@ subconjunto multiplicativo
\end_inset
cerrado para el producto y que contiene al 1.
+\end_layout
+
+\begin_layout Standard
\series bold
- Lema de Krull:
+Lema de Krull:
\series default
Sean
\begin_inset Formula $A$
diff --git a/ac/n2.lyx b/ac/n2.lyx
index 935d645..453c490 100644
--- a/ac/n2.lyx
+++ b/ac/n2.lyx
@@ -1095,6 +1095,69 @@ Demostración:
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Si
+\begin_inset Formula $A$
+\end_inset
+
+ es noetheriano:
+\end_layout
+
+\begin_layout Enumerate
+Todo ideal suyo contiene una potencia de su radical.
+\end_layout
+
+\begin_layout Enumerate
+si
+\begin_inset Formula $b\in A$
+\end_inset
+
+ es cancelable y no unidad,
+\begin_inset Formula $\bigcap_{n\in\mathbb{N}}(b^{n})$
+\end_inset
+
+ puede ser no trivial, pero no contiene elementos cancelables.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $A$
+\end_inset
+
+ tiene una cantidad finita de primos minimales.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
\series bold
Teorema de la base de Hilbert:
@@ -1258,16 +1321,20 @@ Así, si
\begin_layout Standard
Dados
-\begin_inset Formula $I,J\trianglelefteq A$
+\begin_inset Formula $I\trianglelefteq A$
+\end_inset
+
+ y
+\begin_inset Formula $S\subseteq A$
\end_inset
, llamamos
-\begin_inset Formula $(I:J)=\{a\in A:aJ\subseteq I\}$
+\begin_inset Formula $(I:S)=\{a\in A:aS\subseteq I\}$
\end_inset
.
-\begin_inset Formula $I\subseteq(I:J)$
+\begin_inset Formula $I\subseteq(I:S)$
\end_inset
, pues para
@@ -1275,13 +1342,182 @@ Dados
\end_inset
,
-\begin_inset Formula $xJ\subseteq xA\subseteq I$
+\begin_inset Formula $xS\subseteq xA\subseteq I$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+Dados
+\begin_inset Formula $I,J\trianglelefteq A$
+\end_inset
+
+,
+\begin_inset Formula $X,Y\subseteq A$
+\end_inset
+
+,
+\begin_inset Formula $\{K_{\lambda}\}_{\lambda\in\Lambda}\subseteq{\cal L}(A)$
+\end_inset
+
+ y
+\begin_inset Formula $\{Z_{\lambda}\}_{\lambda\in\Lambda}\subseteq{\cal P}(A)$
+\end_inset
+
+:
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $(I:X)$
+\end_inset
+
+ es el mayor
+\begin_inset Formula $L\trianglelefteq A$
+\end_inset
+
+ con
+\begin_inset Formula $LX\subseteq I$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $I\subseteq J\implies(I:X)\subseteq(J:X)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $X\subseteq Y\implies(I:Y)\subseteq(I:X)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $(I:X)=(I:(X))$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $(I:A)=I$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $(I:0)=A$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $(A:X)=A$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $((I:X):Y)=(I:X\cdot Y)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\left(I:\bigcup_{\lambda}Z_{\lambda}\right)=\bigcap_{\lambda}(I:Z_{\lambda})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\left(I:\sum_{\lambda}K_{\lambda}\right)=\bigcap_{\lambda}(I:K_{\lambda})$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Enumerate
+\begin_inset Formula $\left(\bigcap_{\lambda}K_{\lambda}:J\right)=\bigcap_{\lambda}(K_{\lambda}:J)$
+\end_inset
+
+.
+\end_layout
+
+\begin_layout Standard
+Llamamos
+\series bold
+anulador
+\series default
+ de
+\begin_inset Formula $X$
+\end_inset
+
+ en
+\begin_inset Formula $A$
+\end_inset
+
+ a
+\begin_inset Formula $\text{ann}_{A}(X)\coloneqq(0:X)=\{a\in A:aX=0\}$
+\end_inset
+
+, t entonces
+\begin_inset Formula $\text{ann}(X)=\text{ann}((X))$
+\end_inset
+
+,
+\begin_inset Formula $\text{ann}\left(\bigcup_{\lambda}Z_{\lambda}\right)=\bigcap_{\lambda}\text{ann}(Z_{\lambda})$
+\end_inset
+
+ y
+\begin_inset Formula $\text{ann}\left(\sum_{\lambda}K_{\lambda}\right)=\bigcap_{\lambda}\text{ann}(Z_{\lambda})$
\end_inset
.
\end_layout
\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
\series bold
Teorema de Cohen:
@@ -2165,12 +2401,275 @@ Dado
\end_inset
.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+\begin_inset Formula $\text{Jac}(A)=\text{Nil}(A)$
+\end_inset
+
+ es nilpotente.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $J\coloneqq\text{Jac}(A)=\bigcap\text{MaxSpec}(A)=\bigcap\text{Spec}(A)=\text{Nil}(A)$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $A$
+\end_inset
+
+ es artiniano, la cadena
+\begin_inset Formula $J\supseteq J^{2}\supseteq J^{3}\supseteq\dots$
+\end_inset
+
+ se estabiliza en un cierto
+\begin_inset Formula $I=J^{n}$
+\end_inset
+
+, y queremos ver que
+\begin_inset Formula $I=0$
+\end_inset
+
+.
+ Si no lo fuera,
+\begin_inset Formula $\Omega\coloneqq\{K\trianglelefteq A:KI\neq0\}\neq\emptyset$
+\end_inset
+
+, pues
+\begin_inset Formula $A\in\Omega$
+\end_inset
+
+, con lo que tiene un minimal
+\begin_inset Formula $K$
+\end_inset
+
+.
+ Como
+\begin_inset Formula $KI\neq0$
+\end_inset
+
+, existe
+\begin_inset Formula $x\in K$
+\end_inset
+
+ con
+\begin_inset Formula $xI=(x)I\neq0$
+\end_inset
+
+, luego
+\begin_inset Formula $(x)\in\Omega$
+\end_inset
+
+ y, como
+\begin_inset Formula $(x)\subseteq K$
+\end_inset
+
+,
+\begin_inset Formula $K=(x)$
+\end_inset
+
+.
+ Ahora bien,
+\begin_inset Formula $I^{2}=J^{2n}=J^{n}=I$
+\end_inset
+
+, luego
+\begin_inset Formula $0\neq xI=xI^{2}=(xI)I$
+\end_inset
+
+, con lo que
+\begin_inset Formula $xI\in\Omega$
+\end_inset
+
+ y está contenido en
+\begin_inset Formula $(x)$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $xI=(x)$
+\end_inset
+
+.
+ En particular
+\begin_inset Formula $x\in xI$
+\end_inset
+
+, luego existe
+\begin_inset Formula $y\in I$
+\end_inset
+
+ con
+\begin_inset Formula $x=xy$
+\end_inset
+
+, y por inducción
+\begin_inset Formula $x=xy^{n}$
+\end_inset
+
+ para todo
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+, pues si
+\begin_inset Formula $x=xy^{n-1}$
+\end_inset
+
+ entonces
+\begin_inset Formula $x=(xy)y^{n-1}=xy^{n}$
+\end_inset
+
+.
+ Ahora bien,
+\begin_inset Formula $y\in I\subseteq J=\text{Nil}(A)$
+\end_inset
+
+, luego existe
+\begin_inset Formula $n$
+\end_inset
+
+ con
+\begin_inset Formula $y^{n}=0$
+\end_inset
+
+ y por tanto
+\begin_inset Formula $x=xy^{n}=0$
+\end_inset
+
+, pero
+\begin_inset Formula $xI\neq0\#$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Enumerate
+0 es producto finito de ideales maximales.
+\end_layout
+
+\begin_deeper
+\begin_layout Standard
+\begin_inset Formula $\text{MaxSpec}(A)$
+\end_inset
+
+ es finito, digamos
+\begin_inset Formula $\text{MaxSpec}(A)=\{M_{1},\dots,M_{r}\}$
+\end_inset
+
+, y entonces
+\begin_inset Formula $\text{Jac}(A)=M_{1}\cap\dots\cap M_{r}=M_{1}\cdots M_{r}$
+\end_inset
+
+ por ser los
+\begin_inset Formula $M_{i}$
+\end_inset
+
+ comaximales dos a dos, pero existe
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+ con
+\begin_inset Formula $\text{Jac}(A)^{n}=0$
+\end_inset
+
+, luego
+\begin_inset Formula $0=M_{1}^{n}\cdots M_{r}^{n}$
+\end_inset
+
+.
+\end_layout
+
+\end_deeper
+\begin_layout Standard
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+begin{exinfo}
+\end_layout
+
+\end_inset
+
+Dado un anillo artiniano
+\begin_inset Formula $A$
+\end_inset
+
+, sean
+\begin_inset Formula $\text{Spec}(A)=\{M_{1},\dots,M_{k}\}$
+\end_inset
+
+ y
+\begin_inset Formula $n\in\mathbb{N}$
+\end_inset
+
+ con
+\begin_inset Formula $\text{Jac}(A)^{n}=0$
+\end_inset
+
+,
+\begin_inset Formula $A\cong\frac{A}{M_{1}^{n}}\times\dots\times\frac{A}{M_{k}^{n}}$
+\end_inset
+
+, con cada
+\begin_inset Formula $\frac{A}{M_{i}^{k}}$
+\end_inset
+
+ local y artiniano.
+\begin_inset ERT
+status open
+
+\begin_layout Plain Layout
+
+
+\backslash
+end{exinfo}
+\end_layout
+
+\end_inset
+
+
+\end_layout
+
+\begin_layout Standard
+
+\series bold
+Teorema de Akizuki:
+\series default
+ Un anillo
+\begin_inset Formula $A$
+\end_inset
+
+ es artiniano si y sólo si es noetheriano y
+\begin_inset Formula $\dim A=0$
+\end_inset
+
+.
\begin_inset Note Note
status open
\begin_layout Plain Layout
-TODO ejercicios 1.8 en adelante en tema 1, y luego la última página del tema
- 2.
+No escribo la demostración hasta tenerla completa.
+ Por ahora tenemos:
+\end_layout
+
+\begin_layout Itemize
+Una demostración de Saorín, que al no usar conceptos que todavía no hemos
+ visto es bastante enrevesada y no llega a probar que artiniano implica
+ noetheriano.
+\end_layout
+
+\begin_layout Itemize
+Una que hay al final del tema 4 en la página 61 (67/122) de los apuntes.
+\end_layout
+
+\begin_layout Plain Layout
+Seguramente me quede con la segunda.
\end_layout
\end_inset
@@ -2178,6 +2677,5 @@ TODO ejercicios 1.8 en adelante en tema 1, y luego la última página del tema
\end_layout
-\end_deeper
\end_body
\end_document