aboutsummaryrefslogtreecommitdiff
path: root/bd
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /bd
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'bd')
-rw-r--r--bd/n6.lyx32
1 files changed, 16 insertions, 16 deletions
diff --git a/bd/n6.lyx b/bd/n6.lyx
index 29cc82f..6871fe5 100644
--- a/bd/n6.lyx
+++ b/bd/n6.lyx
@@ -4442,7 +4442,7 @@ grado
\end_inset
a
-\begin_inset Formula $\text{gr}R:=|T|$
+\begin_inset Formula $\text{gr}R\coloneqq |T|$
\end_inset
y
@@ -4454,7 +4454,7 @@ dominio
\end_inset
a
-\begin_inset Formula $\text{dom}R_{i}:=T_{i}$
+\begin_inset Formula $\text{dom}R_{i}\coloneqq T_{i}$
\end_inset
.
@@ -4524,7 +4524,7 @@ Unión
\end_inset
,
-\begin_inset Formula $R\cup S:=(R\cup S,T,N)$
+\begin_inset Formula $R\cup S\coloneqq (R\cup S,T,N)$
\end_inset
.
@@ -4540,7 +4540,7 @@ Intersección
\end_inset
,
-\begin_inset Formula $R\cap S:=(R\cap S,T,N)$
+\begin_inset Formula $R\cap S\coloneqq (R\cap S,T,N)$
\end_inset
.
@@ -4556,7 +4556,7 @@ Diferencia
\end_inset
,
-\begin_inset Formula $R-S:=(R\setminus S,T,N)$
+\begin_inset Formula $R-S\coloneqq (R\setminus S,T,N)$
\end_inset
.
@@ -4600,7 +4600,7 @@ Cuando
\end_inset
inclusiones, entonces
-\begin_inset Formula $R\times S:=(R,T,L(N))\times(S,U,R(M))$
+\begin_inset Formula $R\times S\coloneqq (R,T,L(N))\times(S,U,R(M))$
\end_inset
.
@@ -4639,7 +4639,7 @@ condición
\end_inset
es una condición,
-\begin_inset Formula $\sigma_{C}(R):=(\{r\in R\mid C(r)\},T,N)$
+\begin_inset Formula $\sigma_{C}(R)\coloneqq (\{r\in R\mid C(r)\},T,N)$
\end_inset
, donde
@@ -4754,7 +4754,7 @@ condición de reunión
\end_inset
es una condición de reunión,
-\begin_inset Formula $R\bowtie_{C}S:=\sigma_{C}(R\times S)$
+\begin_inset Formula $R\bowtie_{C}S\coloneqq \sigma_{C}(R\times S)$
\end_inset
.
@@ -4768,7 +4768,7 @@ equi-reunión
\series default
.
Definimos también
-\begin_inset Formula $R\bowtie S:=R\times S$
+\begin_inset Formula $R\bowtie S\coloneqq R\times S$
\end_inset
.
@@ -4787,7 +4787,7 @@ El producto cartesiano ampliado y la reunión son asociativas, y son conmutativa
Reunión natural
\series default
: Sea
-\begin_inset Formula $\{j_{1},\dots,j_{p}\}\mid =\{j\mid M_{j}\notin\{N_{i}\}\}$
+\begin_inset Formula $\{j_{1},\dots,j_{p}\}\coloneqq \{j\mid M_{j}\notin\{N_{i}\}\}$
\end_inset
, si para
@@ -4819,7 +4819,7 @@ R\hexstar S:=(\{r*(s_{j_{1}},\dots,s_{j_{p}})\mid r\in R,s\in S,\forall i,j,(N_{
Reunión externa
\series default
: Sea
-\begin_inset Formula $N_{k}:=\{\mathtt{NULL}\}^{k}$
+\begin_inset Formula $N_{k}\coloneqq \{\mathtt{NULL}\}^{k}$
\end_inset
.
@@ -4836,7 +4836,7 @@ reunión externa izquierda
\end_inset
como
-\begin_inset Formula $R]\bowtie_{C}S:=R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$
+\begin_inset Formula $R]\bowtie_{C}S\coloneqq R\bowtie_{C}S\cup(\{r\in R\mid \nexists s\in S\mid C(r,s)\}\times N_{m})$
\end_inset
, la
@@ -4844,7 +4844,7 @@ reunión externa izquierda
reunión externa derecha
\series default
como
-\begin_inset Formula $R\bowtie[_{C}S:=R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$
+\begin_inset Formula $R\bowtie[_{C}S\coloneqq R\bowtie_{C}S\cup(N_{n}\times\{s\in S\mid \nexists r\in R\mid C(r,s)\})$
\end_inset
y la
@@ -4852,7 +4852,7 @@ reunión externa derecha
reunión externa completa
\series default
como
-\begin_inset Formula $R]\bowtie[_{C}S:=(R]\bowtie_{C}S)\cup(R\bowtie[_{C}S)$
+\begin_inset Formula $R]\bowtie[_{C}S\coloneqq (R]\bowtie_{C}S)\cup(R\bowtie[_{C}S)$
\end_inset
.
@@ -4864,7 +4864,7 @@ reunión externa completa
División
\series default
: Si
-\begin_inset Formula $N:=(N_{1},\dots,N_{n},M_{1},\dots,M_{m})$
+\begin_inset Formula $N\coloneqq (N_{1},\dots,N_{n},M_{1},\dots,M_{m})$
\end_inset
, entonces
@@ -4910,7 +4910,7 @@ Funciones de agregados
es el nombre de una de estas funciones, definimos la función de agregados
-\begin_inset Formula $O_{N_{i}}(R):=O_{r\in R,r_{i}\neq\mathtt{NULL}}r_{i}$
+\begin_inset Formula $O_{N_{i}}(R)\coloneqq O_{r\in R,r_{i}\neq\mathtt{NULL}}r_{i}$
\end_inset
.