diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-20 16:07:37 +0100 |
| commit | c6f69b3f45b81d19b8eeb87184bf16e6de0fad24 (patch) | |
| tree | 92d4e853e031c3ff144a72a2326312cf58e8dae3 /fuvr2/n3.lyx | |
| parent | 1eea228b43c3e243c1e1e9baf21d5d0d3f970152 (diff) | |
2
Diffstat (limited to 'fuvr2/n3.lyx')
| -rw-r--r-- | fuvr2/n3.lyx | 631 |
1 files changed, 631 insertions, 0 deletions
diff --git a/fuvr2/n3.lyx b/fuvr2/n3.lyx new file mode 100644 index 0000000..5d9c1ab --- /dev/null +++ b/fuvr2/n3.lyx @@ -0,0 +1,631 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +En este capítulo, +\begin_inset Formula $K$ +\end_inset + + representa indistintamente a +\begin_inset Formula $\mathbb{R}$ +\end_inset + + o +\begin_inset Formula $\mathbb{C}$ +\end_inset + +. + Una +\series bold +serie de potencias +\series default + en torno a +\begin_inset Formula $z_{0}\in K$ +\end_inset + + es una expresión de la forma +\begin_inset Formula +\[ +\sum_{n=0}^{\infty}a_{n}(z-z_{0})^{n} +\] + +\end_inset + +donde +\begin_inset Formula $(a_{n})_{n=0}^{\infty}$ +\end_inset + + es una sucesión de elementos de +\begin_inset Formula $K$ +\end_inset + + y +\begin_inset Formula $z\in K$ +\end_inset + +. + Llamamos +\series bold +radio de convergencia +\series default + de la serie al valor +\begin_inset Formula +\[ +R:=\frac{1}{\limsup_{n}\sqrt[n]{|a_{n}|}} +\] + +\end_inset + +donde +\begin_inset Formula $\limsup_{n}a_{n}$ +\end_inset + + es el supremo de las subsucesiones convergentes de +\begin_inset Formula $(a_{n})$ +\end_inset + +. + Se entiende que si +\begin_inset Formula $\limsup_{n}\sqrt[n]{|a_{n}|}=0$ +\end_inset + + se toma +\begin_inset Formula $R=\infty$ +\end_inset + +, y si +\begin_inset Formula $\limsup_{n}\sqrt[n]{|a_{n}|}=\infty$ +\end_inset + + se toma +\begin_inset Formula $R=0$ +\end_inset + +. + Por el criterio de la raíz, o el del cociente, la serie converge sólo en + la bola abierta +\begin_inset Formula $B(z_{0};R)$ +\end_inset + +, llamada +\series bold +disco de convergencia +\series default +\SpecialChar endofsentence + +\end_layout + +\begin_layout Standard +La serie de funciones +\begin_inset Formula $\sum_{n=0}^{\infty}f_{n}$ +\end_inset + + +\series bold +converge uniformemente +\series default + en un conjunto +\begin_inset Formula $A$ +\end_inset + + a una función +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall z\in A,m\geq n_{0};\left|f(z)-\sum_{n=0}^{m}f_{n}(z)\right|<\varepsilon$ +\end_inset + +. + El +\series bold +criterio de Cauchy de convergencia uniforme +\series default + afirma que una serie de funciones es uniformemente convergente en +\begin_inset Formula $A$ +\end_inset + + si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall z\in A,n_{0}<p\leq q;\left|\sum_{n=p}^{q}f_{n}(z)\right|<\varepsilon$ +\end_inset + +, y el +\series bold +criterio de Weierstrass +\series default + afirma que si existe una serie de términos positivos +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + convergente con +\begin_inset Formula $|f_{n}(z)|\leq b_{n}\forall z\in A,n\in\mathbb{N}$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{n=0}^{\infty}f_{n}$ +\end_inset + + converge uniformemente en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +La serie de potencias +\begin_inset Formula $\sum_{n}a_{n}(z-z_{0})^{n}$ +\end_inset + + con radio de convergencia +\begin_inset Formula $R$ +\end_inset + + converge absoluta y uniformemente en la bola cerrada +\begin_inset Formula $B[z_{0};r]$ +\end_inset + + para cada +\begin_inset Formula $r<R$ +\end_inset + +. + Si +\begin_inset Formula $\sum_{n}f_{n}$ +\end_inset + + converge uniformemente en +\begin_inset Formula $A$ +\end_inset + + y las +\begin_inset Formula $f_{n}$ +\end_inset + + son continuas en +\begin_inset Formula $A$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $A$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +criterio de Abel +\series default + afirma que, dada una serie de potencias +\begin_inset Formula $\sum_{n}a_{n}z^{n}$ +\end_inset + +, si para +\begin_inset Formula $z=c$ +\end_inset + + la serie converge, también converge uniformemente en +\begin_inset Formula $[0,c]$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f(z):=\sum_{n=0}^{\infty}a_{n}z^{n}$ +\end_inset + + para +\begin_inset Formula $z\in B(0;R)$ +\end_inset + +, siendo +\begin_inset Formula $R$ +\end_inset + + el radio de convergencia de la serie, entonces la serie +\begin_inset Formula $\sum_{n=1}^{\infty}na_{n}z^{n-1}$ +\end_inset + +, obtenida derivando formalmente la anterior, tiene radio de convergencia + +\begin_inset Formula $R$ +\end_inset + +, y de hecho esta serie converge a la derivada de +\begin_inset Formula $f$ +\end_inset + +. + Entonces +\begin_inset Formula $f$ +\end_inset + + es infinitamente derivable en el disco de convergencia y +\begin_inset Formula $a_{n}=\frac{f^{(n)}(0)}{n!}$ +\end_inset + + para +\begin_inset Formula $n\geq0$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $f(z)=\sum_{n=0}^{\infty}a_{n}z^{n}$ +\end_inset + + con radio de convergencia +\begin_inset Formula $R$ +\end_inset + +, entonces la función +\begin_inset Formula $F$ +\end_inset + + dada por +\begin_inset Formula $F(z):=\sum_{n=0}^{\infty}\frac{1}{n+1}a_{n}z^{n+1}$ +\end_inset + + tiene radio de convergencia +\begin_inset Formula $R$ +\end_inset + + y es primitiva de +\begin_inset Formula $f$ +\end_inset + +. +\end_layout + +\begin_layout Section +Funciones elementales +\end_layout + +\begin_layout Standard +La +\series bold +exponencial compleja +\series default + se define como +\begin_inset Formula +\[ +e^{z}:=\sum_{n=0}^{\infty}\frac{1}{n!}z^{n} +\] + +\end_inset + +Podemos ver que su radio de convergencia es infinito, +\begin_inset Formula $(e^{z})'=e^{z}$ +\end_inset + + y +\begin_inset Formula $e^{z}e^{w}=e^{z+w}$ +\end_inset + +. + Además, +\begin_inset Formula $e^{x}>0$ +\end_inset + + para todo +\begin_inset Formula $x\in\mathbb{R}$ +\end_inset + +, y es estrictamente creciente con +\begin_inset Formula +\begin{eqnarray*} +\lim_{x\rightarrow\infty}e^{x}=+\infty & \text{ y } & \lim_{x\rightarrow-\infty}e^{x}=0 +\end{eqnarray*} + +\end_inset + + Definimos el +\series bold +seno +\series default + y el +\series bold +coseno +\series default +, respectivamente, como +\begin_inset Formula +\begin{eqnarray*} +\sin x:=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} & \text{ y } & \cos x:=\sum_{n=0}^{\infty}(-1)^{n}\frac{x^{2n}}{(2n)!} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_layout Standard +Vemos que +\begin_inset Formula $e^{x+iy}=e^{x}e^{iy}=e^{x}(\cos y+i\sin y)$ +\end_inset + +, luego +\begin_inset Formula $\sin x=\text{Im}e^{ix}$ +\end_inset + + y +\begin_inset Formula $\cos x=\text{Re}e^{ix}$ +\end_inset + +. + Como +\begin_inset Formula $|e^{iy}|^{2}=1$ +\end_inset + +, se tiene +\begin_inset Formula $\sin^{2}x+\cos^{2}x=1$ +\end_inset + +. + Además: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\sin'x=\cos x$ +\end_inset + + y +\begin_inset Formula $\cos'x=-\sin x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\sin(-x)=-\sin x$ +\end_inset + + y +\begin_inset Formula $\cos(-x)=\cos x$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\sin(x+y)=\sin x\cos y+\cos x\sin y$ +\end_inset + + y +\begin_inset Formula $\cos(x+y)=\cos x\cos y-\sin x\sin y$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El conjunto +\begin_inset Formula $\{x>0:\cos x=0\}$ +\end_inset + + es no vacío y de hecho tiene un primer elemento, que se denota +\begin_inset Formula $\frac{\pi}{2}$ +\end_inset + +. + Además, las funciones seno y coseno son +\begin_inset Formula $2\pi$ +\end_inset + +-periódicas, y +\begin_inset Formula $\psi:[0,2\pi)\rightarrow S$ +\end_inset + + dada por +\begin_inset Formula $\psi(t)=e^{it}$ +\end_inset + + es una biyección de +\begin_inset Formula $[0,2\pi)$ +\end_inset + + sobre la circunferencia unidad +\begin_inset Formula $S\subseteq\mathbb{C}$ +\end_inset + +. + Tenemos +\begin_inset Formula $\sin0=0$ +\end_inset + +, +\begin_inset Formula $\sin\frac{\pi}{2}=1$ +\end_inset + +, +\begin_inset Formula $\sin\frac{\pi}{6}=\frac{1}{2}$ +\end_inset + +, +\begin_inset Formula $\sin\frac{\pi}{4}=\frac{1}{\sqrt{2}}$ +\end_inset + +, +\begin_inset Formula $\sin\frac{\pi}{3}=\frac{1}{\sqrt{3}}$ +\end_inset + +, +\begin_inset Formula $\sin t=\cos\left(\frac{\pi}{2}-t\right)$ +\end_inset + + y +\begin_inset Formula $\cos t=\sin\left(\frac{\pi}{2}-t\right)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Por la biyección +\begin_inset Formula $\psi$ +\end_inset + +, y como dado +\begin_inset Formula $z\in\mathbb{C}$ +\end_inset + +, +\begin_inset Formula $\frac{z}{|z|}\in S$ +\end_inset + +, existe un único +\begin_inset Formula $t\in[0,2\pi)$ +\end_inset + +, llamado +\series bold +argumento principal +\series default + de +\begin_inset Formula $z$ +\end_inset + +, tal que +\begin_inset Formula $z=|z|(\cos t+i\sin t)=|z|e^{it}$ +\end_inset + +. + Entonces: +\end_layout + +\begin_layout Itemize +\begin_inset Formula $z_{1}z_{2}=|z_{1}|e^{it_{1}}|z_{2}|e^{it_{2}}=|z_{1}||z_{2}|e^{i(t_{1}+t_{2})}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $\frac{1}{z}=z^{-1}=|z|^{-1}e^{-it}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Formula $z^{n}=|z|^{n}e^{int}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Los +\begin_inset Formula $n$ +\end_inset + + complejos de la forma +\begin_inset Formula $w=\sqrt[n]{|z|}e^{i\frac{2k\pi+t}{n}}$ +\end_inset + + con +\begin_inset Formula $k=0,\dots,n-1$ +\end_inset + + son los únicos con +\begin_inset Formula $w^{n}=z$ +\end_inset + + para +\begin_inset Formula $z=|z|e^{it}$ +\end_inset + +. +\end_layout + +\end_body +\end_document |
