diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-15 18:08:28 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2023-01-18 00:42:21 +0100 |
| commit | 2ffd2dd6bf328824dd2b47ba1f0d3b8d0eb2d332 (patch) | |
| tree | 96a812502563e237ff7b3fcbd13825f39f418822 /af/n3.lyx | |
| parent | 975f990481ed3934f99e53a912f234955abb5912 (diff) | |
Terminado análisis funcional (tema 3)
Diffstat (limited to 'af/n3.lyx')
| -rw-r--r-- | af/n3.lyx | 4760 |
1 files changed, 4760 insertions, 0 deletions
diff --git a/af/n3.lyx b/af/n3.lyx new file mode 100644 index 0000000..e043d8a --- /dev/null +++ b/af/n3.lyx @@ -0,0 +1,4760 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\usepackage{commath} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Algunos operadores acotados en espacios de Hilbert: +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + espacios prehilbertianos y +\begin_inset Formula $G$ +\end_inset + + de dimensión finita con base +\begin_inset Formula $(e_{i})_{i}$ +\end_inset + +, todo homomorfismo +\begin_inset Formula $T:G\to H$ +\end_inset + + es acotado con +\begin_inset Formula +\[ +\Vert T\Vert\leq\sqrt{\sum_{i}\Vert Te_{i}\Vert^{2}}. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(f_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $\{a_{n}\}_{n}\subseteq\mathbb{K}$ +\end_inset + + una sucesión acotada, el +\series bold +operador diagonal +\series default + +\begin_inset Formula $T:G\to H$ +\end_inset + + dado por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{n=1}^{\infty}a_{n}\langle x,e_{n}\rangle f_{n} +\] + +\end_inset + +es acotado con +\begin_inset Formula $\Vert T\Vert=\sup_{n}|a_{n}|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + +, el +\series bold +operador multiplicación por +\begin_inset Formula $g$ +\end_inset + + +\series default +, +\begin_inset Formula $T:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dado por +\begin_inset Formula $Tf\coloneqq gf$ +\end_inset + +, es acotado con +\begin_inset Formula $\Vert T\Vert=\Vert g\Vert_{\infty}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales respectivas +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(v_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + una matriz infinita con +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ +\end_inset + +, +\begin_inset Formula $T:G\to H$ +\end_inset + + dado por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert T\Vert\leq\sqrt{\sum_{i,j}|a_{ij}|^{2}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, el +\series bold +operador integral con núcleo +\begin_inset Formula $k$ +\end_inset + + +\series default +, +\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dado por +\begin_inset Formula +\[ +K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s, +\] + +\end_inset + +es acotado con +\begin_inset Formula $\Vert K\Vert\leq\sqrt{\iint_{[a,b]\times[a,b]}|k|^{2}}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Una matriz infinita +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + satisface el +\series bold +test de Schur +\series default + si existen +\begin_inset Formula $C,D\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula +\begin{align*} +\forall i\in\mathbb{N},\sum_{j}|a_{ij}| & \leq C, & \forall j\in\mathbb{N}, & \sum_{i}|a_{ij}|\leq D. +\end{align*} + +\end_inset + +Entonces, si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con bases ortonormales respectivas +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(v_{n})_{n}$ +\end_inset + +, +\begin_inset Formula $T:G\to H$ +\end_inset + + dada por +\begin_inset Formula +\[ +T(x)\coloneqq\sum_{i,j}a_{ij}\langle x,u_{i}\rangle v_{j} +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert T\Vert\leq\sqrt{CD}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Sean +\begin_inset Formula $k:[a,b]\times[a,b]\to\mathbb{K}$ +\end_inset + + medible y +\begin_inset Formula $C,D\in\mathbb{R}$ +\end_inset + + tales que +\begin_inset Formula +\begin{align*} +\forall t\in[a,b],\int_{a}^{b}|k(t,s)|\dif s & \leq C, & \forall s\in[a,b], & \int_{a}^{b}|k(t,s)|\dif t\leq D, +\end{align*} + +\end_inset + +entonces +\begin_inset Formula $K:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + dada por +\begin_inset Formula +\[ +K(f)(t)\coloneqq\int_{a}^{b}k(t,s)f(s)\dif s +\] + +\end_inset + +es un operador acotado con +\begin_inset Formula $\Vert K\Vert\leq\sqrt{CD}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + con base ortonormal +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + +, para +\begin_inset Formula $T\in L(H)$ +\end_inset + + y +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula +\[ +T(x)=\sum_{i,j}\langle x,e_{j}\rangle\langle Te_{j},e_{i}\rangle e_{i}, +\] + +\end_inset + +con lo que +\begin_inset Formula $T$ +\end_inset + + admite una representación matricial +\begin_inset Formula $(\langle Te_{j},e_{i}\rangle)_{i,j}\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $T\in L(X,Y)$ +\end_inset + + es +\series bold +de rango finito +\series default + si +\begin_inset Formula $\dim\text{Im}T<\infty$ +\end_inset + +. + Dados espacios de Hilbert +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $T\in L(G,H)$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es de rango finito si y sólo si viene dada por +\begin_inset Formula $T(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ +\end_inset + + para ciertos +\begin_inset Formula $u_{1},\dots,u_{n}\in G$ +\end_inset + + y +\begin_inset Formula $v_{1},\dots,v_{n}\in H$ +\end_inset + +, en cuyo caso los +\begin_inset Formula $(v_{i})_{i}$ +\end_inset + + pueden tomarse de forma que sean una base de +\begin_inset Formula $\text{Im}T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Inversión de operadores +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + son +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios normados, +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + y +\begin_inset Formula $S\in{\cal L}(Y,X)$ +\end_inset + + cumplen +\begin_inset Formula $ST=1_{X}$ +\end_inset + + entonces +\begin_inset Formula $S$ +\end_inset + + es el +\series bold +inverso por la izquierda +\series default + de +\begin_inset Formula $T$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + es el +\series bold +inverso por la derecha +\series default + de +\begin_inset Formula $S$ +\end_inset + +, y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + es +\series bold +invertible +\series default + si existe +\begin_inset Formula $T^{-1}\in{\cal L}(Y,X)$ +\end_inset + + inverso de +\begin_inset Formula $T$ +\end_inset + + por la izquierda y por la derecha. + Llamamos +\begin_inset Formula ${\cal L}(X)\coloneqq\text{End}_{\mathbb{K}}X={\cal L}(X,X)$ +\end_inset + + e +\begin_inset Formula +\[ +\text{Isom}X\coloneqq\text{Isom}_{\mathbb{K}}(X)\coloneqq\{T\in{\cal L}(X)\mid T\text{ invertible}\}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es de dimensión finita, +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + tiene inverso por la izquierda si y sólo si lo tiene por la derecha, si + y sólo si es invertible. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + Esto no es cierto en general en dimensión infinita; por ejemplo, el operador + +\series bold +desplazamiento a derecha +\series default +, +\begin_inset Formula $S_{\text{r}}\in\ell^{2}$ +\end_inset + + dado por +\begin_inset Formula $S_{\text{r}}(x_{1},\dots,x_{n},\dots)\coloneqq(0,x_{1},\dots,x_{n},\dots)$ +\end_inset + +, tiene como inverso por la izquierda el +\series bold +desplazamiento a izquierda +\series default +, +\begin_inset Formula $S_{\text{l}}\in\ell^{2}$ +\end_inset + + dado por +\begin_inset Formula $S_{\text{l}}(x_{1},\dots,x_{n},\dots)\coloneqq(x_{2},\dots,x_{n},\dots)$ +\end_inset + +, pero no tiene inverso por la derecha. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $T\in\text{End}_{\mathbb{K}}X$ +\end_inset + +, +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + + es un +\series bold +valor regular +\series default + de +\begin_inset Formula $T$ +\end_inset + + si +\begin_inset Formula $T-\lambda1_{X}$ +\end_inset + + es invertible, un +\series bold +valor espectral +\series default + en otro caso, y un +\series bold +valor propio +\series default + si +\begin_inset Formula $\ker(T-\lambda1_{X})\neq0$ +\end_inset + +, en cuyo caso llamamos +\series bold +subespacio propio +\series default + de +\begin_inset Formula $T$ +\end_inset + + correspondiente al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + a +\begin_inset Formula $\ker(T-\lambda1_{X})$ +\end_inset + + y +\series bold +valores propios +\series default + de +\begin_inset Formula $T$ +\end_inset + + correspondientes al valor propio +\begin_inset Formula $\lambda$ +\end_inset + + a los elementos no nulos de este subespacio. + Llamamos +\series bold +resolvente +\series default + de +\begin_inset Formula $T$ +\end_inset + + al conjunto de sus valores regulares, +\series bold +espectro +\series default + de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $\sigma(T)$ +\end_inset + +, al conjunto de sus valores espectrales y +\series bold +espectro puntual +\series default + de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $\sigma_{\text{p}}(T)\subseteq\sigma(T)$ +\end_inset + +, al conjunto de sus valores propios. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $X$ +\end_inset + + es de dimensión finita, +\begin_inset Formula $\sigma_{\text{p}}(T)=\sigma(T)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + Sin embargo, +\begin_inset Formula $0\in\sigma(S_{\text{r}})$ +\end_inset + + pero +\begin_inset Formula $\sigma_{\text{p}}(S_{\text{r}})=\emptyset$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach y +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + cumple +\begin_inset Formula $\Vert T\Vert<1$ +\end_inset + +, +\begin_inset Formula $1_{X}-T$ +\end_inset + + es invertible con inverso +\begin_inset Formula $\sum_{n\in\mathbb{N}}T^{n}$ +\end_inset + + y +\begin_inset Formula $\Vert(1_{X}-T)^{-1}\Vert\leq\frac{1}{1-\Vert T\Vert}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $\sum_{k=0}^{n}\Vert T^{k}\Vert\leq\sum_{k=0}^{n}\Vert T\Vert^{k}\leq\sum_{k\in\mathbb{N}}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}$ +\end_inset + +, con lo que +\begin_inset Formula $\sum_{n}\Vert T^{n}\Vert$ +\end_inset + + converge y, por ser +\begin_inset Formula $X$ +\end_inset + + de Banach, +\begin_inset Formula $S\coloneqq\sum_{n}T^{n}$ +\end_inset + + también, pero +\begin_inset Formula $S(1_{X}-T)=S-ST=T^{0}=1_{X}$ +\end_inset + + y análogamente +\begin_inset Formula $(1_{X}-T)S=1_{X}$ +\end_inset + +, luego +\begin_inset Formula $S=(1_{X}-T)^{-1}$ +\end_inset + +, y finalmente +\begin_inset Formula +\[ +\Vert(1_{X}-T)^{-1}\Vert=\left\Vert \sum_{n}T^{n}\right\Vert \leq\sum_{n}\Vert T\Vert^{n}=\frac{1}{1-\Vert T\Vert}. +\] + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de von Neumann: +\series default + Sean +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + + invertible y +\begin_inset Formula $S\in{\cal L}(X)$ +\end_inset + + tal que +\begin_inset Formula $\Vert T-S\Vert<\frac{1}{\Vert T^{-1}\Vert}$ +\end_inset + +, entonces +\begin_inset Formula $S$ +\end_inset + + es invertible con +\begin_inset Formula +\begin{align*} +S^{-1} & =\sum_{n\in\mathbb{N}}(T^{-1}(T-S))^{n}T^{-1}, & \left\Vert T^{-1}-S^{-1}\right\Vert & \leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. +\end{align*} + +\end_inset + + +\series bold +Demostración: +\series default + +\begin_inset Formula $\Vert T^{-1}(T-S)\Vert=\Vert T-S\Vert\Vert T^{-1}\Vert<1$ +\end_inset + +, luego por el teorema anterior +\begin_inset Formula $1_{X}-T^{-1}(T-S)=T^{-1}S$ +\end_inset + + es invertible con +\begin_inset Formula +\[ +(T^{-1}S)^{-1}=\sum_{n}(T^{-1}(T-S))^{n}, +\] + +\end_inset + +luego +\begin_inset Formula $S=T(T^{-1}S)$ +\end_inset + + es invertible con inversa +\begin_inset Formula $(T^{-1}S)^{-1}T^{-1}$ +\end_inset + + y +\begin_inset Formula +\begin{align*} +\Vert T^{-1}-S^{-1}\Vert & =\Vert T^{-1}-(T^{-1}S)^{-1}T^{-1}\Vert=\Vert(1_{X}-(T^{-1}S)^{-1})T^{-1}\Vert\leq\\ + & \leq\left\Vert \left(1_{X}-\sum_{n}(T^{-1}(T-S))^{n}\right)T^{-1}\right\Vert =\left\Vert \sum_{n\geq1}(T^{-1}(T-S))^{n}T^{-1}\right\Vert \leq\\ + & \leq\sum_{n\geq1}\Vert(T^{-1}(T-S))^{n}\Vert\Vert T^{-1}\Vert\leq\frac{\Vert T^{-1}\Vert^{2}\Vert T-S\Vert}{1-\Vert T^{-1}\Vert\Vert T-S\Vert}. +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $X$ +\end_inset + + es un espacio de Banach, +\begin_inset Formula $\text{Isom}X$ +\end_inset + + es un abierto de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + + y +\begin_inset Formula $\cdot^{-1}:\text{Isom}X\to\text{Isom}X$ +\end_inset + + es continua con la norma de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +begin{reminder}{FVC} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Liouville: +\series default + Toda función [...][compleja holomorfa y] acotada es constante. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +end{reminder} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de Gelfand: +\series default + Si +\begin_inset Formula $_{\mathbb{C}}X$ +\end_inset + + es de Banach y +\begin_inset Formula $T\in{\cal L}(X)$ +\end_inset + +, +\begin_inset Formula $\sigma(T)$ +\end_inset + + es compacto no vacío contenido en +\begin_inset Formula $B(0,\Vert T\Vert)$ +\end_inset + +. + +\series bold +Demostración: +\series default + Si +\begin_inset Formula $\lambda\in\mathbb{C}\setminus B[0,\Vert T\Vert]$ +\end_inset + +, +\begin_inset Formula $\frac{\Vert T\Vert}{|\lambda|}<1$ +\end_inset + +, luego +\begin_inset Formula $\lambda1_{X}-T=\lambda(1_{X}-\frac{T}{\lambda})$ +\end_inset + + es invertible y +\begin_inset Formula $\lambda\notin\sigma(T)$ +\end_inset + +. + La función +\begin_inset Formula $\psi:\mathbb{C}\to{\cal L}(X)$ +\end_inset + + dada por +\begin_inset Formula $\psi(\lambda)\coloneqq\lambda1_{X}-T$ +\end_inset + + es continua y por tanto +\begin_inset Formula $\mathbb{C}\setminus\sigma(T)=\psi^{-1}(\text{Isom}X)$ +\end_inset + + es abierto, con lo que +\begin_inset Formula $\sigma(T)$ +\end_inset + + es cerrado acotado y por tanto compacto. + Si fuera vacío, podemos definir +\begin_inset Formula $\phi:\mathbb{C}\to\text{Isom}X$ +\end_inset + + como +\begin_inset Formula $\phi(\lambda)\coloneqq(\lambda1_{X}-T)^{-1}$ +\end_inset + +, que es continua, pero para +\begin_inset Formula $\lambda,h\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\frac{((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}((\lambda1_{X}-T)-((\lambda+h)1_{X}-T))}{h}=\\ +=-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1}, +\end{multline*} + +\end_inset + +de donde +\begin_inset Formula +\[ +\dot{\phi}(\lambda)=\lim_{h\to0}\frac{\phi(\lambda+h)-\phi(\lambda)}{h}=\lim_{h\to0}(-((\lambda+h)1_{X}-T)^{-1}(\lambda1_{X}-T)^{-1})=-((\lambda1_{X}-T)^{-1})^{2}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\phi$ +\end_inset + + es holomorfa y +\begin_inset Formula $\dot{\phi}\neq0$ +\end_inset + +, pero +\begin_inset Formula +\[ +\Vert\phi(\lambda)\Vert=\Vert(\lambda1_{X}-T)^{-1}\Vert=\frac{1}{|\lambda|}\left\Vert \left(1_{X}-\frac{T}{\lambda}\right)^{-1}\right\Vert =\frac{1}{|\lambda|}\left\Vert \sum_{n\in\mathbb{N}}\frac{T^{n}}{\lambda^{n}}\right\Vert \leq\frac{1}{|\lambda|}\frac{1}{1-\frac{\Vert T\Vert}{|\lambda|}}=\frac{1}{|\lambda|-\Vert T\Vert}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\lim_{|\lambda|\to\infty}\Vert\phi(\lambda)\Vert=\infty$ +\end_inset + + y por tanto, como +\begin_inset Formula $\phi$ +\end_inset + + es continua, es acotada y, por el teorema de Liouville +\begin_inset Foot +status open + +\begin_layout Plain Layout +Que todavía no hemos visto que se de para espacios vectoriales infinitos + pero suponemos que se cumple. +\end_layout + +\end_inset + +, +\begin_inset Formula $\phi$ +\end_inset + + es constante y +\begin_inset Formula $\dot{\phi}=0\#$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Dados +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + + con +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<1$ +\end_inset + + e +\begin_inset Formula $y\in\ell^{2}$ +\end_inset + +, el sistema +\begin_inset Formula +\begin{align*} +x_{k}-\sum_{j\in\mathbb{N}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}, +\end{align*} + +\end_inset + +tiene solución única +\begin_inset Formula $z\in\ell^{2}$ +\end_inset + +, y para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, el sistema truncado +\begin_inset Formula +\begin{align*} +x_{k}-\sum_{j\in\mathbb{N}_{n}}a_{kj}x_{j} & =y_{k}, & k & \in\mathbb{N}_{n} +\end{align*} + +\end_inset + +tiene una única solución +\begin_inset Formula $z_{n}\in\mathbb{K}^{n}$ +\end_inset + + de modo que, si +\begin_inset Formula $J_{n}:\mathbb{K}^{n}\to\ell^{2}$ +\end_inset + + es la inclusión canónica de +\begin_inset Formula $\mathbb{K}^{n}$ +\end_inset + + en las +\begin_inset Formula $n$ +\end_inset + + primeras coordenadas, +\begin_inset Formula $\lim_{n}J_{n}(z_{n})=z$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + con +\begin_inset Formula $\Vert k\Vert_{2}<1$ +\end_inset + + y +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, la ecuación +\begin_inset Formula +\begin{align*} +f(t)-\int_{a}^{b}k(t,s)f(s)\dif s & =g(t), & t & \in[a,b], +\end{align*} + +\end_inset + +tiene solución única que es de la forma +\begin_inset Formula +\[ +g(t)+\int_{a}^{b}\tilde{k}(t,s)g(s)\dif s +\] + +\end_inset + +para cierto +\begin_inset Formula $\tilde{k}\in L^{2}([a,b]\times[a,b])$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $K$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, +\begin_inset Formula $\Vert k\Vert_{2}<1$ +\end_inset + + y +\begin_inset Formula +\[ +\forall t\in[a,b],\int_{a}^{b}|k(t,s)|^{2}\dif s\leq C, +\] + +\end_inset + +para +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, la serie +\begin_inset Formula $\sum_{n}K^{n}g$ +\end_inset + + converge en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + y converge absoluta y uniformemente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con todo esto, para +\begin_inset Formula $g\in L^{2}([0,1])$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{R}\setminus\{1\}$ +\end_inset + +, la ecuación integral +\begin_inset Formula +\[ +f(t)-\lambda\int_{0}^{1}\text{e}^{t-s}f(s)\dif s=g(t) +\] + +\end_inset + +tiene solución única +\begin_inset Formula +\[ +f(t)=g(t)+\frac{\lambda}{1-\lambda}\int_{0}^{1}\text{e}^{t-s}g(s)\dif s. +\] + +\end_inset + + +\end_layout + +\begin_layout Section +Operador adjunto +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert y +\begin_inset Formula $T\in L(G,H)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\Vert T\Vert=\sup_{x,y\in\overline{B_{G}}}|\langle Tx,y\rangle|=\sup_{x,y\in B_{G}}|\langle Tx,y\rangle|. +\] + +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe un único +\begin_inset Formula $T^{*}\in L(H,G)$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in G,\forall y\in H,\langle Tx,y\rangle\equiv\langle x,T^{*}y\rangle$ +\end_inset + +, el +\series bold +adjunto +\series default + de +\begin_inset Formula $T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert T\Vert=\Vert T^{*}\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $G$ +\end_inset + +, +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $J$ +\end_inset + + +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert, +\begin_inset Formula $A,B\in L(G,H)$ +\end_inset + +, +\begin_inset Formula $C\in L(H,J)$ +\end_inset + + y +\begin_inset Formula $\alpha\in\mathbb{K}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(A+B)^{*}=A^{*}+B^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\alpha A)^{*}=\overline{\alpha}A^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A^{**}=A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(AC)^{*}=C^{*}A^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $A$ +\end_inset + + es invertible, también lo es +\begin_inset Formula $A^{*}$ +\end_inset + + y +\begin_inset Formula $(A^{*})^{-1}=(A^{-1})^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert AA^{*}\Vert=\Vert A^{*}A\Vert=\Vert A\Vert^{2}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ker A=(\text{Im}A^{*})^{\bot}$ +\end_inset + + y +\begin_inset Formula $\ker A^{*}=(\text{Im}A)^{\bot}.$ +\end_inset + + +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $(\ker A)^{\bot}=\overline{\text{Im}A^{*}}$ +\end_inset + + y +\begin_inset Formula $(\ker A^{*})^{\bot}=\overline{\text{Im}A}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Ejemplos: +\end_layout + +\begin_layout Enumerate +En +\begin_inset Formula $\ell^{2}$ +\end_inset + +, el adjunto de +\begin_inset Formula $S_{\text{r}}$ +\end_inset + + es +\begin_inset Formula $S_{\text{l}}$ +\end_inset + + y viceversa. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $K\in{\cal L}(H)$ +\end_inset + + es un operador de rango finito dado por +\begin_inset Formula $K(x)=\sum_{i=1}^{n}\langle x,u_{i}\rangle v_{i}$ +\end_inset + +, su adjunto es de rango finito dado por +\begin_inset Formula $K^{*}(x)=\sum_{i=1}^{n}\langle x,v_{i}\rangle u_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert con base +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + + y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es un operador diagonal con +\begin_inset Formula $A(e_{i})\coloneqq\lambda_{i}e_{i}$ +\end_inset + + para ciertos +\begin_inset Formula $\lambda_{i}$ +\end_inset + +, entonces +\begin_inset Formula $A^{*}$ +\end_inset + + es un operador diagonal con +\begin_inset Formula $A^{*}(e_{i})=\overline{\lambda_{i}}e_{i}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + es el operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + +, +\begin_inset Formula $K^{*}$ +\end_inset + + es el operador multiplicación por +\begin_inset Formula $\overline{g}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert separable con base hilbertiana +\begin_inset Formula $(e_{n})_{n\in I}$ +\end_inset + + y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + se expresa en dicha base como +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ +\end_inset + +, +\begin_inset Formula $A^{*}$ +\end_inset + + se expresa en dicha base como +\begin_inset Formula $(\overline{a_{ji}})\in\mathbb{K}^{I\times I}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + +, +\begin_inset Formula $K^{*}$ +\end_inset + + es el operador integral con núcleo +\begin_inset Formula $k^{*}(t,s)\coloneqq\overline{k(s,t)}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $M\leq H$ +\end_inset + + es cerrado e +\begin_inset Formula $\iota:M\hookrightarrow H$ +\end_inset + + es la inclusión, +\begin_inset Formula $\iota^{*}:H\to M$ +\end_inset + + es la proyección ortogonal. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +En general el adjunto no existe en espacios prehilbertianos. + Por ejemplo, +\begin_inset Formula $T:c_{00}\to c_{00}$ +\end_inset + + dado por +\begin_inset Formula $T(x)\coloneqq\sum_{n\geq1}\frac{x_{n}}{n}(1,0,\dots)$ +\end_inset + + no tiene adjunto en +\begin_inset Formula $(c_{00},\langle\cdot,\cdot\rangle_{2})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es +\series bold +autoadjunto +\series default + o +\series bold +hermitiano +\series default + si +\begin_inset Formula $A^{*}=A$ +\end_inset + +. + Si +\begin_inset Formula $A,B\in{\cal L}(H)$ +\end_inset + + son autoadjuntos: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert A\Vert=\sup_{x\in\overline{B_{H}}}|\langle Ax,x\rangle|=\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Los valores propios de +\begin_inset Formula $A$ +\end_inset + + son reales. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle=0\implies A=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H=\ker A\oplus\overline{\text{Im}A}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A+B$ +\end_inset + + es autoadjunto, y +\begin_inset Formula $AB$ +\end_inset + + lo es si y sólo si +\begin_inset Formula $AB=BA$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $_{\mathbb{C}}H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\forall x\in H,\langle Ax,x\rangle\in\mathbb{R}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate + +\backslash +Existen únicos +\begin_inset Formula $\text{Re}A,\text{Im}A\in{\cal L}(H)$ +\end_inset + + autoadjuntos, la +\series bold +parte real +\series default + y la +\series bold +imaginaria +\series default + de +\begin_inset Formula $A$ +\end_inset + +, con +\begin_inset Formula $A=\text{Re}A+\text{i}\text{Im}A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\llbracket A\rrbracket\coloneqq\sup_{x\in S_{H}}|\langle Ax,x\rangle|$ +\end_inset + + es una norma en +\begin_inset Formula ${\cal L}(H)$ +\end_inset + + equivalente a la usual. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert con base +\begin_inset Formula $(e_{i})_{i\in I}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +El operador diagonal +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + con +\begin_inset Formula $T(e_{i})\eqqcolon\lambda_{i}e_{i}$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\{\lambda_{i}\}_{i\in I}\subseteq\mathbb{R}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es separable y +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + se representa respecto a la base como la matriz +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{I\times I}$ +\end_inset + +, +\begin_inset Formula $A$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $\forall i,j\in I,a_{ij}=\overline{a_{ji}}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + + en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $g(t)$ +\end_inset + + es real para casi todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +El operador integral con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + en +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + es autoadjunto si y sólo si +\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ +\end_inset + + para casi todo +\begin_inset Formula $(s,t)\in[a,b]\times[a,b]$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Una proyección ortogonal +\begin_inset Formula $P:H\to H$ +\end_inset + + sobre un subespacio cerrado es autoadjunto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es +\series bold +normal +\series default + si +\begin_inset Formula $AA^{*}=A^{*}A$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle A^{*}x,A^{*}y\rangle$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in H,\Vert Ax\Vert=\Vert A^{*}x\Vert$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert complejo, +\begin_inset Formula $A\in{\cal L}(H)$ +\end_inset + + es normal si y sólo si +\begin_inset Formula $\text{Re}A\circ\text{Im}A=\text{Im}A\circ\text{Re}A$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Todo operador diagonal es normal. +\end_layout + +\begin_layout Enumerate +El operador integral sobre +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es normal si y sólo si +\begin_inset Formula +\[ +\int_{a}^{b}\overline{k(s,t)}k(s,x)\dif s=\int_{a}^{b}k(t,s)\overline{k(x,s)}\dif s +\] + +\end_inset + +para casi todo +\begin_inset Formula $(t,x)\in[a,b]\times[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Una +\series bold +proyección +\series default + en un espacio normado +\begin_inset Formula $X$ +\end_inset + + es un operador +\begin_inset Formula $X\to X$ +\end_inset + + idempotente. + Si +\begin_inset Formula $H$ +\end_inset + + es un espacio de Hilbert y +\begin_inset Formula $P$ +\end_inset + + es una proyección continua no nula en +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $P$ +\end_inset + + es una proyección ortogonal si y sólo si +\begin_inset Formula $\Vert P\Vert=1$ +\end_inset + +, si y sólo si +\begin_inset Formula $\text{Im}P=(\ker P)^{\bot}$ +\end_inset + +, si y sólo si +\begin_inset Formula $\ker P=(\text{Im}P)^{\bot}$ +\end_inset + +, si y sólo si +\begin_inset Formula $P$ +\end_inset + + es autoadjunto, si y sólo si es normal, si y sólo si +\begin_inset Formula $\forall x\in H,\langle Px,x\rangle=\Vert Px\Vert^{2}$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x\in H,\langle Px,x\rangle\geq0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Existen proyecciones no ortogonales, como +\begin_inset Formula $p:\mathbb{R}^{2}\to\mathbb{R}^{2}$ +\end_inset + + dada por +\begin_inset Formula $p(x,y)\coloneqq(x+y,0)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}$ +\end_inset + +, +\begin_inset Formula $\lambda\in\sigma(T)\iff\overline{\lambda}\in\sigma(T^{*})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es normal: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\lambda\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\ker(T-\lambda1_{H})=\ker(T^{*}-\overline{\lambda}1_{H})$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall\lambda,\mu\in\mathbb{C},(\lambda\neq\mu\implies\ker(T-\lambda1_{H})\bot\ker(T-\mu1_{H}))$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + + y +\begin_inset Formula $\ker(T-\lambda1_{H})^{\bot}$ +\end_inset + + son +\begin_inset Formula $T$ +\end_inset + +-invariantes. +\end_layout + +\begin_layout Section +Operadores compactos +\end_layout + +\begin_layout Standard +Dado un espacio topológico +\begin_inset Formula $X$ +\end_inset + +, +\begin_inset Formula $Y\subseteq X$ +\end_inset + + es +\series bold +relativamente compacto +\series default + en +\begin_inset Formula $X$ +\end_inset + + si su clausura en +\begin_inset Formula $X$ +\end_inset + + es compacta. + Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios normados, una función lineal +\begin_inset Formula $T:X\to Y$ +\end_inset + + es +\series bold +compacta +\series default + si +\begin_inset Formula $T(B_{X})$ +\end_inset + + es relativamente compacta en +\begin_inset Formula $Y$ +\end_inset + +, si y sólo si para cada sucesión acotada +\begin_inset Formula $\{x_{n}\}_{n}\subseteq X$ +\end_inset + +, +\begin_inset Formula $(Tx_{n})_{n}$ +\end_inset + + posee una subsucesión convergente, si y sólo si esto se cumple cuando cada + +\begin_inset Formula $\Vert x_{n}\Vert=1$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Los operadores de rango finito son compactos. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador identidad en un espacio de dimensión infinita nunca es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Llamamos +\begin_inset Formula ${\cal K}(X,Y)$ +\end_inset + + al subespacio vectorial de +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + de los operadores compactos, que es cerrado si +\begin_inset Formula $Y$ +\end_inset + + es de Banach. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $A\in{\cal L}(X,Y)$ +\end_inset + +, +\begin_inset Formula $T\in{\cal K}(Y,Z)$ +\end_inset + + y +\begin_inset Formula $B\in{\cal L}(Z,W)$ +\end_inset + +, +\begin_inset Formula $BTA\in{\cal K}(X,W)$ +\end_inset + +, y en particular +\begin_inset Formula ${\cal K}(X)\coloneqq{\cal K}(X,X)$ +\end_inset + + es un ideal de +\begin_inset Formula ${\cal L}(X)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal K}(X,Y)$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\text{Im}T$ +\end_inset + + es un subespacio separable de +\begin_inset Formula $Y$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $Y$ +\end_inset + + es de Hilbert, +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + es de dimensión infinita con base hilbertiana +\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ +\end_inset + + y, para +\begin_inset Formula $n\in\mathbb{N}$ +\end_inset + +, +\begin_inset Formula $P_{n}\in{\cal L}(Y)$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\text{span}\{e_{i}\}_{i\leq n}$ +\end_inset + +, entonces +\begin_inset Formula $T=\lim_{n}P_{n}T\in{\cal L}(X,Y)$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, si +\begin_inset Formula $Y$ +\end_inset + + es de Hilbert, +\begin_inset Formula ${\cal K}(X,Y)$ +\end_inset + + es la clausura en +\begin_inset Formula ${\cal L}(X,Y)$ +\end_inset + + del conjunto de operadores acotados de rango finito. + Esto no es cierto cuando +\begin_inset Formula $Y$ +\end_inset + + es un espacio de Banach arbitrario. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert, +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + es compacto si y sólo si lo es +\begin_inset Formula $T^{*}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Con esto: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(e_{n})_{n\in\mathbb{N}}$ +\end_inset + + y +\begin_inset Formula $(f_{n})_{n\in\mathbb{N}}$ +\end_inset + + son bases hilbertianas respectivas de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $T:G\to H$ +\end_inset + + es un operador diagonal dado por +\begin_inset Formula $Te_{n}\coloneqq\lambda_{n}f_{n}$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es compacto si y sólo si +\begin_inset Formula $\lim_{n}\lambda_{n}=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador multiplicación por +\begin_inset Formula $g\in L^{\infty}([a,b])$ +\end_inset + + es compacto si y sólo si +\begin_inset Formula $g=0$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + son espacios de Hilbert de dimensión +\begin_inset Formula $\aleph_{0}$ +\end_inset + + y +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + se representa en ciertas bases de +\begin_inset Formula $G$ +\end_inset + + y +\begin_inset Formula $H$ +\end_inset + + como +\begin_inset Formula $(a_{ij})\in\mathbb{K}^{\mathbb{N}\times\mathbb{N}}$ +\end_inset + +, si +\begin_inset Formula $\sum_{i,j}|a_{ij}|^{2}<\infty$ +\end_inset + +, +\begin_inset Formula $T$ +\end_inset + + es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +El operador integral +\begin_inset Formula $K\in{\cal L}(L^{2}([a,b]))$ +\end_inset + + con núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es compacto, +\begin_inset Formula ${\cal C}([a,b])$ +\end_inset + + es +\begin_inset Formula $K$ +\end_inset + +-invariante y +\begin_inset Formula $K|_{{\cal C}([a,b])}:({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})\to({\cal C}([a,b]),\Vert\cdot\Vert_{\infty})$ +\end_inset + + es compacto. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Teorema espectral +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert de dimensión finita y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es autoadjunto: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda_{1},\dots,\lambda_{m}$ +\end_inset + + son los distintos valores propios de +\begin_inset Formula $T$ +\end_inset + +, +\begin_inset Formula $H=\bigoplus_{k=1}^{m}\ker(T-\lambda_{k}I_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe una base ortonormal +\begin_inset Formula $(e_{k})_{k}$ +\end_inset + + de +\begin_inset Formula $H$ +\end_inset + + formada por vectores propios de +\begin_inset Formula $T$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $Tx=\sum_{k}\mu_{k}\langle x,e_{k}\rangle e_{k}$ +\end_inset + +, donde +\begin_inset Formula $\mu_{k}$ +\end_inset + + es el valor propio asociado a +\begin_inset Formula $e_{k}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T$ +\end_inset + + es un operador compacto autoadjunto en el espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + +, +\begin_inset Formula $\Vert T\Vert$ +\end_inset + + o +\begin_inset Formula $-\Vert T\Vert$ +\end_inset + + es valor propio de +\begin_inset Formula $T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Todo operador normal compacto en un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert tiene algún valor propio. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto en el +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + + y +\begin_inset Formula $\lambda\in\mathbb{K}\setminus0$ +\end_inset + +, +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + + es de dimensión finita. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $X$ +\end_inset + + e +\begin_inset Formula $Y$ +\end_inset + + espacios de Banach y +\begin_inset Formula $T\in{\cal L}(X,Y)$ +\end_inset + + compacto, +\begin_inset Formula $\sigma_{\text{p}}(T)$ +\end_inset + + es contable, contiene a +\begin_inset Formula $\sigma(T)\setminus\{0\}$ +\end_inset + + y, si es infinito, es una sucesión acotada con a lo sumo un punto de acumulació +n, el 0, y si +\begin_inset Formula $T$ +\end_inset + + es normal el 0 es punto de acumulación. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema espectral para operadores compactos autoadjuntos: +\series default + Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto normal: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + + es contable. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P_{\lambda}\in{\cal L}(H)$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\ker(T-\lambda1_{H})$ +\end_inset + +, +\begin_inset Formula $T=\sum_{\lambda\in\sigma_{\text{p}}(T)}\lambda P_{\lambda}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\overline{\text{Im}T}=\bigoplus_{\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}}\ker(T-\lambda1_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $H=\ker T\oplus\overline{\text{Im}T}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Existe una base ortonormal +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ +\end_inset + + tales que, para +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula $(\mu_{n}\langle x,e_{n}\rangle e_{n})_{n\in J}$ +\end_inset + + es sumable con suma +\begin_inset Formula $Tx$ +\end_inset + +, y entonces +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + + y +\begin_inset Formula $\forall\lambda\in\sigma_{\text{p}}(T)\setminus\{0\},|\{n\in J\mid\mu_{n}=\lambda\}|=\dim\ker(T-\lambda1_{H})$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $P_{0}$ +\end_inset + + es la proyección ortogonal sobre +\begin_inset Formula $\ker T$ +\end_inset + +, +\begin_inset Formula $\forall x\in H,x=P_{0}x+\sum_{n\in J}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto autoadjunto si y sólo si hay una familia ortonormal contable + +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + de modo que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + y 0 es el único punto de acumulación de +\begin_inset Formula $(\mu_{n})_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema de alternativa de Fredholm: +\series default + Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto autoadjunto, +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + una base ortonormal de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + + de modo que +\begin_inset Formula $Tx\eqqcolon\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + para ciertos +\begin_inset Formula $\mu_{n}\in\mathbb{K}$ +\end_inset + + e +\begin_inset Formula $y\in H$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Para +\begin_inset Formula $\lambda\in\mathbb{K}\setminus\{\sigma_{\text{p}}(T)\cup\{0\})$ +\end_inset + +, la ecuación +\begin_inset Formula $(\lambda1_{H}-T)x=y$ +\end_inset + + tiene como única solución +\begin_inset Formula +\[ +x=\frac{1}{\lambda}\left(y+\sum_{n\in J}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right). +\] + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si existe solución +\begin_inset Formula $x\in H$ +\end_inset + +, +\begin_inset Formula +\[ +(\lambda1_{H}-T)x=y\iff\lambda x=Tx+y\iff x=\frac{1}{\lambda}\left(\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}+y\right), +\] + +\end_inset + +pero entonces +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda}(\mu_{n}\langle x,e_{n}\rangle+\langle y,e_{n}\rangle)$ +\end_inset + + y +\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ +\end_inset + +, y como +\begin_inset Formula $\lambda-\mu_{n}\neq0$ +\end_inset + +, podemos sustituir +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\lambda-\mu_{n}}\langle y,e_{n}\rangle$ +\end_inset + + en lo anterior y queda la solución del enunciado. + Queda ver que la serie converge, pero si +\begin_inset Formula $\sigma_{\text{p}}(T)$ +\end_inset + + es infinito, +\begin_inset Formula $\{\mu_{n}\}_{n}\subseteq\sigma_{\text{p}}(T)$ +\end_inset + + es acotado y por tanto lo es +\begin_inset Formula $\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|$ +\end_inset + + y +\begin_inset Formula +\[ +\sum_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}|\langle y,e_{n}\rangle|^{2}\leq\sup_{n\in J}\left|\frac{\mu_{n}}{\lambda-\mu_{n}}\right|^{2}\sum_{n\in J}|\langle y,e_{n}\rangle|^{2}<\infty. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $\lambda\in\sigma_{\text{p}}(T)\setminus\{0\}$ +\end_inset + +, la ecuación +\begin_inset Formula $(\lambda1_{H}-T)x=y$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $y\bot\ker(\lambda1_{H}-T)$ +\end_inset + +, en cuyo caso las soluciones son +\begin_inset Formula +\begin{align*} +x & =\frac{1}{\lambda}\left(y+\sum_{\begin{subarray}{c} +n\in J\\ +\mu_{n}\neq\lambda +\end{subarray}}\frac{\mu_{n}}{\lambda-\mu_{n}}\langle y,e_{n}\rangle e_{n}\right)+z, & z & \in\ker(\lambda1_{H}-T). +\end{align*} + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si la ecuación tiene solución +\begin_inset Formula $x$ +\end_inset + +, entonces +\begin_inset Formula $y=(\lambda1_{H}-T)x\in\text{Im}(\lambda1_{H}-T)\subseteq\overline{\text{Im}(\lambda1_{H}-T)}=\ker((\lambda1_{H}-T)^{*})^{\bot}=\ker(\lambda1_{H}-T)^{\bot}$ +\end_inset + + por ser +\begin_inset Formula $1_{H}$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + autoadjuntos, y claramente dos soluciones difieren en un vector de +\begin_inset Formula $\ker(\lambda1_{H}-T)$ +\end_inset + +. + Queda ver que, si +\begin_inset Formula $y\in\ker(\lambda1_{H}-T)^{\bot}$ +\end_inset + +, la +\begin_inset Formula $x$ +\end_inset + + del enunciado es solución, para lo cual hacemos la misma sustitución que + al principio del primer apartado pero, cuando +\begin_inset Formula $\lambda=\mu_{n}$ +\end_inset + +, en su lugar vemos que +\begin_inset Formula $(\lambda-\mu_{n})\langle x,e_{n}\rangle=\langle y,e_{n}\rangle$ +\end_inset + + y por tanto +\begin_inset Formula $\langle y,e_{n}\rangle=0$ +\end_inset + +, por lo que excluimos dicho factor de la serie, la cual converge por el + mismo motivo que en el primer apartado y resulta en la solución del enunciado. +\end_layout + +\end_deeper +\begin_layout Enumerate +Para +\begin_inset Formula $y=0$ +\end_inset + +, +\begin_inset Formula $Tx=y$ +\end_inset + + tiene solución si y sólo si +\begin_inset Formula $y\bot\ker T$ +\end_inset + + y +\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}<\infty$ +\end_inset + +, en cuyo caso las soluciones son +\begin_inset Formula +\begin{align*} +x & =\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z, & z & \in\ker T. +\end{align*} + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Standard +Si la ecuación tiene solución +\begin_inset Formula $x$ +\end_inset + +, +\begin_inset Formula $y\in\text{Im}T\subseteq(\ker T)^{\bot}$ +\end_inset + + y +\begin_inset Formula +\[ +\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}=Tx=y=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}, +\] + +\end_inset + +con lo que +\begin_inset Formula $\langle x,e_{n}\rangle=\frac{1}{\mu_{n}}\langle y,e_{n}\rangle$ +\end_inset + + para cada +\begin_inset Formula $n$ +\end_inset + + y por tanto +\begin_inset Formula $\sum_{n\in J}\left|\frac{\langle y,e_{n}\rangle}{\mu_{n}}\right|^{2}=\Vert x\Vert^{2}<\infty$ +\end_inset + +, y como +\begin_inset Formula $(e_{n})_{n}$ +\end_inset + + es base de +\begin_inset Formula $\overline{\text{Im}T}$ +\end_inset + +, +\begin_inset Formula $x\in\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+\overline{\text{Im}T}^{\bot}$ +\end_inset + + con +\begin_inset Formula $\overline{\text{Im}T}^{\bot}=\ker T$ +\end_inset + +. + Finalmente, si esta condición se cumple, +\begin_inset Formula $y\in\overline{\text{Im}T}$ +\end_inset + +, la serie del enunciado converge y +\begin_inset Formula +\[ +T\left(\sum_{n\in J}\frac{1}{\mu_{n}}\langle y,e_{n}\rangle e_{n}+z\right)=\sum_{n\in J}\langle y,e_{n}\rangle e_{n}+0=y. +\] + +\end_inset + + +\end_layout + +\end_deeper +\begin_layout Standard +Sea +\begin_inset Formula $A$ +\end_inset + + un operador en un espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es una isometría si y sólo si +\begin_inset Formula $A^{*}$ +\end_inset + + es inverso por la izquierda de +\begin_inset Formula $A$ +\end_inset + +, si y sólo si +\begin_inset Formula $\forall x,y\in H,\langle Ax,Ay\rangle=\langle x,y\rangle$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $A$ +\end_inset + + es un isomorfismo isométrico, si y sólo si es una isometría suprayectiva, + si y sólo si +\begin_inset Formula $A^{*}$ +\end_inset + + es inverso de +\begin_inset Formula $A$ +\end_inset + +, y entonces decimos que +\begin_inset Formula $A$ +\end_inset + + es +\series bold +unitario +\series default +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $H$ +\end_inset + + un +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $S,T\in{\cal L}(H)$ +\end_inset + + compactos autoadjuntos, +\begin_inset Formula $\forall\lambda\in\mathbb{K},\dim\ker(T-\lambda1_{H})=\dim\ker(S-\lambda1_{H})$ +\end_inset + + si y sólo si existe +\begin_inset Formula $U\in{\cal L}(H)$ +\end_inset + + unitario con +\begin_inset Formula $U^{*}SU=T$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $S,T\in{\cal L}(H)$ +\end_inset + + en el +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacio de Hilbert +\begin_inset Formula $H$ +\end_inset + + son +\series bold +simultáneamente diagonalizables +\series default + si existe una familia ortonormal +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\alpha_{n}\}_{n\in J},\{\beta_{n}\}_{n\in J}\subseteq\mathbb{K}$ +\end_inset + + tal que +\begin_inset Formula +\[ +\forall x\in H,\left(Sx=\sum_{n\in J}\alpha_{n}\langle x,e_{n}\rangle e_{n}\land Tx=\sum_{n\in J}\beta_{n}\langle x,e_{n}\rangle e_{n}\right). +\] + +\end_inset + +Si +\begin_inset Formula $S$ +\end_inset + + y +\begin_inset Formula $T$ +\end_inset + + son compactos y autoadjuntos esto equivale a que +\begin_inset Formula $ST=TS$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard + +\series bold +Teorema espectral para operadores compactos normales: +\series default + Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert y +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + compacto normal, ocurre lo mismo que en el anterior teorema espectral. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $H$ +\end_inset + + es un +\begin_inset Formula $\mathbb{C}$ +\end_inset + +-espacio de Hilbert, +\begin_inset Formula $T\in{\cal L}(H)$ +\end_inset + + es compacto normal si y sólo si hay una familia ortonormal contable +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq H$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{C}$ +\end_inset + + con 0 como único punto de acumulación de modo que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Un operador entre +\begin_inset Formula $\mathbb{K}$ +\end_inset + +-espacios de Hilbert +\begin_inset Formula $T\in{\cal L}(G,H)$ +\end_inset + + es compacto si y sólo si hay una familia contable +\begin_inset Formula $\{\nu_{n}\}_{n\in J}\subseteq\mathbb{R}^{+}$ +\end_inset + + con 0 como punto de acumulación, +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq G$ +\end_inset + + y +\begin_inset Formula $\{f_{n}\}_{n\in J}\subseteq H$ +\end_inset + + tales que +\begin_inset Formula $\forall x\in H,Tx=\sum_{n\in J}\nu_{n}\langle x,e_{n}\rangle f_{n}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Ecuaciones integrales de Fredholm +\end_layout + +\begin_layout Standard +Una +\series bold +ecuación integral de Fredholm +\series default + es una de la forma +\begin_inset Formula +\[ +x(t)-\mu\int_{a}^{b}k(t,s)x(s)\dif s=g(t), +\] + +\end_inset + +donde +\begin_inset Formula $x,g\in L^{2}([a,b])$ +\end_inset + +, +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + y la incógnita es +\begin_inset Formula $x$ +\end_inset + +. + +\end_layout + +\begin_layout Standard +Un núcleo +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es +\series bold +simétrico +\series default + si +\begin_inset Formula $k(t,s)=\overline{k(s,t)}$ +\end_inset + + para casi todo +\begin_inset Formula $s,t\in[a,b]$ +\end_inset + +. + +\series bold +Teorema de alternativa de Fredholm: +\series default + Sean +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + un núcleo simétrico, +\begin_inset Formula $K$ +\end_inset + + el operador integral asociado y +\begin_inset Formula $g\in L^{2}([a,b])$ +\end_inset + +, si +\begin_inset Formula $Kx=\sum_{n\in J}\mu_{j}\langle x,e_{n}\rangle e_{n}$ +\end_inset + + para cierta base hilbertiana contable +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}K}$ +\end_inset + +, ciertos +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + y todo +\begin_inset Formula $x\in X$ +\end_inset + +, considerando la ecuación integral de Fredholm de arriba, +\begin_inset Formula $x-Kx=g$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\mu=0$ +\end_inset + +, la ecuación tiene como única solución +\begin_inset Formula $x=g$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\frac{1}{\mu}\notin\{\mu_{n}\}_{n}$ +\end_inset + +, la ecuación tiene como única solución +\begin_inset Formula +\[ +x(t)=g(t)+\mu\left(\sum_{n}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int_{a}^{b}g\overline{e_{n}}\right)e_{n}(t)\right), +\] + +\end_inset + +y existe +\begin_inset Formula $\alpha>0$ +\end_inset + + que depende solo de +\begin_inset Formula $k$ +\end_inset + + tal que +\begin_inset Formula $\Vert x\Vert_{2}\leq\alpha\Vert g\Vert_{2}$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si existe +\begin_inset Formula $n\in J$ +\end_inset + + con +\begin_inset Formula $\mu_{n}=\frac{1}{\mu}$ +\end_inset + +, la ecuación tiene solución si y sólo si +\begin_inset Formula $g\bot\ker(\frac{1_{L^{2}([a,b])}}{\mu}-K)$ +\end_inset + +, y entonces las soluciones son +\begin_inset Formula +\begin{align*} +x(t) & =g(t)+\mu\sum_{\begin{subarray}{c} +n\in J\\ +\mu_{n}\neq\frac{1}{\mu} +\end{subarray}}\frac{\mu_{n}}{1-\mu\mu_{n}}\left(\int g\overline{e_{n}}\right)e_{j}+u, & u & \in\ker(\tfrac{1_{L^{2}([a,b])}}{\mu}-K). +\end{align*} + +\end_inset + + +\end_layout + +\begin_layout Standard +La convergencia de las series es de media cuadrática, pero en ciertos casos + puede ser uniforme. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $k\in L^{2}([a,b]\times[a,b])$ +\end_inset + + es un núcleo simétrico con +\begin_inset Formula +\[ +\sup_{t\in[a,b]}\int_{a}^{b}|k(t,s)|^{2}\dif s<\infty, +\] + +\end_inset + + +\begin_inset Formula $K$ +\end_inset + + es el operador integral asociado y hay una base hilbertiana +\begin_inset Formula $(e_{n})_{n\in J}$ +\end_inset + + de +\begin_inset Formula $\overline{\text{Im}K}$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + y tales que +\begin_inset Formula $Kx=\sum_{n}\mu_{n}\langle x,e_{n}\rangle e_{n}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate + +\series bold +Teorema de Hilbert-Schmidt: +\series default + Para +\begin_inset Formula $x\in L^{2}([a,b])$ +\end_inset + +, +\begin_inset Formula +\[ +\int_{a}^{b}k(t,s)x(s)\dif s=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t) +\] + +\end_inset + +para casi todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + +, y si +\begin_inset Formula $J$ +\end_inset + + es numerable la serie converge absoluta y uniformemente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\end_layout + +\begin_deeper +\begin_layout Standard +Para la primera parte basta tomar en el teorema anterior un +\begin_inset Formula $\mu\neq0$ +\end_inset + + tal que +\begin_inset Formula $\frac{1}{\mu}$ +\end_inset + + no sea valor propio y despejar. + Para la segunda podemos suponer +\begin_inset Formula $J=(\mathbb{N},\geq)$ +\end_inset + +, y queremos ver que +\begin_inset Formula +\[ +\sum_{n}\left|\mu_{n}\left(\int_{a}^{b}x\overline{e_{n}}\right)e_{n}(t)\right|=\sum_{n}|\mu_{n}\langle x,e_{n}\rangle e_{n}(t)| +\] + +\end_inset + +es uniformemente de Cauchy en +\begin_inset Formula $[a,b]$ +\end_inset + +. + Por la desigualdad de Cauchy-Schwartz, +\begin_inset Formula +\[ +\sum_{n=p}^{q}|\mu_{n}e_{n}(t)||\langle x,e_{n}\rangle|\leq\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}}, +\] + +\end_inset + +pero para +\begin_inset Formula $n\in J$ +\end_inset + + y +\begin_inset Formula $t\in[a,b]$ +\end_inset + +, +\begin_inset Formula +\[ +\mu_{n}e_{n}(t)=K(e_{n})(t)=\int_{a}^{b}k(t,s)e_{k}(s)\dif s=\langle e_{k},\overline{k_{t}}\rangle, +\] + +\end_inset + +donde +\begin_inset Formula $k_{t}(s)\coloneqq k(t,s)$ +\end_inset + +, luego +\begin_inset Formula +\[ +\sqrt{\sum_{n=p}^{q}|\mu_{n}e_{n}(t)|^{2}}=\sqrt{\sum_{n=p}^{q}|\langle e_{n},\overline{k_{t}}\rangle|^{2}}\leq\Vert k_{t}\Vert_{2}\leq\sup_{t\in[a,b]}\Vert k_{t}\Vert_{2}<\infty, +\] + +\end_inset + +con lo que esto está acotado superiormente por un valor independiente de + +\begin_inset Formula $t$ +\end_inset + + y el resultado sale de que +\begin_inset Formula $|\langle x,e_{n}\rangle|^{2}$ +\end_inset + + tampoco depende de +\begin_inset Formula $t$ +\end_inset + + y +\begin_inset Formula $\lim_{p,q}\sum_{n=p}^{q}|\langle x,e_{n}\rangle|^{2}=0$ +\end_inset + +. +\end_layout + +\end_deeper +\begin_layout Enumerate +Las series del teorema de alternativa de Fredholm convergen absoluta y uniformem +ente en +\begin_inset Formula $[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ +\end_inset + + es un núcleo simétrico, existen una familia ortonormal contable +\begin_inset Formula $\{e_{n}\}_{n\in J}\subseteq({\cal C}([a,b]),\Vert\cdot\Vert_{2})$ +\end_inset + + y +\begin_inset Formula $\{\mu_{n}\}_{n\in J}\subseteq\mathbb{R}$ +\end_inset + + tales que, si +\begin_inset Formula $K$ +\end_inset + + es el operador integral asociado a +\begin_inset Formula $k$ +\end_inset + + y +\begin_inset Formula $f\in{\cal C}([a,b])$ +\end_inset + +, +\begin_inset Formula +\[ +Kf(t)=\sum_{n\in J}\mu_{n}\left(\int_{a}^{b}f\overline{e_{n}}\right)e_{n}(t) +\] + +\end_inset + +para todo +\begin_inset Formula $t\in[a,b]$ +\end_inset + + y la convergencia de la serie es absoluta y uniforme. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Problemas de Sturm-Liouville +\end_layout + +\begin_layout Standard +Un +\series bold +problema regular de Sturm-Liouville +\series default + +\begin_inset Foot +status open + +\begin_layout Plain Layout +La forma general del problema tiene como ecuación +\begin_inset Formula $\od{}{x}(p\dot{x})+qx+\lambda\sigma x+y=0$ +\end_inset + + con +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $\sigma$ +\end_inset + + continuas y estrictamente positivas. + Aquí tomamos +\begin_inset Formula $p$ +\end_inset + + y +\begin_inset Formula $q$ +\end_inset + + constantes en 1. +\end_layout + +\end_inset + + es uno de la forma +\begin_inset Formula +\begin{align*} +-\ddot{x}+qx-\lambda x & =y, & \alpha x(a)+\beta\dot{x}(a) & =0, & \gamma x(b)+\delta\dot{x}(b) & =0, +\end{align*} + +\end_inset + +donde +\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + +, +\begin_inset Formula $y\in{\cal C}([a,b],\mathbb{C})$ +\end_inset + +, +\begin_inset Formula $\lambda\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\alpha,\beta,\gamma,\delta\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|\alpha|+|\beta|,|\gamma|+|\delta|\neq0$ +\end_inset + + y la incógnita +\begin_inset Formula $x\in{\cal C}^{2}([a,b],\mathbb{C})$ +\end_inset + +. + Su +\series bold +operador de Sturm-Liouville +\series default + asociado es +\begin_inset Formula $S\in{\cal L}(D_{S},{\cal C}([a,b],\mathbb{C}))$ +\end_inset + + dado por +\begin_inset Formula $S(x)\coloneqq-\ddot{x}+qx$ +\end_inset + +, donde +\begin_inset Formula +\[ +D_{S}\coloneqq\{x\in{\cal C}^{2}([a,b],\mathbb{C})\mid\alpha x(a)+\beta\dot{x}(a)=\gamma x(b)+\delta\dot{x}(b)=0\}, +\] + +\end_inset + +y entonces el problema anterior es +\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Para +\begin_inset Formula $q\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + + e +\begin_inset Formula $y_{0},y_{1}\in\mathbb{R}$ +\end_inset + +, el problema de Cauchy +\begin_inset Formula +\begin{align*} +-\ddot{x}+qx & =0, & x(a) & =y_{0}, & \dot{x}(a) & =y_{1} +\end{align*} + +\end_inset + +tiene una única solución real, y para +\begin_inset Formula $\alpha,\beta\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|\alpha|+|\beta|\neq0$ +\end_inset + +, si +\begin_inset Formula $(y_{0},y_{1})\in\mathbb{R}^{2}$ +\end_inset + + recorre la recta +\begin_inset Formula $\alpha y_{0}+\beta y_{1}=0$ +\end_inset + +, la correspondiente solución del problema recorre una recta (subespacio + de dimensión 1) de +\begin_inset Formula ${\cal C}^{2}([a,b])$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +El +\series bold +determinante wronskiano +\series default + de +\begin_inset Formula $x_{1},\dots,x_{n}\in{\cal C}^{n-1}([a,b],\mathbb{K})$ +\end_inset + + es +\begin_inset Formula $W(x_{1},\dots,x_{n}):[a,b]\to\mathbb{K}$ +\end_inset + + dada por +\begin_inset Formula $t\mapsto\det(x_{j}^{(i)}(t))_{0\leq i<n}^{1\leq j\leq n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ +\end_inset + + es un operador de Sturm-Liouville asociado al problema con parámetros +\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ +\end_inset + +, existen +\begin_inset Formula $u,v\in{\cal C}([a,b],\mathbb{R})$ +\end_inset + + con +\begin_inset Formula $-\ddot{u}+qu=0$ +\end_inset + +, +\begin_inset Formula $\alpha x(a)+\beta\dot{x}(a)=0$ +\end_inset + +, +\begin_inset Formula $-\ddot{v}+qv=0$ +\end_inset + + y +\begin_inset Formula $\gamma x(b)+\delta\dot{x}(b)=0$ +\end_inset + +, y entonces +\begin_inset Formula $W(u,v)(t)$ +\end_inset + + es constante en +\begin_inset Formula $t$ +\end_inset + + y, si +\begin_inset Formula $S$ +\end_inset + + es inyectivo, +\begin_inset Formula $W(u,v)(t)\neq0$ +\end_inset + + y +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + + son linealmente independientes, y llamamos +\series bold +función de Green +\series default + asociada a +\begin_inset Formula $S$ +\end_inset + + al núcleo simétrico +\begin_inset Formula $k\in{\cal C}([a,b]\times[a,b])$ +\end_inset + + dado por +\begin_inset Formula +\[ +k(t,s)\coloneqq-\frac{u(\min\{t,s\})v(\max\{t,s\})}{W(u,v)(a)}, +\] + +\end_inset + +que no depende de +\begin_inset Formula $u$ +\end_inset + + y +\begin_inset Formula $v$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b])$ +\end_inset + + es un operador de Sturm-Liouville inyectivo con función de Green +\begin_inset Formula $k$ +\end_inset + +, llamamos +\series bold +operador de Green +\series default + asociado a +\begin_inset Formula $S$ +\end_inset + + al operador integral +\begin_inset Formula $G:L^{2}([a,b])\to L^{2}([a,b])$ +\end_inset + + asociado al núcleo +\begin_inset Formula $k$ +\end_inset + +, y entonces +\begin_inset Formula $G|_{{\cal C}([a,b])}$ +\end_inset + + es el inverso de +\begin_inset Formula $S$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Así, +\begin_inset Formula $(S-\mu1_{D_{S}})x=y$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in D_{S}$ +\end_inset + + si y sólo si +\begin_inset Formula $(1_{{\cal C}([a,b])}-\mu G)x=Gy$ +\end_inset + + tiene solución única +\begin_inset Formula $x\in{\cal C}([a,b])$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $S:D_{S}\to{\cal C}([a,b],\mathbb{C})$ +\end_inset + + es el operador de Sturm-Liouville asociado al problema con parámetros +\begin_inset Formula $q,y,\lambda,\alpha,\beta,\gamma,\delta$ +\end_inset + +, existe una sucesión +\begin_inset Formula $(\nu_{n})_{n}$ +\end_inset + + de reales distintos con +\begin_inset Formula $\sum_{n}\frac{1}{\nu_{n}^{2}}<\infty$ +\end_inset + + y una base hilbertiana numerable +\begin_inset Formula $(u_{n})_{n}$ +\end_inset + + de +\begin_inset Formula $L^{2}([a,b])$ +\end_inset + + tales que: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\forall n\in\mathbb{N},Su_{n}=\nu_{n}u_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula +\[ +\forall x\in D_{S},\forall t\in[a,b],x(t)=\sum_{n}\left(\int_{a}^{b}xu_{n}\right)u_{n}(t), +\] + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda\notin\{\nu_{n}\}_{n}$ +\end_inset + +, el problema tiene como única solución +\begin_inset Formula +\[ +x(t)=\sum_{n}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), +\] + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lambda=\nu_{k}$ +\end_inset + + para algún +\begin_inset Formula $k$ +\end_inset + +, el problema tiene solución si y sólo si +\begin_inset Formula $y\bot u_{k}$ +\end_inset + +, y entonces las soluciones son +\begin_inset Formula +\begin{align*} +x(t) & =\alpha u_{k}+\sum_{n\in\mathbb{N}\setminus\{k\}}\frac{1}{\nu_{n}-\lambda}\left(\int_{a}^{b}yu_{n}\right)u_{n}(t), & \alpha & \in\mathbb{C}, +\end{align*} + +\end_inset + +donde la serie converge absoluta y uniformemente para +\begin_inset Formula $t\in[a,b]$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +nproof +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
