diff options
| author | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
|---|---|---|
| committer | Juan Marin Noguera <juan@mnpi.eu> | 2022-12-04 22:49:17 +0100 |
| commit | c34b47089a133e58032fe4ea52f61efacaf5f548 (patch) | |
| tree | 4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fuvr1/n2.lyx | |
| parent | 214b20d1614b09cd5c18e111df0f0d392af2e721 (diff) | |
Oops
Diffstat (limited to 'fuvr1/n2.lyx')
| -rw-r--r-- | fuvr1/n2.lyx | 110 |
1 files changed, 55 insertions, 55 deletions
diff --git a/fuvr1/n2.lyx b/fuvr1/n2.lyx index 6312a4f..b046ed1 100644 --- a/fuvr1/n2.lyx +++ b/fuvr1/n2.lyx @@ -139,7 +139,7 @@ sucesión \end_inset , con elementos -\begin_inset Formula $a_{n}:=\phi(n)$ +\begin_inset Formula $a_{n}\coloneqq \phi(n)$ \end_inset . @@ -369,7 +369,7 @@ intervalo cerrado \end_inset al conjunto -\begin_inset Formula $[a,b]:=\{x\in\mathbb{R}\mid a\leq x\leq b\}$ +\begin_inset Formula $[a,b]\coloneqq \{x\in\mathbb{R}\mid a\leq x\leq b\}$ \end_inset , @@ -377,7 +377,7 @@ intervalo cerrado intervalo abierto \series default a -\begin_inset Formula $(a,b):=\{x\in\mathbb{R}\mid a<x<b\}$ +\begin_inset Formula $(a,b)\coloneqq \{x\in\mathbb{R}\mid a<x<b\}$ \end_inset e @@ -385,11 +385,11 @@ intervalo abierto intervalos semiabiertos \series default por la derecha e izquierda, respectivamente, a -\begin_inset Formula $[a,b):=\{x\in\mathbb{R}\mid a\leq x<b\}$ +\begin_inset Formula $[a,b)\coloneqq \{x\in\mathbb{R}\mid a\leq x<b\}$ \end_inset y -\begin_inset Formula $(a,b]:=\{x\in\mathbb{R}\mid a<x\leq b\}$ +\begin_inset Formula $(a,b]\coloneqq \{x\in\mathbb{R}\mid a<x\leq b\}$ \end_inset . @@ -415,7 +415,7 @@ bola cerrada \end_inset al conjunto -\begin_inset Formula $B[x_{0},r]:=\{x\in K\mid |x-x_{0}|\leq r\}$ +\begin_inset Formula $B[x_{0},r]\coloneqq \{x\in K\mid |x-x_{0}|\leq r\}$ \end_inset , y @@ -423,7 +423,7 @@ bola cerrada bola abierta \series default a -\begin_inset Formula $B(x_{0},r):=\{x\in K\mid |x-x_{0}|<r\}$ +\begin_inset Formula $B(x_{0},r)\coloneqq \{x\in K\mid |x-x_{0}|<r\}$ \end_inset . @@ -475,7 +475,7 @@ Demostración: . Sea -\begin_inset Formula $n_{0}:=\max\{n_{1},n_{2}\}$ +\begin_inset Formula $n_{0}\coloneqq \max\{n_{1},n_{2}\}$ \end_inset , entonces @@ -538,7 +538,7 @@ Demostración: . Llamando -\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$ +\begin_inset Formula $M\coloneqq \max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a|\}$ \end_inset , se tiene que @@ -682,7 +682,7 @@ Pero entonces, fijado \end_inset , si -\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2}\}$ +\begin_inset Formula $n>n_{0}\coloneqq \max\{n_{1},n_{2}\}$ \end_inset , entonces @@ -728,7 +728,7 @@ Si tomamos \end_inset tal que -\begin_inset Formula $\alpha:=\frac{|b|}{2}<|b_{n}|$ +\begin_inset Formula $\alpha\coloneqq \frac{|b|}{2}<|b_{n}|$ \end_inset para @@ -770,7 +770,7 @@ Ahora, fijado . Ahora, si -\begin_inset Formula $n>n_{0}:=\max\{n_{1},n_{2},n_{\text{3}}\}$ +\begin_inset Formula $n>n_{0}\coloneqq \max\{n_{1},n_{2},n_{\text{3}}\}$ \end_inset , entonces @@ -828,11 +828,11 @@ status open \begin_layout Plain Layout Sean -\begin_inset Formula $a:=\lim_{n}a_{n}$ +\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$ \end_inset y -\begin_inset Formula $b:=\lim_{n}b_{n}$ +\begin_inset Formula $b\coloneqq \lim_{n}b_{n}$ \end_inset , y supongamos por reducción al absurdo que @@ -841,7 +841,7 @@ Sean . Tomando -\begin_inset Formula $\varepsilon:=\frac{a-b}{4}$ +\begin_inset Formula $\varepsilon\coloneqq \frac{a-b}{4}$ \end_inset , debería existir @@ -1036,7 +1036,7 @@ Demostración: \end_inset es creciente y acotada superiormente, existe -\begin_inset Formula $\alpha:=\sup\{a_{n}\}_{n\in\mathbb{N}}$ +\begin_inset Formula $\alpha\coloneqq \sup\{a_{n}\}_{n\in\mathbb{N}}$ \end_inset . @@ -1087,7 +1087,7 @@ A continuación definimos el número \end_layout \begin_layout Enumerate -\begin_inset Formula $e:=\lim_{n}a_{n}=\lim_{n}b_{n}$ +\begin_inset Formula $e\coloneqq \lim_{n}a_{n}=\lim_{n}b_{n}$ \end_inset . @@ -1374,7 +1374,7 @@ principio de encaje de Cantor Demostración: \series default Sea -\begin_inset Formula $I_{n}:=[a_{n},b_{n}]$ +\begin_inset Formula $I_{n}\coloneqq [a_{n},b_{n}]$ \end_inset . @@ -1405,7 +1405,7 @@ Demostración: converge. Si -\begin_inset Formula $a:=\lim_{n}a_{n}$ +\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$ \end_inset entonces @@ -1468,11 +1468,11 @@ subsucesión . Si -\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}:=(\phi(n))_{n\in\mathbb{N}}$ +\begin_inset Formula $(a_{n})_{n\in\mathbb{N}}\coloneqq (\phi(n))_{n\in\mathbb{N}}$ \end_inset , entonces -\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}:=(\phi\circ\tau(k))_{k\in\mathbb{N}}$ +\begin_inset Formula $(a_{n_{k}})_{k\in\mathbb{N}}\coloneqq (\phi\circ\tau(k))_{k\in\mathbb{N}}$ \end_inset . @@ -1558,11 +1558,11 @@ Demostración: . Sea entonces -\begin_inset Formula $I_{0}:=[c_{0},d_{0}]$ +\begin_inset Formula $I_{0}\coloneqq [c_{0},d_{0}]$ \end_inset y -\begin_inset Formula $m_{0}:=\frac{c_{0}+d_{0}}{2}$ +\begin_inset Formula $m_{0}\coloneqq \frac{c_{0}+d_{0}}{2}$ \end_inset . @@ -1576,7 +1576,7 @@ Demostración: es infinito. Llamamos a este -\begin_inset Formula $I_{1}:=[c_{1},d_{1}]$ +\begin_inset Formula $I_{1}\coloneqq [c_{1},d_{1}]$ \end_inset y tomamos @@ -1593,7 +1593,7 @@ Demostración: \end_inset por -\begin_inset Formula $m_{1}:=\frac{c_{1}+d_{1}}{2}$ +\begin_inset Formula $m_{1}\coloneqq \frac{c_{1}+d_{1}}{2}$ \end_inset y obtenemos, del mismo modo que antes, @@ -1782,7 +1782,7 @@ status open \end_inset Sea -\begin_inset Formula $a:=\lim_{n}a_{n}$ +\begin_inset Formula $a\coloneqq \lim_{n}a_{n}$ \end_inset . @@ -1832,7 +1832,7 @@ Primero probamos que una sucesión de Cauchy es acotada: Dado \end_inset y si llamamos -\begin_inset Formula $M:=\max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$ +\begin_inset Formula $M\coloneqq \max\{|a_{1}|,\dots,|a_{n_{0}}|,1+|a_{n_{0}}|\}$ \end_inset entonces @@ -1923,7 +1923,7 @@ Para \end_inset , definimos -\begin_inset Formula $a^{n}:=a\cdots a$ +\begin_inset Formula $a^{n}\coloneqq a\cdots a$ \end_inset ( @@ -1936,7 +1936,7 @@ Para \end_inset definiendo -\begin_inset Formula $a^{0}:=1$ +\begin_inset Formula $a^{0}\coloneqq 1$ \end_inset y @@ -1949,7 +1949,7 @@ Para . Con exponentes racionales, se define -\begin_inset Formula $a^{\frac{m}{n}}:=\sqrt[n]{a^{m}}$ +\begin_inset Formula $a^{\frac{m}{n}}\coloneqq \sqrt[n]{a^{m}}$ \end_inset , y podemos probar fácilmente que si @@ -2099,7 +2099,7 @@ Demostración: \end_inset a partir de cierto elemento, y entonces -\begin_inset Formula $a^{r_{n}}\leq a^{K}:=M$ +\begin_inset Formula $a^{r_{n}}\leq a^{K}\coloneqq M$ \end_inset si @@ -2107,7 +2107,7 @@ Demostración: \end_inset o -\begin_inset Formula $a^{r_{n}}<a^{0}=1:=M$ +\begin_inset Formula $a^{r_{n}}<a^{0}=1\coloneqq M$ \end_inset . @@ -2156,7 +2156,7 @@ Demostración: . Sea ahora -\begin_inset Formula $y:=\lim_{n}a^{r_{n}}$ +\begin_inset Formula $y\coloneqq \lim_{n}a^{r_{n}}$ \end_inset y @@ -2518,7 +2518,7 @@ status open \begin_layout Plain Layout Sea -\begin_inset Formula $x:=\lim_{n}x_{n}$ +\begin_inset Formula $x\coloneqq \lim_{n}x_{n}$ \end_inset . @@ -2703,7 +2703,7 @@ status open \begin_layout Plain Layout Tomamos -\begin_inset Formula $b:=\frac{1}{a}>1$ +\begin_inset Formula $b\coloneqq \frac{1}{a}>1$ \end_inset y aplicamos el apartado anterior. @@ -2744,12 +2744,12 @@ Demostración: \end_inset y sea -\begin_inset Formula $A:=\{z\in\mathbb{R}\mid a^{z}\leq x\}$ +\begin_inset Formula $A\coloneqq \{z\in\mathbb{R}\mid a^{z}\leq x\}$ \end_inset , que sabemos acotado superiormente. Sea entonces -\begin_inset Formula $y:=\sup A$ +\begin_inset Formula $y\coloneqq \sup A$ \end_inset y @@ -2812,11 +2812,11 @@ Demostración: \end_inset y sea -\begin_inset Formula $a^{\prime}:=\frac{1}{a}>1$ +\begin_inset Formula $a^{\prime}\coloneqq \frac{1}{a}>1$ \end_inset y -\begin_inset Formula $x^{\prime}:=\frac{1}{x}$ +\begin_inset Formula $x^{\prime}\coloneqq \frac{1}{x}$ \end_inset . @@ -3089,7 +3089,7 @@ status open \begin_layout Plain Layout Sea -\begin_inset Formula $x:=\lim_{n}x_{n}>0$ +\begin_inset Formula $x\coloneqq \lim_{n}x_{n}>0$ \end_inset y queremos demostrar que @@ -3123,7 +3123,7 @@ Sea . Sea -\begin_inset Formula $\beta_{n}:=\log_{a}c_{n}$ +\begin_inset Formula $\beta_{n}\coloneqq \log_{a}c_{n}$ \end_inset y supongamos que @@ -3180,7 +3180,7 @@ Sea . Podemos suponer que todos son positivos o negativos. Pero entonces, para el primer caso, -\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}:=M>a^{0}=1$ +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}>a^{\varepsilon}\coloneqq M>a^{0}=1$ \end_inset . @@ -3189,7 +3189,7 @@ Sea \end_inset y por tanto -\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}:=M<a^{0}=1$ +\begin_inset Formula $c_{n_{k}}=a^{\beta_{n_{k}}}<a^{-\varepsilon}\coloneqq M<a^{0}=1$ \end_inset . @@ -3693,7 +3693,7 @@ Demostración: \end_inset , tomamos -\begin_inset Formula $z_{n}:=\frac{n^{b}}{c^{n}}$ +\begin_inset Formula $z_{n}\coloneqq \frac{n^{b}}{c^{n}}$ \end_inset y entonces @@ -3823,7 +3823,7 @@ Supongamos . Entonces, si -\begin_inset Formula $y_{n}:=\frac{1}{x_{n}}$ +\begin_inset Formula $y_{n}\coloneqq \frac{1}{x_{n}}$ \end_inset , @@ -3883,7 +3883,7 @@ status open \begin_layout Plain Layout Sea -\begin_inset Formula $y_{n}:=e^{x_{n}}-1$ +\begin_inset Formula $y_{n}\coloneqq e^{x_{n}}-1$ \end_inset , entonces @@ -4083,7 +4083,7 @@ status open Demostración: \series default Sea -\begin_inset Formula $L:=\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ +\begin_inset Formula $L\coloneqq \lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}$ \end_inset . @@ -4318,12 +4318,12 @@ Si \end_inset con -\begin_inset Formula $M:=a_{1}\cdots a_{n_{0}}$ +\begin_inset Formula $M\coloneqq a_{1}\cdots a_{n_{0}}$ \end_inset . Si -\begin_inset Formula $\alpha_{n}:=\varepsilon\frac{n-n_{0}}{n}$ +\begin_inset Formula $\alpha_{n}\coloneqq \varepsilon\frac{n-n_{0}}{n}$ \end_inset , @@ -4420,7 +4420,7 @@ Se tiene que . Sea entonces -\begin_inset Formula $A_{n}:=\frac{a_{n}}{a_{n-1}}$ +\begin_inset Formula $A_{n}\coloneqq \frac{a_{n}}{a_{n-1}}$ \end_inset , para @@ -4620,7 +4620,7 @@ Demostración: \end_inset , -\begin_inset Formula $S_{n}:=\lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$ +\begin_inset Formula $S_{n}\coloneqq \lambda A_{n}+\mu B_{n}=\sum_{k=1}^{n}\lambda a_{n}+\sum_{k=1}^{n}\mu b_{n}=\sum_{k=1}^{n}(\lambda a_{n}+\mu b_{n})$ \end_inset . @@ -4701,7 +4701,7 @@ Dadas \end_inset y existe -\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$ +\begin_inset Formula $l\coloneqq \lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$ \end_inset : @@ -4856,7 +4856,7 @@ Criterio de la raíz: \end_inset y -\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$ +\begin_inset Formula $a\coloneqq \lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$ \end_inset : @@ -4963,7 +4963,7 @@ Criterio del cociente: \end_inset y -\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$ +\begin_inset Formula $a\coloneqq \lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$ \end_inset . @@ -5209,7 +5209,7 @@ Demostración: es decreciente. Definimos la sucesión de intervalos cerrados acotados y encajados -\begin_inset Formula $I_{n}:=[S_{2n},S_{2n+1}]$ +\begin_inset Formula $I_{n}\coloneqq [S_{2n},S_{2n+1}]$ \end_inset . |
