aboutsummaryrefslogtreecommitdiff
path: root/af/n1b.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2023-01-15 18:08:28 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2023-01-18 00:42:21 +0100
commit2ffd2dd6bf328824dd2b47ba1f0d3b8d0eb2d332 (patch)
tree96a812502563e237ff7b3fcbd13825f39f418822 /af/n1b.lyx
parent975f990481ed3934f99e53a912f234955abb5912 (diff)
Terminado análisis funcional (tema 3)
Diffstat (limited to 'af/n1b.lyx')
-rw-r--r--af/n1b.lyx6829
1 files changed, 0 insertions, 6829 deletions
diff --git a/af/n1b.lyx b/af/n1b.lyx
deleted file mode 100644
index 8338697..0000000
--- a/af/n1b.lyx
+++ /dev/null
@@ -1,6829 +0,0 @@
-#LyX 2.3 created this file. For more info see http://www.lyx.org/
-\lyxformat 544
-\begin_document
-\begin_header
-\save_transient_properties true
-\origin unavailable
-\textclass book
-\begin_preamble
-\input{../defs}
-\usepackage{commath}
-\end_preamble
-\use_default_options true
-\maintain_unincluded_children false
-\language spanish
-\language_package default
-\inputencoding auto
-\fontencoding global
-\font_roman "default" "default"
-\font_sans "default" "default"
-\font_typewriter "default" "default"
-\font_math "auto" "auto"
-\font_default_family default
-\use_non_tex_fonts false
-\font_sc false
-\font_osf false
-\font_sf_scale 100 100
-\font_tt_scale 100 100
-\use_microtype false
-\use_dash_ligatures true
-\graphics default
-\default_output_format default
-\output_sync 0
-\bibtex_command default
-\index_command default
-\paperfontsize default
-\spacing single
-\use_hyperref false
-\papersize default
-\use_geometry false
-\use_package amsmath 1
-\use_package amssymb 1
-\use_package cancel 1
-\use_package esint 1
-\use_package mathdots 1
-\use_package mathtools 1
-\use_package mhchem 1
-\use_package stackrel 1
-\use_package stmaryrd 1
-\use_package undertilde 1
-\cite_engine basic
-\cite_engine_type default
-\biblio_style plain
-\use_bibtopic false
-\use_indices false
-\paperorientation portrait
-\suppress_date false
-\justification true
-\use_refstyle 1
-\use_minted 0
-\index Index
-\shortcut idx
-\color #008000
-\end_index
-\secnumdepth 3
-\tocdepth 3
-\paragraph_separation indent
-\paragraph_indentation default
-\is_math_indent 0
-\math_numbering_side default
-\quotes_style french
-\dynamic_quotes 0
-\papercolumns 1
-\papersides 1
-\paperpagestyle default
-\tracking_changes false
-\output_changes false
-\html_math_output 0
-\html_css_as_file 0
-\html_be_strict false
-\end_header
-
-\begin_body
-
-\begin_layout Standard
-David Hilbert (1862–1943) fue un influyente matemático alemán que formuló
- la teoría de los espacios de Hilbert.
- En 1900 publicó una lista de 23 problemas que marcarían en buena medida
- el progreso matemático en el siglo XX, y presentó 10 de ellos en el
-\emph on
-\lang english
-International Congress of Mathematicians
-\emph default
-\lang spanish
- de París de 1900.
- Fue editor jefe de
-\emph on
-\lang ngerman
-Mathematische Annalen
-\emph default
-\lang spanish
-, una revista matemática muy prestigiosa por casi 150 años, y tuvo discípulos
- como
-\lang ngerman
-Alfréd Haar, Erhard Schmidt, Hugo Steihaus, Hermann Weyl o Ernst Zermelo
-\lang spanish
-.
-\end_layout
-
-\begin_layout Standard
-Dado un
-\begin_inset Formula $\mathbb{K}$
-\end_inset
-
--espacio vectorial
-\begin_inset Formula $H$
-\end_inset
-
-,
-\begin_inset Formula $\langle\cdot,\cdot\rangle:H\times H\to\mathbb{K}$
-\end_inset
-
- es una
-\series bold
-forma hermitiana
-\series default
- si para
-\begin_inset Formula $a,b\in\mathbb{K}$
-\end_inset
-
- y
-\begin_inset Formula $x,y,z\in H$
-\end_inset
-
- se tiene
-\begin_inset Formula $\langle ax+by,z\rangle=a\langle x,z\rangle+b\langle y,z\rangle$
-\end_inset
-
- y
-\begin_inset Formula $\langle x,y\rangle=\overline{\langle y,x\rangle}$
-\end_inset
-
-, y es
-\series bold
-definida positiva
-\series default
- si para
-\begin_inset Formula $x\in H\setminus0$
-\end_inset
-
- es
-\begin_inset Formula $\langle x,x\rangle\in\mathbb{R}^{+}$
-\end_inset
-
-.
- Un
-\series bold
-producto escalar
-\series default
- es una forma hermitiana definida positiva, y un
-\series bold
-espacio prehilbertiano
-\series default
- es par formado por un espacio vectorial y un producto escalar sobre este.
-\end_layout
-
-\begin_layout Standard
-Dado un espacio prehilbertiano
-\begin_inset Formula $(H,\langle\cdot,\cdot\rangle)$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Desigualdad de Cauchy-Schwartz:
-\series default
-
-\begin_inset Formula $\forall x,y\in H,|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle$
-\end_inset
-
-, con igualdad si y sólo si
-\begin_inset Formula $x$
-\end_inset
-
- e
-\begin_inset Formula $y$
-\end_inset
-
- son linealmente dependientes.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio normado con la norma
-\begin_inset Formula $\Vert x\Vert\coloneqq\sqrt{\langle x,x\rangle}$
-\end_inset
-
-, y para
-\begin_inset Formula $x,y\in H$
-\end_inset
-
-,
-\begin_inset Formula $\Vert x+y\Vert=\Vert x\Vert+\Vert y\Vert\iff x=0\lor y=0\lor\exists a>0:x=ay$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $a,b\in\mathbb{K}$
-\end_inset
-
- y
-\begin_inset Formula $x,y,z\in H$
-\end_inset
-
-,
-\begin_inset Formula $\langle x,ay+bz\rangle=\overline{a}\langle x,y\rangle+\overline{b}\langle x,z\rangle$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $x,y\in H$
-\end_inset
-
-,
-\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}+2\text{Re}\langle x,y\rangle$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-\begin_inset Formula $\Vert x+y\Vert^{2}=\langle x+y,x+y\rangle=\langle x,x\rangle+\langle x,y\rangle+\overline{\langle x,y\rangle}+\langle y,y\rangle$
-\end_inset
-
-.
-\end_layout
-
-\end_deeper
-\begin_layout Standard
-
-\series bold
-Identidades de polarización:
-\series default
- Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio prehilbertiano y
-\begin_inset Formula $x,y\in H$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2})$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Si
-\begin_inset Formula $H$
-\end_inset
-
- se define sobre
-\begin_inset Formula $\mathbb{R}$
-\end_inset
-
-,
-\begin_inset Formula $\langle x,y\rangle=\frac{1}{4}(\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2})$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de von Neumann:
-\series default
- Un espacio normado
-\begin_inset Formula $(X,\Vert\cdot\Vert)$
-\end_inset
-
- admite un producto escalar
-\begin_inset Formula $\langle\cdot,\cdot\rangle$
-\end_inset
-
- en
-\begin_inset Formula $X$
-\end_inset
-
- con
-\begin_inset Formula $\langle x,x\rangle\equiv\Vert x\Vert^{2}$
-\end_inset
-
- si y sólo si
-\begin_inset Formula $\Vert\cdot\Vert$
-\end_inset
-
- verifica la
-\series bold
-ley del paralelogramo:
-\series default
-
-\begin_inset Formula
-\[
-\forall x,y\in H,\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}).
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\implies]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-En general
-\begin_inset Formula $\langle x,y+z\rangle=\overline{\langle y+z,x\rangle}=\overline{\langle y,x\rangle}+\overline{\langle z,x\rangle}=\langle x,y\rangle+\langle x,z\rangle$
-\end_inset
-
-, de donde
-\begin_inset Formula
-\begin{multline*}
-\Vert x+y\Vert^{2}+\Vert x-y\Vert^{2}=\langle x+y,x+y\rangle+\langle x-y,x-y\rangle=\\
-=\langle x,x\rangle+\langle x,y\rangle+\langle y,x\rangle+\langle y,y\rangle+\langle x,x\rangle-\langle x,y\rangle-\langle y,x\rangle+\langle y,y\rangle=2(\Vert x\Vert^{2}+\Vert y\Vert^{2}).
-\end{multline*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\impliedby]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Definimos
-\begin_inset Formula $\langle\cdot,\cdot\rangle$
-\end_inset
-
- según la identidad de polarización, y queremos ver que es un producto escalar
- cuya norma es la inicial.
- Se tiene
-\begin_inset Formula
-\begin{align*}
-\langle x,x\rangle & =\frac{1}{4}\left(\Vert2x\Vert^{2}-\Vert x-x\Vert^{2}+\text{i}\Vert x+\text{i}x\Vert^{2}-\text{i}\Vert x-\text{i}x\Vert^{2}\right)=\\
- & =\frac{1}{4}\left(4\Vert x\Vert^{2}+\text{i}|1+\text{i}|^{2}\Vert x\Vert^{2}-\text{i}|1-\text{i}|^{2}\Vert x\Vert^{2}\right)=\Vert x\Vert^{2},
-\end{align*}
-
-\end_inset
-
-y
-\begin_inset Formula
-\begin{align*}
-4\langle x,y\rangle & =\Vert x+y\Vert^{2}-\Vert x-y\Vert^{2}+\text{i}\Vert x+\text{i}y\Vert^{2}-\text{i}\Vert x-\text{i}y\Vert^{2}\\
- & =\Vert y+x\Vert^{2}-\Vert y-x\Vert^{2}+\text{i}\Vert y-\text{i}x\Vert-\text{i}\Vert y+\text{i}x\Vert^{2}=4\overline{\langle y,x\rangle}\\
- & =\Vert-x-y\Vert^{2}-\Vert-x+y\Vert^{2}+\text{i}\Vert-x-\text{i}y\Vert^{2}-\text{i}\Vert-x+\text{i}y\Vert^{2}=-4\langle-x,y\rangle\\
- & =\Vert\text{i}x+\text{i}y\Vert^{2}-\Vert\text{i}x-\text{i}y\Vert^{2}+\text{i}\Vert\text{i}x-y\Vert^{2}-\text{i}\Vert\text{i}x+y\Vert^{2}=4\frac{\langle\text{i}x,y\rangle}{\text{i}}.
-\end{align*}
-
-\end_inset
-
-Para ver que
-\begin_inset Formula $\langle x+z,y\rangle=\langle x,y\rangle+\langle z,y\rangle$
-\end_inset
-
-,
-\begin_inset Formula
-\begin{multline*}
-\Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}=\left\Vert \left(x+\frac{y}{2}\right)+\left(z+\frac{y}{2}\right)\right\Vert ^{2}-\left\Vert \left(x+\frac{y}{2}\right)-\left(z+\frac{y}{2}\right)\right\Vert ^{2}=\\
-=2\left\Vert x+\frac{y}{2}\right\Vert ^{2}+2\left\Vert z+\frac{y}{2}\right\Vert ^{2}\cancel{-\Vert x-z\Vert^{2}}-2\left\Vert x-\frac{y}{2}\right\Vert ^{2}-2\left\Vert z-\frac{y}{2}\right\Vert ^{2}\cancel{+\Vert x-z\Vert^{2}},
-\end{multline*}
-
-\end_inset
-
-de donde
-\begin_inset Formula
-\begin{eqnarray*}
-4\langle x+z,y\rangle & = & \Vert x+z+y\Vert^{2}-\Vert x+z-y\Vert^{2}+\text{i}\Vert x+z+\text{i}y\Vert^{2}-\text{i}\Vert x+z-\text{i}y\Vert^{2}\\
- & = & 2\left(\left\Vert x+\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\frac{y}{2}\right\Vert ^{2}-\left\Vert x-\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\frac{y}{2}\right\Vert \right)\\
- & & +2\text{i}\left(\left\Vert x+\text{i}\frac{y}{2}\right\Vert ^{2}+\left\Vert z+\text{i}\frac{z}{2}\right\Vert ^{2}-\left\Vert x-\text{i}\frac{y}{2}\right\Vert ^{2}-\left\Vert z-\text{i}\frac{y}{2}\right\Vert ^{2}\right)\\
- & = & 8\left\langle x,\frac{y}{2}\right\rangle +8\left\langle z,\frac{y}{2}\right\rangle ,
-\end{eqnarray*}
-
-\end_inset
-
-y por tanto
-\begin_inset Formula
-\[
-\langle x+z,y\rangle=2\left\langle x,\frac{y}{2}\right\rangle +2\left\langle z,\frac{y}{2}\right\rangle =\langle x,y\rangle+\langle z,y\rangle,
-\]
-
-\end_inset
-
-donde en la segunda igualdad hemos usado la primera igualdad con
-\begin_inset Formula $z=0$
-\end_inset
-
- o
-\begin_inset Formula $x=0$
-\end_inset
-
-.
- Usando esto y que
-\begin_inset Formula $\langle-x,y\rangle$
-\end_inset
-
- es fácil ver que
-\begin_inset Formula $\langle ax,y\rangle=a\langle x,y\rangle$
-\end_inset
-
- para
-\begin_inset Formula $a\in\mathbb{Q}$
-\end_inset
-
-; para
-\begin_inset Formula $a\in\mathbb{R}$
-\end_inset
-
- se usa la continuidad de la norma y por tanto del producto escalar, y para
-
-\begin_inset Formula $a\in\mathbb{C}$
-\end_inset
-
- se usa
-\begin_inset Formula $\langle\text{i}x,y\rangle=\text{i}\langle x,y\rangle$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset Formula $(\ell^{\infty},\Vert\cdot\Vert_{\infty})$
-\end_inset
-
- y
-\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{1})$
-\end_inset
-
- son espacios normados no prehilbertianos.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Dos espacios prehilbertianos
-\begin_inset Formula $(H_{1},\langle\cdot,\cdot\rangle_{1})$
-\end_inset
-
- y
-\begin_inset Formula $(H_{2},\langle\cdot,\cdot\rangle_{2})$
-\end_inset
-
- son
-\series bold
-equivalentes
-\series default
- si existe un isomorfismo algebraico
-\begin_inset Formula $T:H_{1}\to H_{2}$
-\end_inset
-
- con
-\begin_inset Formula $\langle x,y\rangle_{1}=\langle T(x),T(y)\rangle_{2}$
-\end_inset
-
- para todo
-\begin_inset Formula $x,y\in H_{1}$
-\end_inset
-
-, si y sólo si existe un isomorfismo isométrico entre los espacios normados.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio prehilbertiano,
-\begin_inset Formula $x,y\in H$
-\end_inset
-
- son
-\series bold
-ortogonales
-\series default
-,
-\begin_inset Formula $x\bot y$
-\end_inset
-
-, si
-\begin_inset Formula $\langle x,y\rangle=0$
-\end_inset
-
-.
- Decimos que
-\begin_inset Formula $x\in H$
-\end_inset
-
- es
-\series bold
-ortogonal
-\series default
- a
-\begin_inset Formula $M\subseteq H$
-\end_inset
-
-,
-\begin_inset Formula $x\bot M$
-\end_inset
-
-, si
-\begin_inset Formula $\forall y\in M,x\bot y$
-\end_inset
-
-, y llamamos
-\begin_inset Formula $M^{\bot}\coloneqq\{x\in H:x\bot M\}$
-\end_inset
-
-.
- Una familia
-\begin_inset Formula $\{x_{i}\}_{i\in I}\subseteq H$
-\end_inset
-
- es
-\series bold
-ortogonal
-\series default
- si
-\begin_inset Formula $\forall i,j\in I,(i\neq j\implies x_{i}\bot x_{j})$
-\end_inset
-
-, y es
-\series bold
-ortonormal
-\series default
- si además
-\begin_inset Formula $\forall i,\Vert x_{i}\Vert=1$
-\end_inset
-
-.
- Entonces:
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Teorema de Pitágoras:
-\series default
- Si
-\begin_inset Formula $x\bot y$
-\end_inset
-
-,
-\begin_inset Formula $\Vert x+y\Vert^{2}=\Vert x\Vert^{2}+\Vert y\Vert^{2}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Si
-\begin_inset Formula $(x_{i})_{i\in I}$
-\end_inset
-
- es una familia ortogonal de elementos no nulos, es una familia linealmente
- independiente.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Si
-\begin_inset Formula $M\subseteq H$
-\end_inset
-
-,
-\begin_inset Formula $M^{\bot}$
-\end_inset
-
- es un subespacio cerrado de
-\begin_inset Formula $H$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Lema de Gram-Schmidt:
-\series default
- Sean
-\begin_inset Formula $H$
-\end_inset
-
- prehilbertiano,
-\begin_inset Formula $\{x_{n}\}_{n}\subseteq H$
-\end_inset
-
- una familia contable linealmente independiente y
-\begin_inset Formula $(u_{n})_{n}$
-\end_inset
-
- e
-\begin_inset Formula $(y_{n})_{n}$
-\end_inset
-
- dadas por
-\begin_inset Formula $u_{n}\coloneqq\frac{y_{n}}{\Vert y_{n}\Vert}$
-\end_inset
-
-,
-\begin_inset Formula $y_{0}\coloneqq x_{0}$
-\end_inset
-
- y para
-\begin_inset Formula $n\geq1$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-y_{n}\coloneqq x_{n}-\sum_{j<n}\langle x_{n},u_{j}\rangle u_{j},
-\]
-
-\end_inset
-
-
-\begin_inset Formula $(u_{n})_{n}$
-\end_inset
-
- es una sucesión ortonormal en
-\begin_inset Formula $H$
-\end_inset
-
- y, para cada
-\begin_inset Formula $n$
-\end_inset
-
-,
-\begin_inset Formula $\text{span}\{u_{1},\dots,u_{n}\}=\text{span}\{x_{1},\dots,x_{n}\}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $M$
-\end_inset
-
- es un subespacio de dimensión finita del espacio prehilbertiano
-\begin_inset Formula $H$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $M$
-\end_inset
-
- tiene una base algebraica formada por vectores ortonormales.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $M$
-\end_inset
-
- es equivalente a
-\begin_inset Formula $\mathbb{K}^{\dim M}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Un
-\series bold
-espacio de Hilbert
-\series default
- es un espacio prehilbertiano completo.
- Dado un espacio de medida
-\begin_inset Formula $(\Omega,\Sigma,\mu)$
-\end_inset
-
-,
-\begin_inset Formula $L^{2}(\Omega,\Sigma,\mu)$
-\end_inset
-
- es un espacio de Hilbert con
-\begin_inset Formula
-\[
-\langle f,g\rangle\coloneqq\int_{\Omega}f\overline{g}\dif\mu,
-\]
-
-\end_inset
-
-y en particular lo son
-\begin_inset Formula $\ell^{2}$
-\end_inset
-
- con
-\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{n}x_{n}\overline{y_{n}}$
-\end_inset
-
- y
-\begin_inset Formula $\ell_{n}^{2}$
-\end_inset
-
- con
-\begin_inset Formula $\langle x,y\rangle\coloneqq\sum_{i}x_{i}\overline{y_{i}}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Son espacios prehilbertianos no completos:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $c_{00}$
-\end_inset
-
- con el producto escalar de
-\begin_inset Formula $\ell^{2}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $C([a,b])$
-\end_inset
-
- con el producto escalar de
-\begin_inset Formula $L^{2}([a,b])$
-\end_inset
-
- con la medida de Lebesgue, y entonces
-\begin_inset Formula $C([a,b])$
-\end_inset
-
- es denso en
-\begin_inset Formula $L^{2}([a,b])$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Section
-Mejor aproximación
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $X$
-\end_inset
-
- es un espacio vectorial,
-\begin_inset Formula $A\subseteq X$
-\end_inset
-
- es
-\series bold
-convexo
-\series default
- si
-\begin_inset Formula $\forall\lambda\in[0,1]$
-\end_inset
-
-,
-\begin_inset Formula $\lambda A+(1-\lambda)A\subseteq A$
-\end_inset
-
-.
- Si
-\begin_inset Formula $X$
-\end_inset
-
- es normado,
-\begin_inset Formula $S\subseteq X$
-\end_inset
-
- no vacío y
-\begin_inset Formula $x\in X$
-\end_inset
-
-, un
-\begin_inset Formula $y\in S$
-\end_inset
-
- es un
-\series bold
-vector de mejor aproximación
-\series default
- de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $S$
-\end_inset
-
- si
-\begin_inset Formula $\Vert x-y\Vert=\min_{z\in S}\Vert x-z\Vert$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de mejor aproximación:
-\series default
- Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio prehilbertiano y
-\begin_inset Formula $C\subseteq H$
-\end_inset
-
- es no vacío, convexo y completo, para cada
-\begin_inset Formula $x\in H$
-\end_inset
-
- existe una mejor aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $C$
-\end_inset
-
-.
-
-\series bold
-Demostración:
-\series default
- Podemos suponer por traslación que
-\begin_inset Formula $x=0$
-\end_inset
-
-, y llamamos
-\begin_inset Formula $\alpha\coloneqq\inf_{z\in C}\Vert z\Vert$
-\end_inset
-
-.
- Para la existencia tomamos una sucesión
-\begin_inset Formula $\{y_{n}\}_{n}\subseteq C$
-\end_inset
-
- con
-\begin_inset Formula $\lim_{n}\Vert y_{n}\Vert=\alpha$
-\end_inset
-
- y probamos que es de Cauchy, pues entonces por completitud existe
-\begin_inset Formula $y\coloneqq\lim_{n}y_{n}\in C$
-\end_inset
-
- y por continuidad de la norma es
-\begin_inset Formula $\Vert y\Vert=\alpha$
-\end_inset
-
-.
- Para
-\begin_inset Formula $\varepsilon>0$
-\end_inset
-
- existe
-\begin_inset Formula $n_{0}$
-\end_inset
-
- tal que si
-\begin_inset Formula $n\geq n_{0}$
-\end_inset
-
- es
-\begin_inset Formula $\Vert y_{n}\Vert^{2}<\alpha^{2}+\varepsilon$
-\end_inset
-
-, y por la ley del paralelogramo es
-\begin_inset Formula
-\[
-\left\Vert \frac{y_{n}-y_{m}}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y_{n}\Vert^{2}+\Vert y_{m}\Vert^{2})-\left\Vert \frac{y_{n}+y_{m}}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\varepsilon+\alpha^{2}+\varepsilon)-\alpha^{2}=\varepsilon,
-\]
-
-\end_inset
-
-pues por convexidad
-\begin_inset Formula $\frac{y_{n}+y_{m}}{2}\in S$
-\end_inset
-
- y por tanto su norma es mayor o igual a
-\begin_inset Formula $\alpha$
-\end_inset
-
-.
- Para la unicidad, si
-\begin_inset Formula $y,z\in C$
-\end_inset
-
- cumplen
-\begin_inset Formula $\Vert y\Vert=\Vert z\Vert=\alpha$
-\end_inset
-
-, por un argumento como el anterior,
-\begin_inset Formula
-\[
-\left\Vert \frac{y-z}{2}\right\Vert ^{2}=\frac{1}{2}(\Vert y\Vert^{2}+\Vert z\Vert^{2})-\left\Vert \frac{y+z}{2}\right\Vert ^{2}\leq\frac{1}{2}(\alpha^{2}+\alpha^{2})-\alpha^{2}=0.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Como
-\series bold
-teorema
-\series default
-, si
-\begin_inset Formula $Y$
-\end_inset
-
- es un subespacio de un espacio prehilbertiano
-\begin_inset Formula $H$
-\end_inset
-
- y
-\begin_inset Formula $x\in H$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $y\in Y$
-\end_inset
-
- es de mejor aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $Y$
-\end_inset
-
- si y sólo si
-\begin_inset Formula $x-y\bot Y$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Enumerate
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\implies]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Para
-\begin_inset Formula $z\in Y$
-\end_inset
-
- y
-\begin_inset Formula $a\in\mathbb{K}$
-\end_inset
-
-, como
-\begin_inset Formula $y-az\in Y$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\Vert x-y\Vert^{2}\leq\Vert x-y+az\Vert^{2}=\Vert x-y\Vert^{2}+2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2},
-\]
-
-\end_inset
-
-luego
-\begin_inset Formula $0\leq2\text{Re}(a\langle z,x-y\rangle)+|a|^{2}\Vert z\Vert^{2}$
-\end_inset
-
- y, haciendo
-\begin_inset Formula $a=t\langle x-y,z\rangle$
-\end_inset
-
- con
-\begin_inset Formula $t\in\mathbb{R}$
-\end_inset
-
-,
-\begin_inset Formula $0\leq2t|\langle x-y,z\rangle|^{2}+t^{2}|\langle x-y,z\rangle|^{2}\Vert z\Vert^{2}$
-\end_inset
-
-.
- Si hubiera
-\begin_inset Formula $z\in Y$
-\end_inset
-
- con
-\begin_inset Formula $\langle x-y,z\rangle\neq0$
-\end_inset
-
-,
-\begin_inset Formula $0\leq2t+t^{2}\Vert z\Vert^{2}$
-\end_inset
-
- para todo
-\begin_inset Formula $t\in\mathbb{R}$
-\end_inset
-
-, pero si
-\begin_inset Formula $\Vert z\Vert^{2}=0$
-\end_inset
-
-, esto es negativo cuando
-\begin_inset Formula $t<0$
-\end_inset
-
-, y si
-\begin_inset Formula $\Vert z\Vert^{2}>0$
-\end_inset
-
-, es negativo al menos cuando
-\begin_inset Formula $t=-\frac{1}{\Vert z\Vert^{2}}\#$
-\end_inset
-
-, luego
-\begin_inset Formula $x-y\bot z$
-\end_inset
-
- y
-\begin_inset Formula $x-y\bot Y$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\impliedby]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Para
-\begin_inset Formula $z\in Y$
-\end_inset
-
-, por el teorema de Pitágoras,
-\begin_inset Formula
-\[
-\Vert x-z\Vert^{2}=\Vert x-y+y-z\Vert^{2}=\Vert x-y\Vert^{2}+\Vert y-z\Vert^{2}\geq\Vert x-y\Vert^{2}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-Si existe una mejor aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $Y$
-\end_inset
-
-, es única.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Sean
-\begin_inset Formula $y,z\in Y$
-\end_inset
-
- de mejor aproximación, como
-\begin_inset Formula $x-y,x-z\in Y^{\bot}$
-\end_inset
-
-, su diferencia
-\begin_inset Formula $y-z\in Y^{\bot}\cap Y$
-\end_inset
-
-, luego
-\begin_inset Formula $\langle y-z,y-z\rangle=0$
-\end_inset
-
- e
-\begin_inset Formula $y=z$
-\end_inset
-
-.
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-Si
-\begin_inset Formula $Y$
-\end_inset
-
- es completo, hay vector de mejor aproximación.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Por el teorema anterior (los subespacios son convexos).
-\end_layout
-
-\end_deeper
-\begin_layout Section
-Determinante de Gram
-\end_layout
-
-\begin_layout Standard
-Sean
-\begin_inset Formula $H$
-\end_inset
-
- prehilbertiano y
-\begin_inset Formula $M\leq H$
-\end_inset
-
- de dimensión finita con base ortonormal
-\begin_inset Formula $(e_{i})_{i}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $x\in H$
-\end_inset
-
- existe un único vector de aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $M$
-\end_inset
-
- dado por
-\begin_inset Formula
-\[
-\sum_{i}\langle x,e_{i}\rangle e_{i}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $d(x,M)^{2}=\Vert x\Vert^{2}-\sum_{i}|\langle x,e_{i}\rangle|^{2}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Llamamos
-\series bold
-determinante de Gram
-\series default
- de
-\begin_inset Formula $(x_{i})_{i=1}^{n}$
-\end_inset
-
- a
-\begin_inset Formula
-\[
-G(x_{1},\dots,G_{n})\coloneqq\det(\langle x_{j},x_{i}\rangle)_{1\leq i\leq n}^{1\leq j\leq n}.
-\]
-
-\end_inset
-
-Como
-\series bold
-teorema
-\series default
-, si
-\begin_inset Formula $H$
-\end_inset
-
- es prehilbertiano,
-\begin_inset Formula $M\leq H$
-\end_inset
-
- de dimensión finita con base
-\begin_inset Formula $(b_{i})_{i}$
-\end_inset
-
- y
-\begin_inset Formula $x\in H$
-\end_inset
-
-, el vector de mejor aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $M$
-\end_inset
-
- es
-\begin_inset Formula
-\[
-\frac{-1}{G(b_{1},\dots,b_{n})}\begin{vmatrix}\langle x_{1},x_{1}\rangle & \langle x_{2},x_{1}\rangle & \cdots & \langle x_{n},x_{1}\rangle & \langle x,x_{1}\rangle\\
-\langle x_{1},x_{2}\rangle & \langle x_{2},x_{2}\rangle & \cdots & \langle x_{n},x_{2}\rangle & \langle x,x_{2}\rangle\\
-\vdots & \vdots & \ddots & \vdots & \vdots\\
-\langle x_{1},x_{n}\rangle & \langle x_{2},x_{n}\rangle & \cdots & \langle x_{n},x_{n}\rangle & \langle x,x_{n}\rangle\\
-x_{1} & x_{2} & \cdots & x_{n} & 0
-\end{vmatrix},
-\]
-
-\end_inset
-
-y
-\begin_inset Formula
-\[
-d(x,M)=\sqrt{\frac{G(x_{1},\dots,x_{n},x)}{G(x_{1},\dots,x_{n})}}.
-\]
-
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Algunas aplicaciones:
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Resolución de sistemas sobre-dimensionados por mínimos cuadrados.
-
-\series default
- Tenemos un fenómeno experimental que se puede modelar como una función
- lineal
-\begin_inset Formula $y(x)=a_{1}x_{1}+\dots+a_{n}x_{n}$
-\end_inset
-
-, pero no conocemos los
-\begin_inset Formula $a_{i}$
-\end_inset
-
-.
- Hacemos
-\begin_inset Formula $m$
-\end_inset
-
- experimentos fijando un
-\begin_inset Formula $x_{i}$
-\end_inset
-
- en cada uno y midiendo
-\begin_inset Formula $y_{i}\coloneqq y(x_{i})$
-\end_inset
-
- para plantear un sistema de
-\begin_inset Formula $m$
-\end_inset
-
- ecuaciones.
- Solo hacen falta
-\begin_inset Formula $n$
-\end_inset
-
- experimentos cuidando que los
-\begin_inset Formula $x_{i}$
-\end_inset
-
- sean linealmente independientes, pero en general conviene hacer más,
-\begin_inset Formula $m>n$
-\end_inset
-
-.
- Como las mediciones son aproximadas, el sistema puede ser incompatible,
- por lo que se eligen los
-\begin_inset Formula $a_{i}\in\mathbb{R}$
-\end_inset
-
- de forma que se minimice
-\begin_inset Formula
-\[
-\sum_{i\in\mathbb{N}_{m}}\left(y_{i}-\sum_{j\in\mathbb{N}_{n}}a_{j}x_{ij}\right)^{2}=\left\Vert y-\sum_{j\in\mathbb{N}_{n}}a_{j}X_{j}\right\Vert ^{2},
-\]
-
-\end_inset
-
-donde
-\begin_inset Formula $X_{j}\coloneqq(x_{1j},\dots,x_{mj})$
-\end_inset
-
-.
- Si
-\begin_inset Formula $X_{1},\dots,X_{n}$
-\end_inset
-
- son linealmente independientes, sea
-\begin_inset Formula $M\coloneqq\text{span}\{X_{1},\dots,X_{n}\}<\mathbb{R}^{m}$
-\end_inset
-
-, buscamos el vector
-\begin_inset Formula $Z\in M$
-\end_inset
-
- de mejor aproximación de
-\begin_inset Formula $y$
-\end_inset
-
- en
-\begin_inset Formula $M$
-\end_inset
-
- que, expresado respecto de la base
-\begin_inset Formula $(X_{1},\dots,X_{n})$
-\end_inset
-
-, nos dará el vector
-\begin_inset Formula $(a_{1},\dots,a_{n})$
-\end_inset
-
- buscado.
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Ajustes polinómicos por mínimos cuadrados.
-
-\series default
- Queremos modelar un fenómeno experimental como una función polinómica
-\begin_inset Formula $f:[a,b]\to\mathbb{R}$
-\end_inset
-
-, y tenemos
-\begin_inset Formula $k$
-\end_inset
-
- observaciones de la forma
-\begin_inset Formula $f(t_{i})=y_{i}$
-\end_inset
-
- con
-\begin_inset Formula $t_{1}<\dots<t_{k}$
-\end_inset
-
-.
- Existe un polinomio de grado máximo
-\begin_inset Formula $k-1$
-\end_inset
-
- que cumple esto, pero muchas veces
-\begin_inset Formula $k$
-\end_inset
-
- es muy grande y esto complica los cálculos y puede llevar al
-\emph on
-\lang english
-overfitting
-\emph default
-\lang spanish
- o fenómeno de Runge.
- Entonces buscamos un polinomio
-\begin_inset Formula $f$
-\end_inset
-
- de grado máximo
-\begin_inset Formula $n$
-\end_inset
-
- bastante menor que
-\begin_inset Formula $k-1$
-\end_inset
-
- que minimice
-\begin_inset Formula
-\[
-\sum_{i\in\mathbb{N}_{k}}|y_{i}-f(t_{i})|^{2}=\left\Vert y-\sum_{j=0}^{n}f_{j}t^{j}\right\Vert ^{2},
-\]
-
-\end_inset
-
-donde
-\begin_inset Formula $t^{j}\coloneqq(t_{1}^{j},\dots,t_{k}^{j})$
-\end_inset
-
-.
- Para ello, como para
-\begin_inset Formula $k\geq2$
-\end_inset
-
- los
-\begin_inset Formula $t^{j}$
-\end_inset
-
- son linealmente independientes, consideramos
-\begin_inset Formula $M\coloneqq\text{span}\{1,t,t^{2},\dots,t^{n}\}<\mathbb{R}^{n+1}$
-\end_inset
-
- y buscamos la mejor aproximación de
-\begin_inset Formula $y$
-\end_inset
-
- a
-\begin_inset Formula $M$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Section
-Teorema de la proyección
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de la proyección:
-\series default
- Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio de Hilbert con un subespacio cerrado
-\begin_inset Formula $M$
-\end_inset
-
- y
-\begin_inset Formula $P_{M}:H\to M$
-\end_inset
-
- la
-\series bold
-proyección ortogonal
-\series default
- de
-\begin_inset Formula $H$
-\end_inset
-
- sobre
-\begin_inset Formula $M$
-\end_inset
-
- que asigna a cada
-\begin_inset Formula $x\in H$
-\end_inset
-
- la mejor aproximación de
-\begin_inset Formula $x$
-\end_inset
-
- a
-\begin_inset Formula $M$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $H$
-\end_inset
-
- es suma directa topológica de
-\begin_inset Formula $M$
-\end_inset
-
- y
-\begin_inset Formula $M^{\bot}$
-\end_inset
-
-,
-\begin_inset Formula $P_{M}$
-\end_inset
-
- es la proyección canónica y, si
-\begin_inset Formula $P_{M^{\bot}}:H\to M^{\bot}$
-\end_inset
-
- es la otra proyección canónica, si
-\begin_inset Formula $M\neq0$
-\end_inset
-
-,
-\begin_inset Formula $\Vert P_{M}\Vert=1$
-\end_inset
-
-, y si
-\begin_inset Formula $M^{\bot}\neq0$
-\end_inset
-
-,
-\begin_inset Formula $\Vert P_{M^{\bot}}\Vert=1$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Por la definición de producto escalar,
-\begin_inset Formula $M^{\bot}\leq H$
-\end_inset
-
-.
- Claramente
-\begin_inset Formula $M\cap M^{\bot}=0$
-\end_inset
-
-, y para
-\begin_inset Formula $x\in M$
-\end_inset
-
-, como
-\begin_inset Formula $y\coloneqq P_{M}(x)$
-\end_inset
-
- cumple
-\begin_inset Formula $x-y\bot M$
-\end_inset
-
-,
-\begin_inset Formula $x=y+z$
-\end_inset
-
- con
-\begin_inset Formula $y\in M$
-\end_inset
-
- y
-\begin_inset Formula $z\coloneqq x-y\in M^{\bot}$
-\end_inset
-
-, luego
-\begin_inset Formula $M+M^{\bot}=H$
-\end_inset
-
- y
-\begin_inset Formula $H$
-\end_inset
-
- es suma directa algebraica de
-\begin_inset Formula $M$
-\end_inset
-
- y
-\begin_inset Formula $M^{\bot}$
-\end_inset
-
-.
-
-\begin_inset Formula $P_{M}$
-\end_inset
-
- es la proyección canónica porque, si
-\begin_inset Formula $y\in M$
-\end_inset
-
- y
-\begin_inset Formula $z\in M^{\bot}$
-\end_inset
-
-,
-\begin_inset Formula $(y+z)-y=z\bot M$
-\end_inset
-
-, y por unicidad de la mejor aproximación,
-\begin_inset Formula $P_{M}(y+z)=y$
-\end_inset
-
-.
-
-\begin_inset Formula $P_{M}$
-\end_inset
-
- y
-\begin_inset Formula $P_{M^{\bot}}$
-\end_inset
-
- son lineales por ser proyecciones canónicas, y para
-\begin_inset Formula $x=y+z\in S_{H}$
-\end_inset
-
- con
-\begin_inset Formula $y\in M$
-\end_inset
-
- y
-\begin_inset Formula $z\in M^{\bot}$
-\end_inset
-
-,
-\begin_inset Formula $\Vert x\Vert^{2}=\Vert y\Vert^{2}+\Vert z\Vert^{2}=\Vert P_{M}(x)\Vert^{2}+\Vert P_{M^{\bot}}(x)\Vert^{2}$
-\end_inset
-
- y
-\begin_inset Formula $\Vert P_{M}(x)\Vert,\Vert P_{M^{\bot}}(x)\Vert\leq\Vert x\Vert=1$
-\end_inset
-
-, lo que prueba la continuidad y por tanto que
-\begin_inset Formula $M$
-\end_inset
-
- es topológica.
- Además, si
-\begin_inset Formula $M\neq0$
-\end_inset
-
-, existe
-\begin_inset Formula $y\in S_{M}$
-\end_inset
-
- y
-\begin_inset Formula $\Vert P_{M}(y)\Vert=\Vert y\Vert=1$
-\end_inset
-
-, luego
-\begin_inset Formula $\Vert P_{M}\Vert=1$
-\end_inset
-
-, y análogamente para
-\begin_inset Formula $M^{\bot}$
-\end_inset
-
-.
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-\begin_inset Formula $P_{M}(H)=M$
-\end_inset
-
-,
-\begin_inset Formula $\ker P_{M}=M^{\bot}$
-\end_inset
-
- y
-\begin_inset Formula $P_{M^{\bot}}=1_{H}-P_{M}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $x,y\in H$
-\end_inset
-
-,
-\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x,P_{M}(y)\rangle$
-\end_inset
-
- y
-\begin_inset Formula $\langle P_{M^{\bot}}(x),y\rangle=\langle x,P_{M^{\bot}}(y)\rangle$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Si
-\begin_inset Formula $x=x_{1}+x_{2}$
-\end_inset
-
- e
-\begin_inset Formula $y=y_{1}+y_{2}$
-\end_inset
-
- con
-\begin_inset Formula $x_{1},y_{1}\in M$
-\end_inset
-
- y
-\begin_inset Formula $x_{2},y_{2}\in M^{\bot}$
-\end_inset
-
-,
-\begin_inset Formula $\langle P_{M}(x),y\rangle=\langle x_{1},y_{1}+y_{2}\rangle=\langle x_{1},y_{1}\rangle=\langle x_{1}+x_{2},y_{1}\rangle=\langle x,P_{M}(y)\rangle$
-\end_inset
-
-, y para
-\begin_inset Formula $P_{M^{\bot}}$
-\end_inset
-
- es análogo.
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-\begin_inset Formula $M^{\bot\bot}=M$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Si
-\begin_inset Formula $x\in M$
-\end_inset
-
-, para
-\begin_inset Formula $y\in M^{\bot}$
-\end_inset
-
-,
-\begin_inset Formula $\langle y,x\rangle=\overline{\langle x,y\rangle}=0$
-\end_inset
-
-, luego
-\begin_inset Formula $x\in M^{\bot\bot}$
-\end_inset
-
-.
- Si
-\begin_inset Formula $x\in M^{\bot\bot}\subseteq H$
-\end_inset
-
-, sean
-\begin_inset Formula $y\in M$
-\end_inset
-
- y
-\begin_inset Formula $z\in M^{\bot}$
-\end_inset
-
- con
-\begin_inset Formula $x=y+z$
-\end_inset
-
-,
-\begin_inset Formula $0=\langle x,z\rangle=\langle y,z\rangle+\langle z,z\rangle=\langle z,z\rangle=\Vert z\Vert^{2}$
-\end_inset
-
-, luego
-\begin_inset Formula $z=0$
-\end_inset
-
- y
-\begin_inset Formula $x\in M$
-\end_inset
-
-.
-\end_layout
-
-\end_deeper
-\begin_layout Standard
-Esto no es cierto si
-\begin_inset Formula $M$
-\end_inset
-
- no es cerrado ni si
-\begin_inset Formula $H$
-\end_inset
-
- no es completo.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Un espacio normado es de Hilbert si y sólo si cada subespacio cerrado tiene
- un complementario topológico.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Un subconjunto
-\begin_inset Formula $S$
-\end_inset
-
- de un espacio normado
-\begin_inset Formula $(X,\Vert\cdot\Vert)$
-\end_inset
-
- es
-\series bold
-total
-\series default
- si
-\begin_inset Formula $\overline{\text{span}S}=X$
-\end_inset
-
-, y si
-\begin_inset Formula $H$
-\end_inset
-
- es de Hilbert esto ocurre si y sólo si
-\begin_inset Formula $S^{\bot}=0$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Section
-Dual de un espacio de Hilbert
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Riesz-Fréchet:
-\series default
- Dados un espacio de Hilbert
-\begin_inset Formula $H$
-\end_inset
-
- y un operador
-\begin_inset Formula $f:H\to\mathbb{K}$
-\end_inset
-
-,
-\begin_inset Formula $f$
-\end_inset
-
- es acotado si y sólo si existe
-\begin_inset Formula $y\in H$
-\end_inset
-
- con
-\begin_inset Formula $f=\langle\cdot,y\rangle$
-\end_inset
-
-, en cuyo caso
-\begin_inset Formula $y$
-\end_inset
-
- es único y
-\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\implies]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Para la unicidad, si
-\begin_inset Formula $f(x)=\langle x,y\rangle=\langle x,z\rangle$
-\end_inset
-
- para todo
-\begin_inset Formula $x\in H$
-\end_inset
-
-,
-\begin_inset Formula $\langle x,y-z\rangle=0$
-\end_inset
-
-, luego
-\begin_inset Formula $y-z\bot H$
-\end_inset
-
- y, como
-\begin_inset Formula $H^{\bot}=0$
-\end_inset
-
-,
-\begin_inset Formula $y=z$
-\end_inset
-
-.
- Para la existencia, si
-\begin_inset Formula $f=0$
-\end_inset
-
- tomamos
-\begin_inset Formula $y=0$
-\end_inset
-
-, y en otro caso,
-\begin_inset Formula $Y\coloneqq\ker f$
-\end_inset
-
- es un subespacio cerrado de
-\begin_inset Formula $H$
-\end_inset
-
- y por tanto
-\begin_inset Formula $H=Y\oplus Y^{\bot}$
-\end_inset
-
-, con
-\begin_inset Formula $\dim Y^{\bot}=\dim\text{Im}f=1$
-\end_inset
-
-.
- Sea entonces
-\begin_inset Formula $z\in Y^{\bot}$
-\end_inset
-
- unitario, la proyección ortogonal de un
-\begin_inset Formula $x\in H$
-\end_inset
-
- sobre
-\begin_inset Formula $Y^{\bot}$
-\end_inset
-
- es
-\begin_inset Formula $\langle x,z\rangle z$
-\end_inset
-
-, luego
-\begin_inset Formula $x-\langle x,z\rangle z\in Y$
-\end_inset
-
- y
-\begin_inset Formula
-\[
-f(x)=f(x-\langle x,z\rangle z+\langle x,z\rangle z)=f(\langle x,z\rangle z)=\langle x,z\rangle f(z)=\langle x,\overline{f(z)}z\rangle\eqqcolon\langle x,y\rangle.
-\]
-
-\end_inset
-
-Para
-\begin_inset Formula $x\in S_{H}$
-\end_inset
-
-, por la desigualdad de Cauchy-Schwartz,
-\begin_inset Formula $\Vert f(x)\Vert^{2}=|\langle x,y\rangle|^{2}\leq\langle x,x\rangle\langle y,y\rangle=\Vert y\Vert^{2}$
-\end_inset
-
-, luego
-\begin_inset Formula $\Vert f\Vert\leq\Vert y\Vert$
-\end_inset
-
-, pero
-\begin_inset Formula $f(\frac{y}{\Vert y\Vert})=\frac{f(y)}{\Vert y\Vert}=\frac{\Vert y\Vert^{2}}{\Vert y\Vert}=\Vert y\Vert$
-\end_inset
-
-, luego
-\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Itemize
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\impliedby]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula $f\coloneqq\langle\cdot,y\rangle$
-\end_inset
-
- es lineal, y es continua por el argumento anterior que prueba que
-\begin_inset Formula $\Vert f\Vert=\Vert y\Vert$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-El teorema no es válido si
-\begin_inset Formula $H$
-\end_inset
-
- no es completo.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Sean
-\begin_inset Formula $H$
-\end_inset
-
- un espacio de Hilbert y
-\begin_inset Formula $T:H^{*}\to H$
-\end_inset
-
- que a cada
-\begin_inset Formula $f$
-\end_inset
-
- le asocia el
-\begin_inset Formula $y$
-\end_inset
-
- con
-\begin_inset Formula $f=\langle\cdot,y\rangle$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $T$
-\end_inset
-
- es biyectiva, isométrica y lineal conjugada.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $H^{*}$
-\end_inset
-
- es un espacio de Hilbert con el producto escalar
-\begin_inset Formula $\langle f,g\rangle^{*}\coloneqq\langle T(g),T(f)\rangle$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $J:H\to H^{**}$
-\end_inset
-
- dada por
-\begin_inset Formula $J(x)(f)\coloneqq f(x)$
-\end_inset
-
- es un isomorfismo algebraico isométrico.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Dado un un
-\begin_inset Formula $\mathbb{K}$
-\end_inset
-
--espacio vectorial
-\begin_inset Formula $X$
-\end_inset
-
-,
-\begin_inset Formula $B:X\times X\to\mathbb{K}$
-\end_inset
-
- es
-\series bold
-bilineal
-\series default
- si las
-\begin_inset Formula $B(\cdot,y)$
-\end_inset
-
- y
-\begin_inset Formula $B(x,\cdot)$
-\end_inset
-
- son lineales,
-\series bold
-sesquilineal
-\series default
- si las
-\begin_inset Formula $B(\cdot,y)$
-\end_inset
-
- son lineales y las
-\begin_inset Formula $B(x,\cdot)$
-\end_inset
-
- son lineales conjugadas,
-\series bold
-simétrica
-\series default
- si
-\begin_inset Formula $B(x,y)\equiv B(y,x)$
-\end_inset
-
- y
-\series bold
-positiva
-\series default
- si
-\begin_inset Formula $\forall x\in X,B(x,x)\geq0$
-\end_inset
-
-.
- Si además
-\begin_inset Formula $X$
-\end_inset
-
- es normado,
-\begin_inset Formula $B$
-\end_inset
-
- es
-\series bold
-acotada
-\series default
- si
-\begin_inset Formula $\exists M>0:\forall x,y\in X,|B(x,y)|\leq M\Vert x\Vert\Vert y\Vert$
-\end_inset
-
-, y es
-\series bold
-fuertemente positiva
-\series default
- si
-\begin_inset Formula $\exists c>0:\forall x\in X,B(x,x)\geq c\Vert x\Vert^{2}$
-\end_inset
-
-.
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $B$
-\end_inset
-
- es bilineal o sesquilineal, es acotada si y sólo si es continua, y para
- todo
-\begin_inset Formula $x$
-\end_inset
-
- e
-\begin_inset Formula $y$
-\end_inset
-
- es
-\begin_inset Formula $2B(x,x)+2B(y,y)=B(x+y,x+y)+B(x-y,x-y)$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Lax-Milgram:
-\series default
- Sean
-\begin_inset Formula $H$
-\end_inset
-
- un espacio de Hilbert y
-\begin_inset Formula $B$
-\end_inset
-
- una
-\begin_inset Formula $H$
-\end_inset
-
--forma sesquilineal acotada y fuertemente positiva, existe un único isomorfismo
- de espacios de Hilbert
-\begin_inset Formula $T:H\to H$
-\end_inset
-
- tal que
-\begin_inset Formula $\forall x,y\in H,B(x,y)=\langle x,T(y)\rangle$
-\end_inset
-
-.
-
-\series bold
-Demostración:
-\series default
- Sea
-\begin_inset Formula
-\[
-Y\coloneqq\{y\in H\mid\exists z\in H:\langle\cdot,y\rangle=B(\cdot,z)\},
-\]
-
-\end_inset
-
-
-\begin_inset Formula $0\in Y$
-\end_inset
-
- tomando
-\begin_inset Formula $z=0$
-\end_inset
-
- y
-\begin_inset Formula $z$
-\end_inset
-
- está unívocamente determinado por
-\begin_inset Formula $y$
-\end_inset
-
-, ya que si
-\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)=B(\cdot,z')$
-\end_inset
-
- entonces
-\begin_inset Formula $B(\cdot,z-z')=0$
-\end_inset
-
- y en particular
-\begin_inset Formula $0=B(z-z',z-z')\geq c\Vert z-z'\Vert^{2}$
-\end_inset
-
- para cierto
-\begin_inset Formula $c>0$
-\end_inset
-
- por ser
-\begin_inset Formula $B$
-\end_inset
-
- fuertemente positiva, luego
-\begin_inset Formula $z=z'$
-\end_inset
-
-.
- Como
-\begin_inset Formula $\langle\cdot,\cdot\rangle$
-\end_inset
-
- y
-\begin_inset Formula $B$
-\end_inset
-
- son sesquilineales,
-\begin_inset Formula $Y$
-\end_inset
-
- es un espacio vectorial y
-\begin_inset Formula $S:Y\to H$
-\end_inset
-
- que a cada
-\begin_inset Formula $y$
-\end_inset
-
- le asocia el
-\begin_inset Formula $z$
-\end_inset
-
- con
-\begin_inset Formula $\langle\cdot,y\rangle=B(\cdot,z)$
-\end_inset
-
- es lineal.
- Entonces, para
-\begin_inset Formula $y\in S_{Y}$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-c\Vert S(y)\Vert^{2}\leq B(S(y),S(y))=\langle S(y),y\rangle\in\mathbb{R}^{+},
-\]
-
-\end_inset
-
-pero por la desigualdad de Cauchy-Schwartz,
-\begin_inset Formula $\langle S(y),y\rangle^{2}=|\langle S(y),y\rangle|^{2}\leq\Vert S(y)\Vert^{2}\Vert y\Vert^{2}$
-\end_inset
-
-, luego
-\begin_inset Formula $c\Vert S(y)\Vert^{2}\leq\langle S(y),y\rangle\leq\Vert S(y)\Vert\Vert y\Vert=\Vert S(y)\Vert$
-\end_inset
-
- y
-\begin_inset Formula $\Vert S(y)\Vert\leq\frac{1}{c}$
-\end_inset
-
-, con lo que
-\begin_inset Formula $S$
-\end_inset
-
- es continua.
- Entonces, si
-\begin_inset Formula $\{y_{n}\}_{n}\subseteq Y$
-\end_inset
-
- y existe
-\begin_inset Formula $\lim_{n}y_{n}\eqqcolon y\in H$
-\end_inset
-
-, por continuidad de
-\begin_inset Formula $S$
-\end_inset
-
- y de
-\begin_inset Formula $B$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\langle x,y\rangle=\lim_{n}\langle x,y_{n}\rangle=\lim_{n}B(x,S(y_{n}))=B(x,S(y)),
-\]
-
-\end_inset
-
-luego
-\begin_inset Formula $y\in Y$
-\end_inset
-
- e
-\begin_inset Formula $Y$
-\end_inset
-
- es cerrado.
- Entonces, si
-\begin_inset Formula $z\in Y^{\bot}$
-\end_inset
-
-, como
-\begin_inset Formula $B(\cdot,z):H\to\mathbb{K}$
-\end_inset
-
- es continua, por el teorema de Riesz-Fréchet existe
-\begin_inset Formula $w\in H$
-\end_inset
-
- con
-\begin_inset Formula $B(\cdot,z)=\langle\cdot,w\rangle$
-\end_inset
-
-, luego
-\begin_inset Formula $w\in Y$
-\end_inset
-
-, pero entonces
-\begin_inset Formula $B(z,z)=\langle z,w\rangle=0$
-\end_inset
-
- y, por ser
-\begin_inset Formula $B$
-\end_inset
-
- fuertemente positiva,
-\begin_inset Formula $z=0$
-\end_inset
-
-, luego
-\begin_inset Formula $Y^{\bot}=0$
-\end_inset
-
- e
-\begin_inset Formula $Y=H$
-\end_inset
-
-.
- Para
-\begin_inset Formula $z\in H$
-\end_inset
-
-, como
-\begin_inset Formula $B(\cdot,z)$
-\end_inset
-
- es continua, existe
-\begin_inset Formula $w\in H$
-\end_inset
-
- con
-\begin_inset Formula $B(\cdot z)=\langle\cdot,w\rangle$
-\end_inset
-
- y por tanto
-\begin_inset Formula $z=S(w)$
-\end_inset
-
-, luego
-\begin_inset Formula $S$
-\end_inset
-
- es suprayectiva.
- Si
-\begin_inset Formula $S(y)=0$
-\end_inset
-
-, para
-\begin_inset Formula $x\in H$
-\end_inset
-
-,
-\begin_inset Formula $\langle x,y\rangle=B(x,S(y))=0$
-\end_inset
-
- y por tanto
-\begin_inset Formula $y=0$
-\end_inset
-
-, luego
-\begin_inset Formula $S$
-\end_inset
-
- es inyectiva.
- Por tanto
-\begin_inset Formula $S$
-\end_inset
-
- es biyectiva y
-\begin_inset Formula $T\coloneqq S^{-1}$
-\end_inset
-
- cumple
-\begin_inset Formula $\langle x,T(y)\rangle=B(x,y)$
-\end_inset
-
-.
- Además, para
-\begin_inset Formula $y\in S_{H}$
-\end_inset
-
-,
-\begin_inset Formula $\Vert T(y)\Vert^{2}=\langle T(y),T(y)\rangle=B(T(y),y)\leq M\Vert T(y)\Vert\Vert y\Vert=M\Vert T(y)\Vert$
-\end_inset
-
-, siendo
-\begin_inset Formula $M$
-\end_inset
-
- una cota de
-\begin_inset Formula $B$
-\end_inset
-
-, de donde
-\begin_inset Formula $\Vert T\Vert\leq M$
-\end_inset
-
- y, como
-\begin_inset Formula $\Vert T^{-1}\Vert=\Vert S\Vert\leq\frac{1}{c}$
-\end_inset
-
-,
-\begin_inset Formula $T$
-\end_inset
-
- es un isomorfismo topológico isométrico.
-\end_layout
-
-\begin_layout Standard
-En particular, dado un espacio vectorial
-\begin_inset Formula $H$
-\end_inset
-
- con dos productos escalares
-\begin_inset Formula $\langle\cdot,\cdot\rangle_{1}$
-\end_inset
-
- y
-\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$
-\end_inset
-
- equivalentes que hacen a
-\begin_inset Formula $H$
-\end_inset
-
- completo, existe un isomorfismo
-\begin_inset Formula $T:H\to H$
-\end_inset
-
- de espacios de Hilbert con
-\begin_inset Formula $\langle x,y\rangle_{1}=\langle x,T(y)\rangle_{2}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Dado un espacio medible
-\begin_inset Formula $(\Omega,\Sigma)$
-\end_inset
-
- con medidas
-\begin_inset Formula $\mu$
-\end_inset
-
- y
-\begin_inset Formula $\nu$
-\end_inset
-
-,
-\begin_inset Formula $\nu$
-\end_inset
-
- es
-\series bold
-absolutamente continua
-\series default
- respecto de
-\begin_inset Formula $\mu$
-\end_inset
-
- si
-\begin_inset Formula $\forall A\in\Sigma,(\mu(A)=0\implies\nu(A)=0)$
-\end_inset
-
-, y es
-\series bold
-finita
-\series default
- si
-\begin_inset Formula $\nu(\Omega)<\infty$
-\end_inset
-
-.
-
-\series bold
-Teorema de Radon-Nicodym:
-\series default
- Si
-\begin_inset Formula $(\Omega,\Sigma)$
-\end_inset
-
- es un espacio medible con medidas finitas
-\begin_inset Formula $\mu$
-\end_inset
-
- y
-\begin_inset Formula $\nu$
-\end_inset
-
- siendo
-\begin_inset Formula $\nu$
-\end_inset
-
- absolutamente continua respecto de
-\begin_inset Formula $\mu$
-\end_inset
-
-, existe
-\begin_inset Formula $g:\Omega\to[0,+\infty]$
-\end_inset
-
-
-\begin_inset Formula $\mu$
-\end_inset
-
--integrable tal que
-\begin_inset Formula
-\[
-\forall A\in\Sigma,\nu(A)=\int_{A}g\dif\mu.
-\]
-
-\end_inset
-
-
-\series bold
-Demostración:
-\series default
-
-\begin_inset Formula $\sigma\coloneqq\mu+\nu$
-\end_inset
-
- es una medida finita en
-\begin_inset Formula $X$
-\end_inset
-
- tal que
-\begin_inset Formula $\forall A\in\Sigma,(\sigma(A)=0\iff\mu(A)=0)$
-\end_inset
-
-, y la función lineal entre espacios de Hilbert
-\begin_inset Formula $T:L^{2}(\Omega,\Sigma,\sigma)\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-Tu\coloneqq\int_{\Omega}u\dif\mu
-\]
-
-\end_inset
-
-está bien definida y es continua porque, si
-\begin_inset Formula $\Vert u\Vert_{L^{2}(\Omega,\Sigma,\sigma)}=1$
-\end_inset
-
-,
-\begin_inset Formula
-\begin{align*}
-|Tu| & =\left|\int_{\Omega}u\dif\mu\right|\leq\int_{\Omega}|u|\dif\mu\leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu}+\sqrt{\int_{\Omega}\dif\mu}\leq\\
- & \leq\sqrt{\int_{\Omega}|u|^{2}\dif\mu+\int_{\Omega}|u|^{2}\dif\nu}+\sqrt{\int_{\Omega}\dif\mu+\int_{\Omega}\dif\nu}=1+\sqrt{\sigma(X)}.
-\end{align*}
-
-\end_inset
-
-Por el teorema de representación de Riesz, existe
-\begin_inset Formula $f\in L^{2}(\Omega,\Sigma,\sigma)$
-\end_inset
-
- tal que, para
-\begin_inset Formula $u\in L^{2}(\Omega,\Sigma,\sigma)$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-Tu=\int_{\Omega}u\dif\mu=\int_{\Omega}uf\dif\sigma,
-\]
-
-\end_inset
-
-pero esta igualdad se da para cuando
-\begin_inset Formula $u=\chi_{A}$
-\end_inset
-
- para cualquier
-\begin_inset Formula $A\in{\cal F}$
-\end_inset
-
- y por linealidad para cualquier función
-\begin_inset Formula $\Sigma$
-\end_inset
-
--medible simple, y por el teorema de convergencia dominada también se da
- para cualquier función
-\begin_inset Formula $\Sigma$
-\end_inset
-
--medible no negativa en casi todo punto.
- Además, para
-\begin_inset Formula $A\in\Sigma$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\mu(A)=\int_{\Omega}\chi_{A}f\dif\sigma=\int_{A}f\dif\sigma,
-\]
-
-\end_inset
-
-de modo que
-\begin_inset Formula $f$
-\end_inset
-
- es
-\begin_inset Formula $\Sigma$
-\end_inset
-
--medible y, haciendo
-\begin_inset Formula $A=\{x\mid f(x)\leq0\}$
-\end_inset
-
- o
-\begin_inset Formula $A=\{x\mid f(x)>1\}$
-\end_inset
-
-, vemos que
-\begin_inset Formula $f(\omega)\in(0,1]$
-\end_inset
-
- para casi todo
-\begin_inset Formula $\omega\in\Omega$
-\end_inset
-
-, de modo que
-\begin_inset Formula $\frac{1}{g}$
-\end_inset
-
- es
-\begin_inset Formula $\Sigma$
-\end_inset
-
--medible no negativa en casi todo punto y, en casi todo punto,
-\begin_inset Formula $\frac{1}{f}f=1$
-\end_inset
-
-, con lo que para
-\begin_inset Formula $A\in\Sigma$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\int_{A}\frac{1}{f}\dif\mu=\int_{A}\dif\sigma\implies\nu(A)=\sigma(A)-\mu(A)=\int_{A}\left(\frac{1}{f}-1\right)\dif\mu\eqqcolon\int_{A}g\dif\mu.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Section
-Problemas variacionales cuadráticos
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema principal de los problemas variacionales cuadráticos:
-\series default
- Sean
-\begin_inset Formula $H$
-\end_inset
-
- un
-\begin_inset Formula $\mathbb{R}$
-\end_inset
-
--espacio de Hilbert,
-\begin_inset Formula $B$
-\end_inset
-
- una
-\begin_inset Formula $H$
-\end_inset
-
--forma bilineal simétrica, acotada y fuertemente positiva,
-\begin_inset Formula $b$
-\end_inset
-
- una
-\begin_inset Formula $H$
-\end_inset
-
--forma lineal continua y
-\begin_inset Formula $F:H\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-F(x)\coloneqq\frac{1}{2}B(x,x)-b(x),
-\]
-
-\end_inset
-
-entonces:
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $w\in H$
-\end_inset
-
-,
-\begin_inset Formula $F$
-\end_inset
-
- alcanza su mínimo en
-\begin_inset Formula $w$
-\end_inset
-
- si y sólo si
-\begin_inset Formula $\forall y\in H,B(w,y)=b(y)$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Enumerate
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\implies]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Fijado
-\begin_inset Formula $y\in H$
-\end_inset
-
-, para
-\begin_inset Formula $t\in\mathbb{R}$
-\end_inset
-
-
-\begin_inset Formula
-\begin{align*}
-F(w+ty) & =\frac{1}{2}B(w+ty,w+ty)-b(w+ty)=\\
- & =\frac{1}{2}(B(w,w)+2tB(w,y)+t^{2}B(y,y))-b(w)-tb(y)=\\
- & =F(w)+t(B(w,y)-b(y))+\frac{1}{2}t^{2}B(y,y),
-\end{align*}
-
-\end_inset
-
-pero por hipótesis
-\begin_inset Formula $F(w)\leq F(w+ty)$
-\end_inset
-
- para todo
-\begin_inset Formula $t\in\mathbb{R}$
-\end_inset
-
-, luego
-\begin_inset Formula $\varphi:\mathbb{R}\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula $\varphi(t)\coloneqq F(w+ty)$
-\end_inset
-
- tiene un mínimo en
-\begin_inset Formula $t=0$
-\end_inset
-
- y
-\begin_inset Formula $0=\varphi'(0)=B(w,y)-b(y)$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Argument item:1
-status open
-
-\begin_layout Plain Layout
-\begin_inset Formula $\impliedby]$
-\end_inset
-
-
-\end_layout
-
-\end_inset
-
-Para
-\begin_inset Formula $y\in H$
-\end_inset
-
- y
-\begin_inset Formula $t\in\mathbb{R}$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-F(w+ty)=F(w)+\cancel{t(B(w,y)-b(y))}^{=0}+\frac{1}{2}t^{2}B(y,y)\geq F(w).
-\]
-
-\end_inset
-
-
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-Existe un único
-\begin_inset Formula $w\in H$
-\end_inset
-
- en el que
-\begin_inset Formula $F$
-\end_inset
-
- alcanza su mínimo.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Como
-\begin_inset Formula $B$
-\end_inset
-
- es bilineal, simétrica y fuertemente positiva, es un producto escalar sobre
-
-\begin_inset Formula $H$
-\end_inset
-
-, y como existen
-\begin_inset Formula $c,M>0$
-\end_inset
-
- con
-\begin_inset Formula $c\Vert x\Vert^{2}\leq B(x,x)\leq M\Vert x\Vert^{2}$
-\end_inset
-
-, el producto escalar
-\begin_inset Formula $B$
-\end_inset
-
- es equivalente al de
-\begin_inset Formula $H$
-\end_inset
-
-, luego
-\begin_inset Formula $b$
-\end_inset
-
- es continua con el producto escalar
-\begin_inset Formula $B$
-\end_inset
-
- y por el teorema de Riesz-Fréchet existe un único
-\begin_inset Formula $w\in H$
-\end_inset
-
- con
-\begin_inset Formula $b=B(\cdot,w)=B(w,\cdot)$
-\end_inset
-
-, que es la condición del primer apartado.
-\end_layout
-
-\end_deeper
-\begin_layout Section
-Convolución y aproximación de funciones
-\end_layout
-
-\begin_layout Standard
-Dado un abierto
-\begin_inset Formula $\Omega\subseteq\mathbb{R}^{n}$
-\end_inset
-
-,
-\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$
-\end_inset
-
- es
-\series bold
-localmente integrable
-\series default
- si
-\begin_inset Formula $|f|$
-\end_inset
-
- es integrable en todo compacto
-\begin_inset Formula $K\subseteq\Omega$
-\end_inset
-
-.
- Dadas dos funciones localmente integrables
-\begin_inset Formula $f,g:\mathbb{R}^{n}\to\mathbb{R}$
-\end_inset
-
-, definimos su
-\series bold
-producto de convolución
-\series default
- como
-\begin_inset Formula $(f*g):D\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-(f*g)(a)\coloneqq\int_{\mathbb{R}^{n}}f(x)g(a-x)\dif x,
-\]
-
-\end_inset
-
-donde
-\begin_inset Formula $D\coloneqq\{a\in\mathbb{R}^{n}\mid x\mapsto f(x)g(a-x)\text{ integrable}\}$
-\end_inset
-
-.
- Si
-\begin_inset Formula $f,g\in L^{2}(\mathbb{R}^{n})$
-\end_inset
-
-,
-\begin_inset Formula $f*g$
-\end_inset
-
- está definida en todo
-\begin_inset Formula $\mathbb{R}^{n}$
-\end_inset
-
- y es continua y uniformemente acotada con
-\begin_inset Formula
-\[
-\Vert f*g\Vert_{\infty}\leq\Vert f\Vert_{2}\Vert g\Vert_{2}.
-\]
-
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-El producto de convolución es conmutativo, y si
-\begin_inset Formula $f*g$
-\end_inset
-
- está definida en casi todo punto,
-\begin_inset Formula $\text{sop}(f*g)\subseteq\overline{\text{sop}(f)+\text{sop}(g)}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Una
-\series bold
-sucesión de Dirac
-\series default
- es una sucesión
-\begin_inset Formula $(K_{m}:\mathbb{R}^{n}\to\mathbb{R}^{\geq0})_{m}$
-\end_inset
-
- de funciones continuas con
-\begin_inset Formula
-\[
-\int_{\mathbb{R}^{n}}K_{n}=1
-\]
-
-\end_inset
-
-y tal que
-\begin_inset Formula
-\[
-\forall\varepsilon,\delta>0,\exists n_{0}:\forall n\geq n_{0},\int_{\mathbb{R}^{n}\setminus B(0,\delta)}K_{n}(x)\dif x<\varepsilon.
-\]
-
-\end_inset
-
-Por ejemplo, si
-\begin_inset Formula $K:\mathbb{R}^{n}\to\mathbb{R}$
-\end_inset
-
- es continua, no negativa, con soporte compacto e integral 1, entonces
-\begin_inset Formula $(x\mapsto m^{n}K(mx))_{m\geq1}$
-\end_inset
-
- es una sucesión de Dirac.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Las sucesiones de Dirac aproximan la
-\series bold
-delta de Dirac
-\series default
-, una
-\begin_inset Quotes cld
-\end_inset
-
-función extendida
-\begin_inset Quotes crd
-\end_inset
-
- con integral 1 que vale 0 en todo punto salvo en el origen en que el valor
- es infinito.
-\end_layout
-
-\begin_layout Standard
-Como
-\series bold
-teorema
-\series default
-, si
-\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$
-\end_inset
-
- es continua y acotada, la sucesión
-\begin_inset Formula $(f*K_{m})_{m}$
-\end_inset
-
- tiende uniformemente a
-\begin_inset Formula $f$
-\end_inset
-
- sobre subconjuntos compactos de
-\begin_inset Formula $\mathbb{R}^{n}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $f:\mathbb{R}^{n}\to\mathbb{R}$
-\end_inset
-
- es localmente integrable y
-\begin_inset Formula $g\in{\cal D}^{k}(\mathbb{R}^{n})$
-\end_inset
-
-,
-\begin_inset Formula $f*g\in{\cal C}^{k}(\mathbb{R}^{n})$
-\end_inset
-
- y para
-\begin_inset Formula $\alpha\in\mathbb{N}^{n}$
-\end_inset
-
- con
-\begin_inset Formula $\sum_{i}\alpha_{i}\leq k$
-\end_inset
-
- es
-\begin_inset Formula
-\[
-\frac{\partial^{|\alpha|}(f*g)}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}=f*\left(\frac{\partial^{|\alpha|}g}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}}\right),
-\]
-
-\end_inset
-
-con lo que
-\begin_inset Formula $f*g$
-\end_inset
-
- es una regularización de
-\begin_inset Formula $f$
-\end_inset
-
- a través de una función suave
-\begin_inset Formula $g$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Como
-\series bold
-teorema
-\series default
-, dado un abierto
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
-,
-\begin_inset Formula ${\cal D}(G)$
-\end_inset
-
- es denso en
-\begin_inset Formula $(C_{c}(G),\Vert\cdot\Vert_{\infty})$
-\end_inset
-
- y en
-\begin_inset Formula $L^{p}(G)$
-\end_inset
-
- para todo
-\begin_inset Formula $p\in[1,\infty)$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Para
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- abierto y
-\begin_inset Formula $f\in L^{2}(G)$
-\end_inset
-
-, si para todo
-\begin_inset Formula $\psi\in{\cal D}(G)$
-\end_inset
-
- es
-\begin_inset Formula
-\[
-\int_{G}f\psi=0
-\]
-
-\end_inset
-
-entonces
-\begin_inset Formula $f=0$
-\end_inset
-
- en casi todo punto, y en particular, si
-\begin_inset Formula $f$
-\end_inset
-
- es continua,
-\begin_inset Formula $f=0$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Section
-Principio de Dirichlet
-\end_layout
-
-\begin_layout Standard
-Dado un abierto
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
-,
-\begin_inset Formula $u\in{\cal D}^{2}(G)$
-\end_inset
-
- es
-\series bold
-armónica
-\series default
- en
-\begin_inset Formula $G$
-\end_inset
-
- si
-\begin_inset Formula $\triangle u\coloneqq\nabla^{2}u=0$
-\end_inset
-
- en todo punto de
-\begin_inset Formula $G$
-\end_inset
-
-.
- Dada
-\begin_inset Formula $g\in{\cal C}(S_{\mathbb{C}})$
-\end_inset
-
-, el
-\series bold
-problema de Dirichlet
-\series default
- consiste en encontrar
-\begin_inset Formula $u\in{\cal D}^{2}(\overline{B_{X}})$
-\end_inset
-
- armónica con
-\begin_inset Formula $u|_{S_{\mathbb{C}}}=g$
-\end_inset
-
-.
- Para un abierto
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
-, llamamos
-\begin_inset Formula ${\cal C}^{m}(\overline{G})$
-\end_inset
-
- al conjunto de funciones
-\begin_inset Formula $u:\overline{G}\to\mathbb{R}$
-\end_inset
-
- con
-\begin_inset Formula $u|_{G}\in{\cal C}^{m}(G)$
-\end_inset
-
- para las que las derivadas parciales de orden
-\begin_inset Formula $m$
-\end_inset
-
- de
-\begin_inset Formula $u$
-\end_inset
-
- en
-\begin_inset Formula $G$
-\end_inset
-
- admiten prolongación continua a
-\begin_inset Formula $\overline{G}$
-\end_inset
-
-.
- Escribimos
-\begin_inset Formula $\partial_{j}u\coloneqq\frac{\partial u}{\partial j}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-begin{samepage}
-\end_layout
-
-\end_inset
-
-Dados un abierto
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- acotado y no vacío,
-\begin_inset Formula $f:G\to\mathbb{R}$
-\end_inset
-
- y
-\begin_inset Formula $g:\partial G\to\mathbb{R}$
-\end_inset
-
-, el
-\series bold
-problema de valores frontera para la ecuación de Poisson
-\series default
- consiste en encontrar
-\begin_inset Formula $u:\overline{G}\to\mathbb{R}$
-\end_inset
-
- tal que
-\begin_inset Formula $-\triangle u|_{G}=f$
-\end_inset
-
- y
-\begin_inset Formula $u|_{\partial G}=g$
-\end_inset
-
-, y el
-\series bold
-problema generalizado de valores frontera
-\series default
- consiste en encontrar
-\begin_inset Formula $u:\overline{G}\to\mathbb{R}$
-\end_inset
-
- con
-\begin_inset Formula $u|_{\partial G}=g$
-\end_inset
-
- y
-\begin_inset Formula
-\[
-\forall v\in{\cal D}(G),\int_{G}\sum_{j=1}^{n}\frac{\partial u}{\partial x_{j}}\frac{\partial v}{\partial x_{j}}\dif x\int_{G}fv.
-\]
-
-\end_inset
-
-
-\begin_inset ERT
-status open
-
-\begin_layout Plain Layout
-
-
-\backslash
-end{samepage}
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es un abierto acotado no vacío,
-\begin_inset Formula $f\in{\cal C}(\overline{G})$
-\end_inset
-
- y
-\begin_inset Formula $g\in{\cal C}(\partial G)$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-Una
-\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$
-\end_inset
-
- es solución del problema de valores frontera para la ecuación de Poisson
- y sólo si lo es del problema generalizado de valores frontera.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Si
-\begin_inset Formula $w\in{\cal C}^{2}(\overline{G})$
-\end_inset
-
- es solución del problema variacional consistente en encontrar el mínimo
- de
-\begin_inset Formula $F:\{u\in{\cal C}^{2}(\overline{G})\mid u|_{\partial G}=g\}\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u(x))^{2}\dif x-\int_{G}fu,
-\]
-
-\end_inset
-
-entonces es solución de los dos problemas anteriores.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-El
-\series bold
-teorema de integración por partes en varias variables
-\series default
- afirma que, si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es un abierto,
-\begin_inset Formula $u\in{\cal C}^{1}(G)$
-\end_inset
-
- y
-\begin_inset Formula $v\in{\cal D}(G)$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\int_{G}u\partial_{j}v=-\int_{G}(\partial_{j}u)v.
-\]
-
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $G$
-\end_inset
-
- es un abierto de
-\begin_inset Formula $\mathbb{R}^{n}$
-\end_inset
-
- y
-\begin_inset Formula $u,w\in L^{2}(G)$
-\end_inset
-
-,
-\begin_inset Formula $w$
-\end_inset
-
- es la
-\series bold
-derivada generalizada
-\begin_inset Formula $j$
-\end_inset
-
--ésima
-\series default
- de
-\begin_inset Formula $u$
-\end_inset
-
-,
-\begin_inset Formula $w=\partial_{j}u$
-\end_inset
-
-, si
-\begin_inset Formula
-\[
-\forall v\in{\cal D}(G),\int_{G}u\partial_{j}v=-\int_{G}wv,
-\]
-
-\end_inset
-
-y para
-\begin_inset Formula $\alpha\in\mathbb{N}^{n}$
-\end_inset
-
- llamamos
-\begin_inset Formula $D^{\alpha}u\coloneqq\partial_{1}^{\alpha_{1}}\cdots\partial_{n}^{\alpha_{n}}u$
-\end_inset
-
-.
-
-\end_layout
-
-\begin_layout Standard
-Para
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- abierto,
-\begin_inset Formula $k\in\mathbb{N}$
-\end_inset
-
- y
-\begin_inset Formula $p\in[1,\infty)$
-\end_inset
-
-, llamamos
-\series bold
-espacio de Sobolev
-\series default
- a
-\begin_inset Formula
-\[
-W^{k,p}(G)\coloneqq\{u\in L^{p}(G)\mid\forall\alpha\in\mathbb{N}^{n},(|\alpha|\leq k\implies\exists D^{\alpha}f\in L^{p}(G))\}.
-\]
-
-\end_inset
-
-Escribimos
-\begin_inset Formula $W^{k}(G)\coloneqq W^{k,2}(G)$
-\end_inset
-
-, y generalmente consideramos el espacio de Sobolev
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es abierto, definimos la relación de equivalencia en
-\begin_inset Formula $G\to\mathbb{R}$
-\end_inset
-
- como
-\begin_inset Formula $f\sim g\iff\{x\in G\mid f(x)\neq g(x)\}\text{ es de medida nula}$
-\end_inset
-
-, y
-\begin_inset Formula $\langle\cdot,\cdot\rangle_{1,2}:W^{1}(G)/\sim\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-\langle\overline{u},\overline{v}\rangle_{1,2}\coloneqq\int_{G}\left(uv+\sum_{j}(\partial_{j}u)(\partial_{j}v)\right)
-\]
-
-\end_inset
-
-es un producto escalar en
-\begin_inset Formula $W^{1}(G)/\sim$
-\end_inset
-
- que lo convierte en un espacio de Hilbert.
- Identificamos
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
- con
-\begin_inset Formula $W^{1}(G)/\sim$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Llamamos
-\begin_inset Formula $H_{0}^{1}(G)$
-\end_inset
-
- al espacio de Hilbert obtenido como la clausura de
-\begin_inset Formula ${\cal D}(G)$
-\end_inset
-
- en
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
-, que en general es un subespacio propio de
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
- pero es igual a
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
- si
-\begin_inset Formula $G=\mathbb{R}^{n}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es un abierto acotado no vacío y
-\begin_inset Formula $u\in W^{1}(G)$
-\end_inset
-
-,
-\series bold
-
-\begin_inset Formula $u$
-\end_inset
-
- se anula en la frontera de
-\begin_inset Formula $G$
-\end_inset
-
- en sentido generalizado
-\series default
-,
-\begin_inset Formula $u=0$
-\end_inset
-
- en
-\begin_inset Formula $\partial G$
-\end_inset
-
-, si
-\begin_inset Formula $u\in H_{0}^{1}(G)$
-\end_inset
-
-, y para
-\begin_inset Formula $f,g\in W^{1}(G)$
-\end_inset
-
-,
-\series bold
-
-\begin_inset Formula $f=g$
-\end_inset
-
- en
-\begin_inset Formula $\partial G$
-\end_inset
-
- en sentido generalizado
-\series default
- si
-\begin_inset Formula $f-g\in H_{0}^{1}(G)$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Desigualdad de Poincaré-Friedrichs:
-\series default
- Si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es un abierto acotado no vacío, existe
-\begin_inset Formula $C>0$
-\end_inset
-
- tal que para
-\begin_inset Formula $u\in H_{0}^{1}(G)$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-C\int_{G}u^{2}\leq\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}.
-\]
-
-\end_inset
-
-
-\series bold
-Demostración:
-\series default
- Sean
-\begin_inset Formula $R\coloneqq\prod_{i}[a_{i},b_{i}]$
-\end_inset
-
- con
-\begin_inset Formula $G\subseteq R$
-\end_inset
-
- y
-\begin_inset Formula $u\in{\cal D}(G)$
-\end_inset
-
-, y vemos
-\begin_inset Formula $u$
-\end_inset
-
- como una función en
-\begin_inset Formula $R$
-\end_inset
-
- que se anula fuera de
-\begin_inset Formula $G$
-\end_inset
-
- y con valor indefinido en
-\begin_inset Formula $\partial G$
-\end_inset
-
-, para
-\begin_inset Formula $x\in R$
-\end_inset
-
-, por la desigualdad de Cauchy-Schwartz,
-\begin_inset Formula
-\begin{align*}
-(u(x))^{2} & =\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)\dif t\right)^{2}\leq\left(\int_{a_{n}}^{x_{n}}\dif t\right)\left(\int_{a_{n}}^{x_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\right)\leq\\
- & \leq(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t,
-\end{align*}
-
-\end_inset
-
-luego
-\begin_inset Formula
-\begin{align*}
-\int_{G}u^{2} & =\int_{R}u^{2}\leq\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}(b_{n}-a_{n})\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n}\cdots\dif x_{1}=\\
- & =(b_{n}-a_{n})^{2}\int_{a_{1}}^{b_{1}}\cdots\int_{a_{n}}^{b_{n}}\partial_{n}u(x_{1},\dots,x_{n-1},t)^{2}\dif t\dif x_{n-1}\cdots\dif x_{1}=\\
- & =(b_{n}-a_{n})^{2}\int_{R}(\partial_{n}u)^{2}\dif x\leq(b_{n}-a_{n})^{2}\int_{R}\sum_{j}(\partial_{j}u)^{2}\dif x=(b_{n}-a_{n})^{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}\dif x.
-\end{align*}
-
-\end_inset
-
-Para
-\begin_inset Formula $u\in H_{0}^{1}(G)$
-\end_inset
-
-,existe una sucesión
-\begin_inset Formula $\{u_{m}\}_{m}\subseteq{\cal D}(G)$
-\end_inset
-
- con
-\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{1,2}=0$
-\end_inset
-
- y por tanto
-\begin_inset Formula $\lim_{m}\Vert u-u_{m}\Vert_{2}=\lim_{m}\Vert\partial_{j}u-\partial_{j}u_{m}\Vert_{2}=0$
-\end_inset
-
-, y tomando límites y usando que la norma
-\begin_inset Formula $\Vert\cdot\Vert_{2}\leq\Vert\cdot\Vert_{1,2}$
-\end_inset
-
- y por tanto es continua en
-\begin_inset Formula $W^{1}(G)$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-C\int_{G}u^{2}-\int_{G}\sum_{j}(\partial_{j}u)^{2}=C\Vert u\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u\Vert_{2}^{2}=\lim_{m}\left(C\Vert u_{m}\Vert_{2}^{2}-\sum_{j}\Vert\partial_{j}u_{m}\Vert_{2}^{2}\right)\leq0.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Principio de Dirichlet:
-\series default
- Sean
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- un abierto acotado no vacío,
-\begin_inset Formula $f\in L^{2}(G)$
-\end_inset
-
- y
-\begin_inset Formula $g\in W^{1}(G)$
-\end_inset
-
-,
-\begin_inset Formula $F:\{u\in W^{1}(G)\mid u-g\in H_{0}^{1}(G)\}\to\mathbb{R}$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-F(u)\coloneqq\frac{1}{2}\int_{G}\sum_{j=1}^{n}(\partial_{j}u)^{2}-\int_{G}fu
-\]
-
-\end_inset
-
-alcanza su mínimo en un único punto, que es el único
-\begin_inset Formula $u\in\text{Dom}f$
-\end_inset
-
- tal que
-\begin_inset Formula
-\[
-\forall v\in H_{0}^{1}(G),\int_{G}\sum_{j=1}^{n}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv
-\]
-
-\end_inset
-
-y la única solución en
-\begin_inset Formula $\text{Dom}f$
-\end_inset
-
- del problema de valores frontera para la ecuación de Poisson
-\begin_inset Formula $-\nabla^{2}u=f$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Demostración:
-\series default
- Para
-\begin_inset Formula $u,v\in W^{1}(G)$
-\end_inset
-
- definimos
-\begin_inset Formula
-\begin{align*}
-B(u,v) & \coloneqq\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v), & b_{0}(v) & \coloneqq\int_{G}fv, & b(v) & \coloneqq b_{0}(v)-B(v,g).
-\end{align*}
-
-\end_inset
-
-
-\begin_inset Formula $B$
-\end_inset
-
- es bilineal y simétrica, y es acotada porque
-\begin_inset Formula
-\[
-|B(u,v)|=\left|\sum_{j}\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\left|\int_{G}(\partial_{j}u)(\partial_{j}v)\right|\leq\sum_{j}\Vert\partial_{j}u\Vert_{2}\Vert\partial_{j}v\Vert_{2}\leq n\Vert u\Vert_{1,2}\Vert v\Vert_{1,2}.
-\]
-
-\end_inset
-
-Por la desigualdad de Poincaré-Friedrichs, existe
-\begin_inset Formula $C>0$
-\end_inset
-
- tal que, para todo
-\begin_inset Formula $v\in H$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-C\int_{G}v^{2}\leq\int_{G}\sum_{j}(\partial_{j}v)^{2},
-\]
-
-\end_inset
-
-luego
-\begin_inset Formula
-\[
-C\Vert v\Vert_{1,2}^{2}=C\left(\int_{G}v^{2}+\sum_{j}(\partial_{j}v)^{2}\right)\leq(1+C)\int_{G}\sum_{j}(\partial_{j}v)^{2}=(1+C)B(v,v)
-\]
-
-\end_inset
-
-y
-\begin_inset Formula $B$
-\end_inset
-
- es fuertemente positiva.
- Además,
-\begin_inset Formula $b_{0}$
-\end_inset
-
- es lineal y es acotada por la desigualdad de Cauchy-Schwartz, y como además
-
-\begin_inset Formula $B$
-\end_inset
-
- es bilineal y acotada,
-\begin_inset Formula $b_{0}$
-\end_inset
-
- es lineal acotada y se dan las condiciones del teorema principal de los
- problemas variacionales cuadráticos.
- Ahora bien, si
-\begin_inset Formula $w\coloneqq u-g\in H_{0}^{1}(G)$
-\end_inset
-
-,
-\begin_inset Formula
-\begin{multline*}
-\frac{1}{2}B(w,w)-b(w)=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))^{2}-\int_{G}f(u-g)+\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(g))=\\
-=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}(u-g))(\partial_{j}(u+g))-\int_{G}f(u-g)=\\
-=\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}u)^{2}-\int_{G}fu+\frac{1}{2}\int_{G}\sum_{j}(\partial_{j}g)^{2}+\int_{G}fg,
-\end{multline*}
-
-\end_inset
-
-luego minimizar
-\begin_inset Formula $F$
-\end_inset
-
- equivale a minimizar
-\begin_inset Formula $\frac{1}{2}B(w,w)-b(w)$
-\end_inset
-
-, y además
-\begin_inset Formula
-\begin{multline*}
-B(w,v)=b(v)\iff B(u,v)-B(g,v)=b_{0}(v)-B(v,g)\iff B(u,v)=b_{0}(v)\iff\\
-\iff\int_{G}\sum_{j}(\partial_{j}u)(\partial_{j}v)=\int_{G}fv.
-\end{multline*}
-
-\end_inset
-
-Para la última parte, si
-\begin_inset Formula $u_{0}$
-\end_inset
-
- cumple esta última fórmula para todo
-\begin_inset Formula $v\in H_{0}^{1}(G)$
-\end_inset
-
-, por integración por partes,
-\begin_inset Formula
-\[
-0=\int_{G}\sum_{j}(\partial_{j}u_{0})(\partial_{j}v)-\int_{G}fv=-\int_{G}\sum_{j}(\partial_{j}\partial_{j}u_{0})v-\int_{G}fv=-\int_{G}(\nabla^{2}u_{0}+f)v,
-\]
-
-\end_inset
-
-con lo que
-\begin_inset Formula $(\nabla^{2}u_{0}+f)\bot H_{0}^{1}(G)$
-\end_inset
-
- y, como
-\begin_inset Formula ${\cal D}(G)\subseteq H_{0}^{1}(G)$
-\end_inset
-
- es denso en
-\begin_inset Formula $L^{2}(G)$
-\end_inset
-
-,
-\begin_inset Formula $\nabla^{2}u_{0}+f=0$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Section
-Soluciones débiles
-\end_layout
-
-\begin_layout Standard
-Dados
-\begin_inset Formula $k,n\in\mathbb{N}$
-\end_inset
-
- y
-\begin_inset Formula $a_{\alpha}\in\mathbb{K}^{n}$
-\end_inset
-
- para cada
-\begin_inset Formula $\alpha\in\mathbb{N}^{n}$
-\end_inset
-
- con
-\begin_inset Formula $|\alpha|<k$
-\end_inset
-
-, un
-\series bold
-operador diferencial lineal de coeficientes constantes
-\series default
- es uno de la forma
-\begin_inset Formula
-\[
-L\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\left(\frac{\partial}{\partial x}\right)^{\alpha}\coloneqq\sum_{|\alpha|\leq k}a_{\alpha}\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}}\cdots\partial x_{n}^{\alpha_{n}}},
-\]
-
-\end_inset
-
-y su
-\series bold
-operador adjunto
-\series default
- es
-\begin_inset Formula
-\[
-L^{*}\coloneqq\sum_{|\alpha|\leq k}(-1)^{|\alpha|}\overline{a_{\alpha}}\left(\frac{\partial}{\partial x}\right)^{\alpha}.
-\]
-
-\end_inset
-
-Si
-\begin_inset Formula $G\subseteq\mathbb{R}^{n}$
-\end_inset
-
- es abierto,
-\begin_inset Formula $\varphi,\psi\in L^{2}(G)$
-\end_inset
-
- son de clase
-\begin_inset Formula ${\cal C}^{k}$
-\end_inset
-
- y una de las dos tiene soporte compacto, entonces
-\begin_inset Formula $\langle L\psi,\varphi\rangle=\langle\psi,L^{*}\varphi\rangle$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Así, si
-\begin_inset Formula $G$
-\end_inset
-
- es un abierto en
-\begin_inset Formula $\mathbb{R}^{n}$
-\end_inset
-
-,
-\begin_inset Formula $f,u\in L^{2}(G)$
-\end_inset
-
- son de clase
-\begin_inset Formula ${\cal C}^{k}$
-\end_inset
-
- y
-\begin_inset Formula $Lu=f$
-\end_inset
-
-, entonces
-\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$
-\end_inset
-
- para todo
-\begin_inset Formula $\psi\in{\cal D}(G)$
-\end_inset
-
-.
- Para
-\begin_inset Formula $f\in L^{2}(G)$
-\end_inset
-
-,
-\begin_inset Formula $u\in L^{2}(G)$
-\end_inset
-
- es
-\series bold
-solución débil
-\series default
- de la ecuación en derivadas parciales
-\begin_inset Formula $Lu=f$
-\end_inset
-
- si para todo
-\begin_inset Formula $\psi\in{\cal D}(G)$
-\end_inset
-
- es
-\begin_inset Formula $\langle f,\psi\rangle=\langle u,L^{*}\psi\rangle$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $L=\od{}{x}$
-\end_inset
-
- y
-\begin_inset Formula $u,f\in L^{2}((0,1))$
-\end_inset
-
-,
-\begin_inset Formula $Lu=f$
-\end_inset
-
- en sentido débil si y sólo si existe
-\begin_inset Formula $F:(0,1)\to\mathbb{R}$
-\end_inset
-
- absolutamente continua con
-\begin_inset Formula $F=u$
-\end_inset
-
- y
-\begin_inset Formula $F'=f$
-\end_inset
-
- para casi todo
-\begin_inset Formula $x\in(0,1)$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-La ecuación de ondas en una dimensión,
-\begin_inset Formula
-\[
-\left\{ \begin{array}{rlrl}
-\frac{\partial^{2}u}{\partial x^{2}}-\frac{\partial^{2}u}{\partial t^{2}} & =0, & t & \in[0,+\infty),\\
-u(x,0) & \equiv f(x), & x & \in[0,\pi],\\
-\frac{\partial u}{\partial t}(x,0) & \equiv0,
-\end{array}\right.
-\]
-
-\end_inset
-
-siendo
-\begin_inset Formula $f:[0,\pi]\to\mathbb{R}$
-\end_inset
-
- una función lineal a trozos, admite soluciones débiles que no son soluciones
- ordinarias.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Malgrange-Ehrenpreis:
-\series default
- Sean
-\begin_inset Formula $G$
-\end_inset
-
- un abierto acotado de
-\begin_inset Formula $\mathbb{R}^{n}$
-\end_inset
-
- y
-\begin_inset Formula $L$
-\end_inset
-
- un operador en derivadas parciales lineal con coeficientes constantes,
- existe un operador lineal continuo
-\begin_inset Formula $K:L^{2}(G)\to L^{2}(G)$
-\end_inset
-
- tal que para todo
-\begin_inset Formula $f\in L^{2}(G)$
-\end_inset
-
-,
-\begin_inset Formula $u\coloneqq K(f)$
-\end_inset
-
- es solución débil de
-\begin_inset Formula $Lu=f$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Demostración:
-\series default
- Definimos
-\begin_inset Formula $\langle\varphi,\psi\rangle_{L}\coloneqq\langle L^{*}\varphi,L^{*}\psi\rangle_{2}$
-\end_inset
-
-, y para ver que es un producto escalar sobre
-\begin_inset Formula ${\cal D}(G)$
-\end_inset
-
- vemos que existe
-\begin_inset Formula $C>0$
-\end_inset
-
- tal que, para
-\begin_inset Formula $\psi\in{\cal D}(G)$
-\end_inset
-
-,
-\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$
-\end_inset
-
-.
- Si
-\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{1}}$
-\end_inset
-
-, llamando
-\begin_inset Formula $\psi(x)\coloneqq0$
-\end_inset
-
- para
-\begin_inset Formula $x\notin G$
-\end_inset
-
-, para
-\begin_inset Formula $x\in G$
-\end_inset
-
-, como
-\begin_inset Formula $\text{sop}\psi\subseteq G$
-\end_inset
-
- es compacto, sea
-\begin_inset Formula $m\coloneqq\inf_{x\in G}x_{1}$
-\end_inset
-
-,
-\begin_inset Formula
-\begin{align*}
-\psi(x)^{2} & =\left(\int_{m}^{x_{1}}\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\dif t\right)^{2}\leq\left(\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|\cdot1\dif t\right)\leq\\
- & \leq\int_{m}^{x_{1}}\dif t\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\leq d\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2},
-\end{align*}
-
-\end_inset
-
-donde
-\begin_inset Formula $d$
-\end_inset
-
- es el diámetro de
-\begin_inset Formula $G$
-\end_inset
-
-, e integrando de nuevo,
-\begin_inset Formula
-\begin{align*}
-\Vert\psi\Vert_{2}^{2} & =\int_{G}\psi(x)^{2}\dif x\leq d\int_{m}^{x_{1}}\int_{-\infty}^{x_{2}}\cdots\int_{-\infty}^{x_{n}}\int_{m}^{x_{1}}\left|\frac{\partial\psi}{\partial x_{1}}(t,x_{2},\dots,x_{n})\right|^{2}\dif t\dif x_{n}\cdots\dif x_{1}\leq\\
- & \leq d^{2}\int_{G}\left|\frac{\partial\psi}{\partial x_{1}}(x)\right|^{2}\dif x=d^{2}\Vert L^{*}\psi\Vert_{2}^{2}.
-\end{align*}
-
-\end_inset
-
-Si
-\begin_inset Formula $L^{*}=\frac{\partial}{\partial x_{i}}$
-\end_inset
-
- para otro
-\begin_inset Formula $i$
-\end_inset
-
-, es análogo, y si
-\begin_inset Formula $L^{*}=\left(\frac{\partial}{\partial x}\right)^{|\alpha|}$
-\end_inset
-
-, por inducción,
-\begin_inset Formula $\Vert\psi\Vert_{2}\leq d^{|\alpha|}\Vert L^{*}\psi\Vert_{2}$
-\end_inset
-
-.
- Para
-\begin_inset Formula $L$
-\end_inset
-
- arbitrario basta hacer combinaciones lineales.
- Visto esto, sean
-\begin_inset Formula $H_{0}\coloneqq({\cal D}(G),\langle\cdot,\cdot\rangle_{L})$
-\end_inset
-
- y
-\begin_inset Formula $H$
-\end_inset
-
- su compleción,
-\begin_inset Formula $L^{*}:H_{0}\to L^{2}(G)$
-\end_inset
-
- es lineal y continuo y por tanto admite una extensión lineal y continua
-
-\begin_inset Formula $\hat{L}^{*}:H\to L^{2}(G)$
-\end_inset
-
-.
- Sea ahora
-\begin_inset Formula $f\in L^{2}(G)$
-\end_inset
-
- y
-\begin_inset Formula $l_{0}:H_{0}\to\mathbb{K}$
-\end_inset
-
- dada por
-\begin_inset Formula $l_{0}(\psi)\coloneqq\langle\psi,f\rangle_{2}$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-|l_{0}(\psi)|=|\langle\psi,f\rangle_{2}|\leq\Vert\psi\Vert_{2}\Vert f\Vert_{2}\leq C\Vert f\Vert_{2}\Vert L^{*}\psi\Vert_{2},
-\]
-
-\end_inset
-
-donde
-\begin_inset Formula $C$
-\end_inset
-
- es tal que
-\begin_inset Formula $\Vert\psi\Vert_{2}\leq C\Vert L^{*}\psi\Vert_{2}$
-\end_inset
-
- para todo
-\begin_inset Formula $C$
-\end_inset
-
-, de modo que
-\begin_inset Formula $l_{0}$
-\end_inset
-
- es lineal continua por la cota
-\begin_inset Formula $C\Vert f\Vert_{2}$
-\end_inset
-
- y se puede extender a una forma lineal y continua
-\begin_inset Formula $l:H\to\mathbb{K}$
-\end_inset
-
- con
-\begin_inset Formula $\Vert l\Vert\leq C\Vert f\Vert_{2}$
-\end_inset
-
-.
- Por el teorema de Riesz, existe un único
-\begin_inset Formula $\hat{u}\in H$
-\end_inset
-
- con
-\begin_inset Formula $l(h)\equiv\langle h,\hat{u}\rangle_{L}$
-\end_inset
-
- para
-\begin_inset Formula $h\in H$
-\end_inset
-
- y además
-\begin_inset Formula $\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}$
-\end_inset
-
-, y tomando
-\begin_inset Formula $u\coloneqq\hat{L}^{*}\hat{u}$
-\end_inset
-
-,
-\begin_inset Formula $l(h)=\langle\hat{L}^{*}h,\hat{L}^{*}\hat{u}\rangle=\langle\hat{L}^{*}h,u\rangle_{2}$
-\end_inset
-
-, pero para
-\begin_inset Formula $\psi\in{\cal D}(G)$
-\end_inset
-
-,
-\begin_inset Formula $l(\psi)=\langle\psi,f\rangle_{2}$
-\end_inset
-
- y
-\begin_inset Formula $\hat{L}^{*}(\psi)=L^{*}\psi$
-\end_inset
-
-, con lo que
-\begin_inset Formula $\langle L^{*}\psi,u\rangle_{2}=l(\psi)=\langle\psi,f\rangle_{2}$
-\end_inset
-
-, y basta llamar
-\begin_inset Formula $K(f)\coloneqq u$
-\end_inset
-
-.
- Para la continuidad de
-\begin_inset Formula $K$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\Vert K(f)\Vert_{2}=\Vert u\Vert_{2}=\Vert\hat{L}^{*}\hat{u}\Vert_{2}=\Vert\hat{u}\Vert_{H}=\Vert l\Vert_{H}=\sup_{\Vert\psi\Vert_{H}=\Vert L^{*}\psi\Vert_{2}=1}|l(\psi)|\leq C\Vert f\Vert_{2}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Section
-Método de Galerkin
-\end_layout
-
-\begin_layout Standard
-Sean
-\begin_inset Formula $M_{1}\subseteq M_{2}\subseteq\dots\subseteq M_{n}\subseteq\dots$
-\end_inset
-
- una sucesión de subespacios cerrados de un espacio de Hilbert
-\begin_inset Formula $H$
-\end_inset
-
- con unión densa en
-\begin_inset Formula $H$
-\end_inset
-
-,
-\begin_inset Formula $a:H\times H\to\mathbb{R}$
-\end_inset
-
- bilineal, simétrica, continua y fuertemente positiva,
-\begin_inset Formula $b:H\to\mathbb{R}$
-\end_inset
-
- lineal continua,
-\begin_inset Formula
-\[
-J(x)\coloneqq\frac{1}{2}a(x,x)-b(x)
-\]
-
-\end_inset
-
-para
-\begin_inset Formula $x\in H$
-\end_inset
-
-,
-\begin_inset Formula $u\in H$
-\end_inset
-
- con
-\begin_inset Formula $J(u)$
-\end_inset
-
- mínimo y, para
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
-,
-\begin_inset Formula $u_{n}\in M_{n}$
-\end_inset
-
- con
-\begin_inset Formula $J(u_{n})$
-\end_inset
-
- mínimo, de modo que
-\begin_inset Formula $a(x,u_{n})=b(x)$
-\end_inset
-
- para todo
-\begin_inset Formula $x\in M_{n}$
-\end_inset
-
- y
-\begin_inset Formula $a(x,u)=b(x)$
-\end_inset
-
- para todo
-\begin_inset Formula $x\in H$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Teorema de Galerkin-Ritz:
-\series default
-
-\begin_inset Formula $\lim_{n}u_{n}=u$
-\end_inset
-
-.
-\end_layout
-
-\begin_deeper
-\begin_layout Standard
-Para
-\begin_inset Formula $x\in M_{n}$
-\end_inset
-
-,
-\begin_inset Formula $a(x,u_{n})=b(x)$
-\end_inset
-
-, y para
-\begin_inset Formula $x\in H$
-\end_inset
-
-,
-\begin_inset Formula $a(x,u)=f(x)$
-\end_inset
-
-, luego
-\begin_inset Formula $a(x,u-u_{n})=b(x)-b(x)=0$
-\end_inset
-
- para
-\begin_inset Formula $x\in M_{n}$
-\end_inset
-
-.
- Pero
-\begin_inset Formula $a$
-\end_inset
-
- es un producto escalar equivalente al de
-\begin_inset Formula $H$
-\end_inset
-
-, luego
-\begin_inset Formula $u-u_{n}\bot M_{n}$
-\end_inset
-
- y, si
-\begin_inset Formula $P_{n}:H\to M_{n}$
-\end_inset
-
- es la proyección ortogonal,
-\begin_inset Formula $P_{n}(u)=u_{n}$
-\end_inset
-
-.
- Por el teorema de la proyección,
-\begin_inset Formula $\Vert u-u_{n}\Vert=\Vert u-P_{n}(u)\Vert=d(u,M_{n})$
-\end_inset
-
-, pero por la densidad es
-\begin_inset Formula $d(u,\bigcup_{n}M_{n})=0$
-\end_inset
-
-, y para
-\begin_inset Formula $\varepsilon>0$
-\end_inset
-
- existen
-\begin_inset Formula $n_{0}\in\mathbb{N}$
-\end_inset
-
- e
-\begin_inset Formula $y\in M_{n_{0}}$
-\end_inset
-
- con
-\begin_inset Formula $\Vert u-y\Vert<\varepsilon$
-\end_inset
-
-, y como la sucesión es creciente, para
-\begin_inset Formula $n\geq n_{0}$
-\end_inset
-
-,
-\begin_inset Formula $\Vert u-u_{n}\Vert=d(u,M_{n})\leq d(u,M_{n_{0}})\leq\Vert u-y\Vert<\varepsilon$
-\end_inset
-
-, con lo que
-\begin_inset Formula $\lim_{n}u_{n}=u$
-\end_inset
-
-.
-\end_layout
-
-\end_deeper
-\begin_layout Enumerate
-Dados
-\begin_inset Formula $c,d>0$
-\end_inset
-
- con
-\begin_inset Formula $a(x,y)\leq d\Vert x\Vert\Vert y\Vert$
-\end_inset
-
- y
-\begin_inset Formula $c\Vert x\Vert^{2}\leq a(x,x)$
-\end_inset
-
- para todo
-\begin_inset Formula $x,y\in H$
-\end_inset
-
-,
-\begin_inset Formula $c\Vert u\Vert\leq\Vert b\Vert$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Razón de convergencia:
-\series default
-
-\begin_inset Formula $\Vert u-u_{n}\Vert\leq\frac{d}{c}d(u,M_{n})$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Estimación del error:
-\series default
- Si
-\begin_inset Formula $\beta\leq J(x)$
-\end_inset
-
- para todo
-\begin_inset Formula $x\in H$
-\end_inset
-
-, para
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
- es
-\begin_inset Formula $\frac{c}{2}\Vert u-u_{n}\Vert^{2}\leq J(u_{n})-\beta$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-El
-\series bold
-método de Galerkin
-\series default
- para resolver un problema de esta forma consiste en tomar en el teorema
- anterior los
-\begin_inset Formula $M_{n}$
-\end_inset
-
- de dimensión finita y resolver los sistemas de ecuaciones lineales resultantes,
- con matriz de coeficientes simétrica y definida positiva de tamaño
-\begin_inset Formula $\dim M_{n}$
-\end_inset
-
-.
- Tomando adecuadamente las bases de los
-\begin_inset Formula $M_{n}$
-\end_inset
-
- se puede conseguir que las matrices tengan muchas entradas nulas.
-\end_layout
-
-\begin_layout Section
-Bases hilbertianas
-\end_layout
-
-\begin_layout Standard
-Sean
-\begin_inset Formula $(H_{i})_{i\in I}$
-\end_inset
-
- una familia de
-\begin_inset Formula $\mathbb{K}$
-\end_inset
-
--espacios de Hilbert,
-\begin_inset Formula $H_{0}\coloneqq\prod_{i\in I}H_{i}$
-\end_inset
-
- y
-\begin_inset Formula $\langle\cdot,\cdot\rangle:H_{0}\times H_{0}\to[0,+\infty]$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-\langle x,y\rangle\coloneqq\sum_{i\in I}\langle x_{i},y_{i}\rangle_{H_{i}},
-\]
-
-\end_inset
-
-llamamos
-\series bold
-suma directa hilbertiana
-\series default
- o
-\series bold
-suma
-\begin_inset Formula $\ell^{2}$
-\end_inset
-
-
-\series default
- de
-\begin_inset Formula $\{H_{i}\}_{i\in I}$
-\end_inset
-
- al espacio de Hilbert
-\begin_inset Formula
-\[
-\bigoplus_{i\in I}H_{i}\coloneqq\ell^{2}((H_{i})_{i\in I})\coloneqq(\{x\in H_{0}\mid\langle x,x\rangle<\infty\},\langle\cdot,\cdot\rangle).
-\]
-
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Cada
-\begin_inset Formula $H_{i}$
-\end_inset
-
- es isométricamente isomorfo al subespacio de
-\begin_inset Formula $H$
-\end_inset
-
- de los vectores con todas las coordenadas nulas salvo la
-\begin_inset Formula $i$
-\end_inset
-
-, los
-\begin_inset Formula $H_{i}$
-\end_inset
-
- son mutuamente ortogonales en
-\begin_inset Formula $H$
-\end_inset
-
-,
-\begin_inset Formula $H$
-\end_inset
-
- es la clausura lineal cerrada de los
-\begin_inset Formula $H_{i}$
-\end_inset
-
- y cada
-\begin_inset Formula $x\in H$
-\end_inset
-
- se puede expresar de forma única como
-\begin_inset Formula $\sum_{i\in I}x_{i}$
-\end_inset
-
- con cada
-\begin_inset Formula $x_{i}\in H_{i}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $H$
-\end_inset
-
- es un
-\begin_inset Formula $\mathbb{K}$
-\end_inset
-
--espacio de Hilbert y
-\begin_inset Formula $(H_{i})_{i\in I}$
-\end_inset
-
- es una familia de subespacios cerrados de
-\begin_inset Formula $H$
-\end_inset
-
- mutuamente ortogonales con
-\begin_inset Formula $H=\overline{\text{span}\{H_{i}\}_{i\in I}}$
-\end_inset
-
-, entonces
-\begin_inset Formula $H$
-\end_inset
-
- es isométricamente isomorfo a
-\begin_inset Formula $\bigoplus_{i\in I}H_{i}$
-\end_inset
-
-, e identificamos
-\begin_inset Formula $H$
-\end_inset
-
- con
-\begin_inset Formula $\bigoplus_{i\in I}H_{i}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Desigualdad de Bessel:
-\series default
- Sean
-\begin_inset Formula $H$
-\end_inset
-
- un espacio prehilbertiano y
-\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$
-\end_inset
-
- una familia ortonormal, para
-\begin_inset Formula $x\in H$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}\leq\Vert x\Vert^{2}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Para un conjunto
-\begin_inset Formula $I$
-\end_inset
-
- arbitrario, llamamos
-\begin_inset Formula $\ell^{2}(I)\coloneqq\bigoplus_{i\in I}\mathbb{K}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de la base hilbertiana:
-\series default
- Sean
-\begin_inset Formula $H$
-\end_inset
-
- un espacio de Hilbert y
-\begin_inset Formula $\{e_{i}\}_{i\in I}\subseteq H$
-\end_inset
-
- una familia ortonormal,
-\begin_inset Formula $\{e_{i}\}_{i\in I}$
-\end_inset
-
- es ortonormal maximal (por inclusión) si y sólo si
-\begin_inset Formula $\forall x\in H,(\forall i\in I,\langle x,e_{i}\rangle=0\implies x=0)$
-\end_inset
-
-, si y sólo si es un conjunto total, si y sólo si
-\begin_inset Formula $\hat{}:H\to\ell^{2}(I)$
-\end_inset
-
- dada por
-\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$
-\end_inset
-
- es inyectiva, si y sólo si todo
-\begin_inset Formula $x\in H$
-\end_inset
-
- admite un
-\series bold
-desarrollo de Fourier
-\series default
-
-\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$
-\end_inset
-
-, si y sólo si
-\begin_inset Formula $\forall x,y\in H,\langle x,y\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{i}\rangle}$
-\end_inset
-
-, si y sólo si todo
-\begin_inset Formula $x\in H$
-\end_inset
-
- cumple la
-\series bold
-identidad de Parseval
-\series default
-,
-\begin_inset Formula $\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}$
-\end_inset
-
-, y entonces decimos que
-\begin_inset Formula $(e_{i})_{i\in I}$
-\end_inset
-
- es una
-\series bold
-base hilbertiana
-\series default
- de
-\begin_inset Formula $H$
-\end_inset
-
- o un
-\series bold
-sistema ortonormal completo
-\series default
-.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $1\implies2]$
-\end_inset
-
- Entonces
-\begin_inset Formula $x\bot\{e_{i}\}_{i\in I}$
-\end_inset
-
-, por lo que si
-\begin_inset Formula $x\neq0$
-\end_inset
-
-,
-\begin_inset Formula $\{e_{i}\}_{i\in I}\cup\{x\}$
-\end_inset
-
- sería ortogonal.
-\begin_inset Formula $\#$
-\end_inset
-
-
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $2\iff3]$
-\end_inset
-
- Sabemos que un
-\begin_inset Formula $S\subseteq H$
-\end_inset
-
- es total si y sólo si
-\begin_inset Formula $S^{\bot}=0$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $2\iff4]$
-\end_inset
-
- Por ser
-\begin_inset Formula $\hat{}$
-\end_inset
-
- lineal.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $4\implies5]$
-\end_inset
-
-
-\begin_inset Formula $\widehat{\sum_{i}\langle x,e_{i}\rangle e_{i}}=\sum_{i}\langle x,e_{i}\rangle\hat{e}_{i}=\sum_{i}\langle x,e_{i}\rangle e_{i}=\hat{x}$
-\end_inset
-
-, y por inyectividad
-\begin_inset Formula $x=\sum_{i\in I}\langle x,e_{i}\rangle e_{i}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $5\implies6]$
-\end_inset
-
-
-\begin_inset Formula $\langle x,y\rangle=\sum_{i,j\in I}\langle\langle x,e_{i}\rangle e_{i},\langle y,e_{j}\rangle e_{j}\rangle=\sum_{i,j\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}\langle e_{i},e_{j}\rangle=\sum_{i\in I}\langle x,e_{i}\rangle\overline{\langle y,e_{j}\rangle}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $6\implies7]$
-\end_inset
-
- Basta tomar
-\begin_inset Formula $x=y$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $7\implies1]$
-\end_inset
-
- Si fuera
-\begin_inset Formula $\{e_{i}\}_{i}\subsetneq M\subseteq H$
-\end_inset
-
- con
-\begin_inset Formula $M$
-\end_inset
-
- ortonormal, para
-\begin_inset Formula $x\in M\setminus\{e_{i}\}_{i}$
-\end_inset
-
-,
-\begin_inset Formula $1=\Vert x\Vert^{2}=\sum_{i\in I}|\langle x,e_{i}\rangle|^{2}=0\#$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Primer teorema de Riesz-Fischer:
-\series default
- Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio prehilbertiano con una familia ortonormal
-\begin_inset Formula $\{e_{i}\}_{i\in I}$
-\end_inset
-
- y
-\begin_inset Formula $\hat{}:H\to\mathbb{K}^{I}$
-\end_inset
-
- viene dada por
-\begin_inset Formula $\hat{x}\coloneqq(\langle x,e_{i}\rangle)_{i\in I}$
-\end_inset
-
-,
-\begin_inset Formula $\hat{}$
-\end_inset
-
- es lineal y continua con imagen contenida en
-\begin_inset Formula $\ell^{2}(I)$
-\end_inset
-
- e igual a
-\begin_inset Formula $\ell^{2}(I)$
-\end_inset
-
- si
-\begin_inset Formula $H$
-\end_inset
-
- es de Hilbert.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $H$
-\end_inset
-
- es un espacio de Hilbert, todo espacio ortonormal de vectores en
-\begin_inset Formula $H$
-\end_inset
-
- se puede completar a una base hilbertiana de
-\begin_inset Formula $H$
-\end_inset
-
-, y en particular todo espacio de Hilbert posee una base hilbertiana y es
- isométricamente isomorfo a un
-\begin_inset Formula $\ell^{2}(I)$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Los espacios de Hilbert
-\begin_inset Formula $\ell^{2}(I)$
-\end_inset
-
- y
-\begin_inset Formula $\ell^{2}(J)$
-\end_inset
-
- son topológicamente isomorfos si y sólo si
-\begin_inset Formula $|I|=|J|$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Llamamos
-\series bold
-dimensión hilbertiana
-\series default
- de un espacio de Hilbert al cardinal de cualquier base hilbertiana.
-
-\series bold
-Segundo teorema de Riesz-Fischer:
-\series default
- Si
-\begin_inset Formula $H$
-\end_inset
-
- es de dimensión infinita,
-\begin_inset Formula $\dim H=\aleph_{0}\coloneqq|\mathbb{N}|$
-\end_inset
-
- si y sólo si
-\begin_inset Formula $H\cong\ell^{2}$
-\end_inset
-
-, si y sólo si
-\begin_inset Formula $H$
-\end_inset
-
- es separable.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $1\iff2]$
-\end_inset
-
- Por lo anterior.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $2\implies3]$
-\end_inset
-
- Visto.
-\end_layout
-
-\begin_layout Description
-\begin_inset Formula $3\implies2]$
-\end_inset
-
- Dado
-\begin_inset Formula $\{x_{n}\}_{n\in\mathbb{N}}\subseteq H$
-\end_inset
-
- denso, como
-\begin_inset Formula $H$
-\end_inset
-
- es de dimensión infinita, existe una subsucesión
-\begin_inset Formula $(x_{n_{k}})_{k}$
-\end_inset
-
- linealmente independiente de
-\begin_inset Formula $(x_{n})_{n}$
-\end_inset
-
- con
-\begin_inset Formula $\text{span}\{x_{n}\}_{n}=\text{span}\{x_{n_{k}}\}_{k}$
-\end_inset
-
-, luego
-\begin_inset Formula $\overline{\text{span}\{x_{n_{k}}\}_{k}}=H$
-\end_inset
-
- y el proceso de ortonormalización de Gram-Schmidt nos da una base hilbertiana
- numerable de
-\begin_inset Formula $H$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Así, si
-\begin_inset Formula $Z\leq_{\mathbb{K}}\ell^{2}$
-\end_inset
-
- es cerrado de dimensión infinita,
-\begin_inset Formula $Z\cong\ell^{2}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Section
-Aproximaciones por polinomios
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $I\subseteq\mathbb{R}$
-\end_inset
-
- es un intervalo cerrado, llamamos
-\begin_inset Formula ${\cal C}(I)$
-\end_inset
-
- al conjunto de funciones
-\begin_inset Formula $I\to\mathbb{R}$
-\end_inset
-
- continuas en el interior de
-\begin_inset Formula $I$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Korovkin:
-\series default
- Sean
-\begin_inset Formula $p_{0},p_{1},p_{2}:[a,b]\subseteq\mathbb{R}\to\mathbb{R}$
-\end_inset
-
- dadas por
-\begin_inset Formula $p_{k}(t)\coloneqq t^{k}$
-\end_inset
-
- y
-\begin_inset Formula $(P_{n}:{\cal C}([a,b])\to{\cal C}([a,b]))_{n}$
-\end_inset
-
- una sucesión de funciones lineales positivas (
-\begin_inset Formula $\forall f\in{\cal C}([a,b]),(f\geq0\implies P_{n}(f)\geq0)$
-\end_inset
-
-) con
-\begin_inset Formula $\lim_{n}\Vert P_{n}(p_{k})-p_{k}\Vert_{\infty}=0$
-\end_inset
-
- para
-\begin_inset Formula $k\in\{0,1,2\}$
-\end_inset
-
-, entonces, para
-\begin_inset Formula $f\in{\cal C}([a,b])$
-\end_inset
-
-,
-\begin_inset Formula $\lim_{n}\Vert P_{n}(f)-f\Vert_{\infty}=0$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Weierstrass:
-\series default
- El conjunto de polinomios en una variable es denso
-\begin_inset Formula $({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Así, para
-\begin_inset Formula $f\in{\cal C}([a,b])$
-\end_inset
-
-, se puede encontrar una sucesión de polinomios que converja uniformemente
- a
-\begin_inset Formula $f$
-\end_inset
-
-.
- Hacerlo con polinomios de interpolación por nodos prefijados no es una
- buena estrategia ya que para toda secuencia de nodos de interpolación en
-
-\begin_inset Formula $[a,b]$
-\end_inset
-
-, existe
-\begin_inset Formula $f\in{\cal C}([a,b])$
-\end_inset
-
- para la que los polinomios de interpolación en dichos nodos no converge
- uniformemente a
-\begin_inset Formula $f$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
- Si se hace con nodos equidistantes se da el fenómeno de Runge.
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Čebyšev:
-\series default
- Para
-\begin_inset Formula $f\in{\cal C}([a,b])$
-\end_inset
-
- y
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
-, si
-\begin_inset Formula $K_{n}\subseteq\mathbb{K}[X]$
-\end_inset
-
- es el conjunto de polinomio de grado máximo
-\begin_inset Formula $n$
-\end_inset
-
-,
-\begin_inset Formula $p:K_{n}\mapsto\Vert f-p\Vert_{\infty}$
-\end_inset
-
- tiene un único mínimo
-\begin_inset Formula $p_{n}$
-\end_inset
-
-, y
-\begin_inset Formula $(p_{n})_{n}$
-\end_inset
-
- converge uniformemente a
-\begin_inset Formula $f$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Un
-\series bold
-polinomio trigonométrico real
-\series default
- es una función
-\begin_inset Formula $p:\mathbb{R}\to\mathbb{R}$
-\end_inset
-
- de la forma
-\begin_inset Formula
-\[
-p(x)\coloneqq\sum_{n=0}^{m}(a_{n}\cos(nx)+b_{n}\sin(nx))
-\]
-
-\end_inset
-
-para ciertos
-\begin_inset Formula $a_{n},b_{n}\in\mathbb{R}$
-\end_inset
-
-.
-
-\series bold
-Teorema de Weierstrass:
-\series default
- Si
-\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$
-\end_inset
-
- es continua con
-\begin_inset Formula $f(-\pi)=f(\pi)$
-\end_inset
-
-, para cada
-\begin_inset Formula $\varepsilon>0$
-\end_inset
-
- existe un polinomio trigonométrico real
-\begin_inset Formula $p$
-\end_inset
-
- con
-\begin_inset Formula $\Vert f-p\Vert_{\infty}<\varepsilon$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Para
-\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{C}$
-\end_inset
-
- integrable y
-\begin_inset Formula $r\in\mathbb{Z}$
-\end_inset
-
-, llamamos
-\series bold
-
-\begin_inset Formula $r$
-\end_inset
-
--ésimo coeficiente de Fourier
-\series default
- de
-\begin_inset Formula $f$
-\end_inset
-
- a
-\begin_inset Formula
-\[
-\hat{f}(r)\coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f(t)\text{e}^{-\text{i}rt}\dif t,
-\]
-
-\end_inset
-
-y
-\series bold
-serie de Fourier
-\series default
- de
-\begin_inset Formula $f$
-\end_inset
-
- a la serie formal
-\begin_inset Formula
-\[
-\sum_{r\in\mathbb{Z}}\hat{f}(r)\text{e}^{-\text{i}rt}.
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Para
-\begin_inset Formula $f:[-\pi,\pi]\to\mathbb{R}$
-\end_inset
-
- integrable y
-\begin_inset Formula $n\in\mathbb{N}^{*}$
-\end_inset
-
-, llamando
-\begin_inset Formula
-\begin{align*}
-a_{0} & \coloneqq\frac{1}{2\pi}\int_{-\pi}^{\pi}f, & a_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\cos(nt)\dif t, & b_{n} & \coloneqq\frac{1}{\pi}\int_{-\pi}^{\pi}f(t)\sin(nt)\dif t,
-\end{align*}
-
-\end_inset
-
-la
-\series bold
-serie de Fourier real
-\series default
- de
-\begin_inset Formula $f$
-\end_inset
-
- es
-\begin_inset Formula
-\[
-\sum_{n=0}^{\infty}a_{n}\cos(nt)+\sum_{n=1}^{\infty}b_{n}\sin(nt).
-\]
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Como
-\series bold
-teorema
-\series default
-, sean
-\begin_inset Formula $([-\pi,\pi],\Sigma,\mu)$
-\end_inset
-
- es el espacio de medida usual en
-\begin_inset Formula $[-\pi,\pi]$
-\end_inset
-
-,
-\begin_inset Formula $M_{\mathbb{R}}\coloneqq L_{\mathbb{R}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{\pi})$
-\end_inset
-
- y
-\begin_inset Formula $M_{\mathbb{C}}\coloneqq L_{\mathbb{C}}^{2}([-\pi,\pi],\Sigma,\frac{\mu}{2\pi})$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-El
-\series bold
-sistema trigonométrico
-\series default
-
-\begin_inset Formula $(\text{e}^{\text{i}rt})_{r\in\mathbb{Z}}$
-\end_inset
-
- es una base hilbertiana de
-\begin_inset Formula $M_{\mathbb{C}}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $(\cos(nt))_{n\in\mathbb{N}}\star(\sin(nt))_{n\in\mathbb{N}^{*}}$
-\end_inset
-
- es una base hilbertiana de
-\begin_inset Formula $M_{\mathbb{R}}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $f\in M_{\mathbb{C}}$
-\end_inset
-
-,
-\begin_inset Formula $f$
-\end_inset
-
- coincide con su serie de Fourier en
-\begin_inset Formula $\Vert\cdot\Vert_{2}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-Para
-\begin_inset Formula $f\in M_{\mathbb{R}}$
-\end_inset
-
-,
-\begin_inset Formula $f$
-\end_inset
-
- coincide con su serie de Fourier real en
-\begin_inset Formula $\Vert\cdot\Vert_{2}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula ${\cal F}:M_{\mathbb{C}}\to\ell^{2}(\mathbb{Z})$
-\end_inset
-
- que asigna a cada función su familia de coeficientes de Fourier
-\begin_inset Formula $(\hat{f}(n))_{n\in\mathbb{Z}}$
-\end_inset
-
- es un isomorfismo de espacios de Hilbert.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Un
-\series bold
-peso
-\series default
- en un intervalo cerrado
-\begin_inset Formula $I\subseteq\mathbb{R}$
-\end_inset
-
- es una
-\begin_inset Formula $p\in{\cal C}(I)$
-\end_inset
-
- estrictamente positiva tal que
-\begin_inset Formula
-\[
-\forall n\in\mathbb{N},\int_{I}|t|^{n}p(t)\dif t<\infty.
-\]
-
-\end_inset
-
-Entonces
-\begin_inset Formula $\langle\cdot,\cdot\rangle:{\cal C}(I)\times{\cal C}(I)\to[-\infty,+\infty]$
-\end_inset
-
- dada por
-\begin_inset Formula
-\[
-\langle f,g\rangle\coloneqq\int_{I}f\overline{g}p
-\]
-
-\end_inset
-
-es un producto escalar en
-\begin_inset Formula $H_{p}\coloneqq\{f\in{\cal C}(I)\mid\langle f,f\rangle<\infty\}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Llamamos
-\series bold
-sucesión de polinomios ortonormales
-\series default
- asociada a
-\begin_inset Formula $\langle\cdot,\cdot\rangle$
-\end_inset
-
- o al peso
-\begin_inset Formula $p$
-\end_inset
-
- en
-\begin_inset Formula $I$
-\end_inset
-
- a una sucesión
-\begin_inset Formula $\{P_{n}\}_{n\in\mathbb{N}}\subseteq H_{p}$
-\end_inset
-
- de polinomios con
-\begin_inset Formula $\text{span}\{1,t,\dots,t^{n}\}=\text{span}\{P_{0},P_{1},\dots,P_{n}\}$
-\end_inset
-
- para cada
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
-, y entonces, para
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
-:
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $P_{n}$
-\end_inset
-
- es un polinomio de grado
-\begin_inset Formula $n$
-\end_inset
-
- con coeficientes reales.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $P_{n}$
-\end_inset
-
- es ortogonal en
-\begin_inset Formula $H_{p}$
-\end_inset
-
- al subespacio de polinomios de grado menor que
-\begin_inset Formula $n$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-\begin_inset Formula $P_{n}$
-\end_inset
-
- tiene
-\begin_inset Formula $n$
-\end_inset
-
- raíces distintas en
-\begin_inset Formula $(a,b)$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Ejemplos:
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Polinomios de Legendre.
-\series default
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula
-\begin{align*}
-I & =[-1,1], & p(t) & =1, & P_{n}(t) & =\frac{\sqrt{\frac{2n+1}{2}}}{2^{n}n!}\od[n]{(t^{2}-1)^{n}}{t}.
-\end{align*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Polinomios de Laguerre.
-\series default
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\series bold
-
-\begin_inset Formula
-\begin{align*}
-I & =[0,\infty), & p(t) & =\text{e}^{-t}, & P_{n}(t) & =\frac{\text{e}^{t}}{n!}\od[n]{\text{e}^{-t}t^{n}}{t}.
-\end{align*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Polinomios de Hermite.
-\series default
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula
-\begin{align*}
-I & =(-\infty,\infty), & p(t) & =\text{e}^{-t^{2}}, & P_{n}(t) & =\frac{\text{e}^{t^{2}}}{\sqrt[4]{\pi}\sqrt{2^{n}n!}}\od[n]{\text{e}^{-t^{2}}}{t}.
-\end{align*}
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Enumerate
-
-\series bold
-Polinomios de Čebyšev.
-\series default
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\begin_inset Formula
-\begin{align*}
-I & =[-1,1], & p(t) & =\frac{1}{\sqrt{1-t^{2}}}, & P_{n}(t) & =\cos(n\arccos t),
-\end{align*}
-
-\end_inset
-
-siendo
-\begin_inset Formula $\arccos:[-1,1]\to[0,\pi]$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Una sucesión de polinomios ortonormales asociada a un peso
-\begin_inset Formula $p$
-\end_inset
-
- en un intervalo compacto es total en
-\begin_inset Formula $H_{p}$
-\end_inset
-
-, y en particular los polinomios de Legendre forman una base hilbertiana
- en
-\begin_inset Formula $L^{2}([-1,1]).$
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $p$
-\end_inset
-
- es un peso en
-\begin_inset Formula $[a,b]$
-\end_inset
-
- y
-\begin_inset Formula $a\leq t_{1}<\dots<t_{n}\leq b$
-\end_inset
-
-, se tiene una
-\series bold
-fórmula de cuadratura gaussiana
-\series default
-,
-\begin_inset Formula
-\[
-\int_{a}^{b}fp\approx\sum_{k=1}^{n}A_{k}f(t_{k})
-\]
-
-\end_inset
-
-para ciertos
-\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$
-\end_inset
-
-, y se alcanza la igualdad si
-\begin_inset Formula $f$
-\end_inset
-
- es un polinomio de grado menor que
-\begin_inset Formula $n$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Gauss:
-\series default
- Dados un peso
-\begin_inset Formula $p$
-\end_inset
-
- en
-\begin_inset Formula $[a,b]$
-\end_inset
-
- con una sucesión de polinomios ortonormales
-\begin_inset Formula $(P_{n})_{n}$
-\end_inset
-
-,
-\begin_inset Formula $n\in\mathbb{N}^{*}$
-\end_inset
-
-,
-\begin_inset Formula $a<t_{1}<\dots<t_{n}<b$
-\end_inset
-
- y
-\begin_inset Formula $A_{1},\dots,A_{n}\in\mathbb{R}$
-\end_inset
-
-, si
-\begin_inset Formula
-\[
-\int_{a}^{b}fp=\sum_{k=1}^{n}A_{k}f(t_{k})
-\]
-
-\end_inset
-
-para todo polinomio
-\begin_inset Formula $f$
-\end_inset
-
- de grado menor que
-\begin_inset Formula $n$
-\end_inset
-
-, esta fórmula se para polinomios de grado menor que
-\begin_inset Formula $2n$
-\end_inset
-
- si y sólo si
-\begin_inset Formula $t_{1},\dots,t_{n}$
-\end_inset
-
- son los ceros de
-\begin_inset Formula $P_{n}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-
-\series bold
-Teorema de Stieltjes:
-\series default
- Sean
-\begin_inset Formula $p$
-\end_inset
-
- un peso en
-\begin_inset Formula $[a,b]$
-\end_inset
-
- con una sucesión de polinomios ortonormales
-\begin_inset Formula $(P_{n})_{n}$
-\end_inset
-
- y, para
-\begin_inset Formula $n\in\mathbb{N}$
-\end_inset
-
-,
-\begin_inset Formula $t_{n1}<\dots<t_{nn}$
-\end_inset
-
- los ceros de
-\begin_inset Formula $P_{n}$
-\end_inset
-
- y
-\begin_inset Formula $A_{n1},\dots,A_{nn}\in\mathbb{R}$
-\end_inset
-
- los correspondientes coeficientes en la fórmula de cuadratura gaussiana,
- para
-\begin_inset Formula $f\in{\cal C}([a,b])$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\int_{a}^{b}fp=\lim_{n}\sum_{k=1}^{n}A_{nk}f(t_{nk}).
-\]
-
-\end_inset
-
-
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Section
-El espacio de Bergman
-\end_layout
-
-\begin_layout Standard
-Llamamos
-\begin_inset Formula $D(a,r)\coloneqq B(a,r)\subseteq\mathbb{C}$
-\end_inset
-
-.
- Si
-\begin_inset Formula $\Omega\subseteq\mathbb{C}$
-\end_inset
-
- es abierto,
-\begin_inset Formula ${\cal H}(\Omega)$
-\end_inset
-
- es el conjunto de las funciones holomorfas en
-\begin_inset Formula $\Omega$
-\end_inset
-
-, y para
-\begin_inset Formula $f\in{\cal H}(\Omega)$
-\end_inset
-
- y
-\begin_inset Formula $\overline{D(a,r)}\subseteq\Omega$
-\end_inset
-
-, la serie
-\begin_inset Formula $\sum_{n\in\mathbb{N}}a_{n}(z-a)^{n}$
-\end_inset
-
- con
-\begin_inset Formula $z\in D(a,r)$
-\end_inset
-
- converge uniformemente a
-\begin_inset Formula $f$
-\end_inset
-
- en compactos de
-\begin_inset Formula $D(a,r)$
-\end_inset
-
- para ciertos
-\begin_inset Formula $a_{n}\in\mathbb{C}$
-\end_inset
-
-.
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $\Omega\subseteq\mathbb{C}$
-\end_inset
-
- es abierto, llamamos
-\begin_inset Formula ${\cal T}_{\text{K}}$
-\end_inset
-
- a la topología en
-\begin_inset Formula ${\cal H}(\Omega)$
-\end_inset
-
- de convergencia uniforme sobre compactos, y
-\series bold
-espacio de Bergman
-\series default
- en el abierto
-\begin_inset Formula $\Omega\subseteq\mathbb{C}$
-\end_inset
-
- a
-\begin_inset Formula
-\[
-A^{2}(\Omega)\coloneqq\left\{ f\in{\cal H}(\Omega)\;\middle|\;\int_{\Omega}|f|^{2}<\infty\right\} ,
-\]
-
-\end_inset
-
-un subespacio cerrado y separable de
-\begin_inset Formula $L^{2}(\Omega)$
-\end_inset
-
- que es pues un espacio de Hilbert numerable con
-\begin_inset Formula $\langle\cdot,\cdot\rangle_{2}$
-\end_inset
-
-, y en el que la topología inducida por
-\begin_inset Formula $L^{2}(\Omega)$
-\end_inset
-
- es más fina que la inducida por
-\begin_inset Formula ${\cal T}_{\text{K}}$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $\Omega\subseteq\mathbb{C}$
-\end_inset
-
- es abierto,
-\begin_inset Formula $(\omega_{n})_{n}$
-\end_inset
-
- es base hilbertiana de
-\begin_inset Formula $A^{2}(\Omega)$
-\end_inset
-
- y
-\begin_inset Formula $f\in A^{2}(\Omega)$
-\end_inset
-
-, el desarrollo en serie de Fourier de
-\begin_inset Formula $f$
-\end_inset
-
-,
-\begin_inset Formula $\sum_{n}\langle f,\omega_{n}\rangle\omega_{n}$
-\end_inset
-
-, converge uniformemente a
-\begin_inset Formula $f$
-\end_inset
-
- en compactos de
-\begin_inset Formula $\Omega$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Si
-\begin_inset Formula $\psi_{n}(z)\coloneqq(z-a)^{n}$
-\end_inset
-
-,
-\begin_inset Formula $(\frac{\psi_{n}}{\Vert\psi_{n}\Vert})_{n}$
-\end_inset
-
- es una base hilbertiana de
-\begin_inset Formula $A^{2}(D(a,r))$
-\end_inset
-
-, y el desarrollo en serie de potencias es el desarrollo en serie de Fourier
- sobre esta base.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\begin_layout Standard
-Como
-\series bold
-teorema
-\series default
-, si
-\begin_inset Formula $\Omega\subsetneq\mathbb{C}$
-\end_inset
-
- es un abierto simplemente conexo y
-\begin_inset Formula $f:\Omega\to D(0,1)$
-\end_inset
-
- es un isomorfismo,
-\begin_inset Formula
-\[
-\left(z\mapsto\sqrt{\frac{n}{\pi}}(f(z))^{n-1}\dot{f}(z)\right)_{n}
-\]
-
-\end_inset
-
-es base hilbertiana de
-\begin_inset Formula $A^{2}(\Omega)$
-\end_inset
-
-, y en particular para
-\begin_inset Formula $R>0$
-\end_inset
-
-,
-\begin_inset Formula
-\[
-\left(z\mapsto\sqrt{\frac{n}{\pi}}R^{-n}z^{n-1}\right)_{n}
-\]
-
-\end_inset
-
- es base hilbertiana de
-\begin_inset Formula $A^{2}(D(0,R))$
-\end_inset
-
-.
-\begin_inset Note Note
-status open
-
-\begin_layout Plain Layout
-nproof
-\end_layout
-
-\end_inset
-
-
-\end_layout
-
-\end_body
-\end_document