aboutsummaryrefslogtreecommitdiff
path: root/fuvr1/n2.lyx
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fuvr1/n2.lyx
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'fuvr1/n2.lyx')
-rw-r--r--fuvr1/n2.lyx110
1 files changed, 55 insertions, 55 deletions
diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx
index 6312a4f..b046ed1 100644
--- a/fuvr1/n2.lyx
+++ b/fuvr1/n2.lyx
@@ -139,7 +139,7 @@ sucesión
\end_inset
, con elementos
-\begin_inset Formula $a_{n}:=\phi(n)$
+\begin_inset Formula $a_{n}\coloneqq \phi(n)$
\end_inset
.
@@ -369,7 +369,7 @@ intervalo cerrado
\end_inset
al conjunto
-\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$
+\begin_inset Formula $[a,b]\coloneqq \{x\in\mathbb{R}\mid a\leq x\leq b\}$
\end_inset
,
@@ -377,7 +377,7 @@ intervalo cerrado
intervalo abierto
\series default
a
-\begin_inset Formula $(a,b):=\{x\in\mathbb{R}\mid a<x<b\}$
+\begin_inset Formula $(a,b)\coloneqq \{x\in\mathbb{R}\mid a<x<b\}$
\end_inset
e
@@ -385,11 +385,11 @@ intervalo abierto
intervalos semiabiertos
\series default
por la derecha e izquierda, respectivamente, a
-\begin_inset Formula $[a,b):=\{x\in\mathbb{R}\mid a\leq x<b\}$
+\begin_inset Formula $[a,b)\coloneqq \{x\in\mathbb{R}\mid a\leq x<b\}$
\end_inset
y
-\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}\mid a<x\leq b\}$
+\begin_inset Formula $(a,b]\coloneqq \{x\in\mathbb{R}\mid a<x\leq b\}$
\end_inset
.
@@ -415,7 +415,7 @@ bola cerrada
\end_inset
al conjunto
-\begin_inset Formula $B[x_{0},r]:=\{x\in K\mid |x-x_{0}|\leq r\}$
+\begin_inset Formula $B[x_{0},r]\coloneqq \{x\in K\mid |x-x_{0}|\leq r\}$
\end_inset
, y
@@ -423,7 +423,7 @@ bola cerrada
bola abierta
\series default
a
-\begin_inset Formula $B(x_{0},r):=\{x\in K\mid |x-x_{0}|<r\}$
+\begin_inset Formula $B(x_{0},r)\coloneqq \{x\in K\mid |x-x_{0}|<r\}$
\end_inset
.
@@ -475,7 +475,7 @@ Demostración:
.
Sea
-\begin_inset Formula $n_{0}:=\max\{n_{1},n_{2}\}$
+\begin_inset Formula $n_{0}\coloneqq \max\{n_{1},n_{2}\}$
\end_inset
, entonces
@@ -538,7 +538,7 @@ Demostración:
.
Llamando
-\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$
+\begin_inset Formula $M\coloneqq \max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$
\end_inset
, se tiene que
@@ -682,7 +682,7 @@ Pero entonces, fijado
\end_inset
, si
-\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2}\}$
+\begin_inset Formula $n>n_{0}\coloneqq \max\{n_{1},n_{2}\}$
\end_inset
, entonces
@@ -728,7 +728,7 @@ Si tomamos
\end_inset
tal que
-\begin_inset Formula $\alpha:=\frac{|b|}{2}<|b_{n}|$
+\begin_inset Formula $\alpha\coloneqq \frac{|b|}{2}<|b_{n}|$
\end_inset
para
@@ -770,7 +770,7 @@ Ahora, fijado
.
Ahora, si
-\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2},n_{\text{3}}\}$
+\begin_inset Formula $n>n_{0}\coloneqq \max\{n_{1},n_{2},n_{\text{3}}\}$
\end_inset
, entonces
@@ -828,11 +828,11 @@ status open
\begin_layout Plain Layout
Sean
-\begin_inset Formula $a:=\lim_{n}a_{n}$
+\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$
\end_inset
y
-\begin_inset Formula $b:=\lim_{n}b_{n}$
+\begin_inset Formula $b\coloneqq \lim_{n}b_{n}$
\end_inset
, y supongamos por reducción al absurdo que
@@ -841,7 +841,7 @@ Sean
.
Tomando
-\begin_inset Formula $\varepsilon:=\frac{a-b}{4}$
+\begin_inset Formula $\varepsilon\coloneqq \frac{a-b}{4}$
\end_inset
, debería existir
@@ -1036,7 +1036,7 @@ Demostración:
\end_inset
es creciente y acotada superiormente, existe
-\begin_inset Formula $\alpha:=\sup\{a_{n}\}_{n\in\mathbb{N}}$
+\begin_inset Formula $\alpha\coloneqq \sup\{a_{n}\}_{n\in\mathbb{N}}$
\end_inset
.
@@ -1087,7 +1087,7 @@ A continuación definimos el número
\end_layout
\begin_layout Enumerate
-\begin_inset Formula $e:=\lim_{n}a_{n}=\lim_{n}b_{n}$
+\begin_inset Formula $e\coloneqq \lim_{n}a_{n}=\lim_{n}b_{n}$
\end_inset
.
@@ -1374,7 +1374,7 @@ principio de encaje de Cantor
Demostración:
\series default
Sea
-\begin_inset Formula $I_{n}:=[a_{n},b_{n}]$
+\begin_inset Formula $I_{n}\coloneqq [a_{n},b_{n}]$
\end_inset
.
@@ -1405,7 +1405,7 @@ Demostración:
converge.
Si
-\begin_inset Formula $a:=\lim_{n}a_{n}$
+\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$
\end_inset
entonces
@@ -1468,11 +1468,11 @@ subsucesión
.
Si
-\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}:=(\phi(n))_{n\in\mathbb{N}}$
+\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}\coloneqq (\phi(n))_{n\in\mathbb{N}}$
\end_inset
, entonces
-\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}:=(\phi\circ\tau(k))_{k\in\mathbb{N}}$
+\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}\coloneqq (\phi\circ\tau(k))_{k\in\mathbb{N}}$
\end_inset
.
@@ -1558,11 +1558,11 @@ Demostración:
.
Sea entonces
-\begin_inset Formula $I_{0}:=[c_{0},d_{0}]$
+\begin_inset Formula $I_{0}\coloneqq [c_{0},d_{0}]$
\end_inset
y
-\begin_inset Formula $m_{0}:=\frac{c_{0}+d_{0}}{2}$
+\begin_inset Formula $m_{0}\coloneqq \frac{c_{0}+d_{0}}{2}$
\end_inset
.
@@ -1576,7 +1576,7 @@ Demostración:
es infinito.
Llamamos a este
-\begin_inset Formula $I_{1}:=[c_{1},d_{1}]$
+\begin_inset Formula $I_{1}\coloneqq [c_{1},d_{1}]$
\end_inset
y tomamos
@@ -1593,7 +1593,7 @@ Demostración:
\end_inset
por
-\begin_inset Formula $m_{1}:=\frac{c_{1}+d_{1}}{2}$
+\begin_inset Formula $m_{1}\coloneqq \frac{c_{1}+d_{1}}{2}$
\end_inset
y obtenemos, del mismo modo que antes,
@@ -1782,7 +1782,7 @@ status open
\end_inset
Sea
-\begin_inset Formula $a:=\lim_{n}a_{n}$
+\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$
\end_inset
.
@@ -1832,7 +1832,7 @@ Primero probamos que una sucesión de Cauchy es acotada: Dado
\end_inset
y si llamamos
-\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$
+\begin_inset Formula $M\coloneqq \max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$
\end_inset
entonces
@@ -1923,7 +1923,7 @@ Para
\end_inset
, definimos
-\begin_inset Formula $a^{n}:=a\cdots a$
+\begin_inset Formula $a^{n}\coloneqq a\cdots a$
\end_inset
(
@@ -1936,7 +1936,7 @@ Para
\end_inset
definiendo
-\begin_inset Formula $a^{0}:=1$
+\begin_inset Formula $a^{0}\coloneqq 1$
\end_inset
y
@@ -1949,7 +1949,7 @@ Para
.
Con exponentes racionales, se define
-\begin_inset Formula $a^{\frac{m}{n}}:=\sqrt[n]{a^{m}}$
+\begin_inset Formula $a^{\frac{m}{n}}\coloneqq \sqrt[n]{a^{m}}$
\end_inset
, y podemos probar fácilmente que si
@@ -2099,7 +2099,7 @@ Demostración:
\end_inset
a partir de cierto elemento, y entonces
-\begin_inset Formula $a^{r_{n}}\leq a^{K}:=M$
+\begin_inset Formula $a^{r_{n}}\leq a^{K}\coloneqq M$
\end_inset
si
@@ -2107,7 +2107,7 @@ Demostración:
\end_inset
o
-\begin_inset Formula $a^{r_{n}}<a^{0}=1:=M$
+\begin_inset Formula $a^{r_{n}}<a^{0}=1\coloneqq M$
\end_inset
.
@@ -2156,7 +2156,7 @@ Demostración:
.
Sea ahora
-\begin_inset Formula $y:=\lim_{n}a^{r_{n}}$
+\begin_inset Formula $y\coloneqq \lim_{n}a^{r_{n}}$
\end_inset
y
@@ -2518,7 +2518,7 @@ status open
\begin_layout Plain Layout
Sea
-\begin_inset Formula $x:=\lim_{n}x_{n}$
+\begin_inset Formula $x\coloneqq \lim_{n}x_{n}$
\end_inset
.
@@ -2703,7 +2703,7 @@ status open
\begin_layout Plain Layout
Tomamos
-\begin_inset Formula $b:=\frac{1}{a}>1$
+\begin_inset Formula $b\coloneqq \frac{1}{a}>1$
\end_inset
y aplicamos el apartado anterior.
@@ -2744,12 +2744,12 @@ Demostración:
\end_inset
y sea
-\begin_inset Formula $A:=\{z\in\mathbb{R}\mid a^{z}\leq x\}$
+\begin_inset Formula $A\coloneqq \{z\in\mathbb{R}\mid a^{z}\leq x\}$
\end_inset
, que sabemos acotado superiormente.
Sea entonces
-\begin_inset Formula $y:=\sup A$
+\begin_inset Formula $y\coloneqq \sup A$
\end_inset
y
@@ -2812,11 +2812,11 @@ Demostración:
\end_inset
y sea
-\begin_inset Formula $a^{\prime}:=\frac{1}{a}>1$
+\begin_inset Formula $a^{\prime}\coloneqq \frac{1}{a}>1$
\end_inset
y
-\begin_inset Formula $x^{\prime}:=\frac{1}{x}$
+\begin_inset Formula $x^{\prime}\coloneqq \frac{1}{x}$
\end_inset
.
@@ -3089,7 +3089,7 @@ status open
\begin_layout Plain Layout
Sea
-\begin_inset Formula $x:=\lim_{n}x_{n}>0$
+\begin_inset Formula $x\coloneqq \lim_{n}x_{n}>0$
\end_inset
y queremos demostrar que
@@ -3123,7 +3123,7 @@ Sea
.
Sea
-\begin_inset Formula $\beta_{n}:=\log_{a}c_{n}$
+\begin_inset Formula $\beta_{n}\coloneqq \log_{a}c_{n}$
\end_inset
y supongamos que
@@ -3180,7 +3180,7 @@ Sea
.
Podemos suponer que todos son positivos o negativos.
Pero entonces, para el primer caso,
-\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}:=M>a^{0}=1$
+\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}\coloneqq M>a^{0}=1$
\end_inset
.
@@ -3189,7 +3189,7 @@ Sea
\end_inset
y por tanto
-\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}:=M<a^{0}=1$
+\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}\coloneqq M<a^{0}=1$
\end_inset
.
@@ -3693,7 +3693,7 @@ Demostración:
\end_inset
, tomamos
-\begin_inset Formula $z_{n}:=\frac{n^{b}}{c^{n}}$
+\begin_inset Formula $z_{n}\coloneqq \frac{n^{b}}{c^{n}}$
\end_inset
y entonces
@@ -3823,7 +3823,7 @@ Supongamos
.
Entonces, si
-\begin_inset Formula $y_{n}:=\frac{1}{x_{n}}$
+\begin_inset Formula $y_{n}\coloneqq \frac{1}{x_{n}}$
\end_inset
,
@@ -3883,7 +3883,7 @@ status open
\begin_layout Plain Layout
Sea
-\begin_inset Formula $y_{n}:=e^{x_{n}}-1$
+\begin_inset Formula $y_{n}\coloneqq e^{x_{n}}-1$
\end_inset
, entonces
@@ -4083,7 +4083,7 @@ status open
Demostración:
\series default
Sea
-\begin_inset Formula $L:=\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$
+\begin_inset Formula $L\coloneqq \lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$
\end_inset
.
@@ -4318,12 +4318,12 @@ Si
\end_inset
con
-\begin_inset Formula $M:=a_{1}\cdots a_{n_{0}}$
+\begin_inset Formula $M\coloneqq a_{1}\cdots a_{n_{0}}$
\end_inset
.
Si
-\begin_inset Formula $\alpha_{n}:=\varepsilon\frac{n-n_{0}}{n}$
+\begin_inset Formula $\alpha_{n}\coloneqq \varepsilon\frac{n-n_{0}}{n}$
\end_inset
,
@@ -4420,7 +4420,7 @@ Se tiene que
.
Sea entonces
-\begin_inset Formula $A_{n}:=\frac{a_{n}}{a_{n-1}}$
+\begin_inset Formula $A_{n}\coloneqq \frac{a_{n}}{a_{n-1}}$
\end_inset
, para
@@ -4620,7 +4620,7 @@ Demostración:
\end_inset
,
-\begin_inset Formula $S_{n}:=\lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$
+\begin_inset Formula $S_{n}\coloneqq \lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$
\end_inset
.
@@ -4701,7 +4701,7 @@ Dadas
\end_inset
y existe
-\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$
+\begin_inset Formula $l\coloneqq \lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$
\end_inset
:
@@ -4856,7 +4856,7 @@ Criterio de la raíz:
\end_inset
y
-\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$
+\begin_inset Formula $a\coloneqq \lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$
\end_inset
:
@@ -4963,7 +4963,7 @@ Criterio del cociente:
\end_inset
y
-\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$
+\begin_inset Formula $a\coloneqq \lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$
\end_inset
.
@@ -5209,7 +5209,7 @@ Demostración:
es decreciente.
Definimos la sucesión de intervalos cerrados acotados y encajados
-\begin_inset Formula $I_{n}:=[S_{2n},S_{2n+1}]$
+\begin_inset Formula $I_{n}\coloneqq [S_{2n},S_{2n+1}]$
\end_inset
.