diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
| commit | 79e1a51eb55d0df43323c0fe77a7d55b2c2bd17d (patch) | |
| tree | 89bd93a329f9deb72efce8fed205b69918c3d9b9 /fvv1/n2.lyx | |
| parent | 1f7f9bcc7660fba0827a62c3068d5c7082f025d7 (diff) | |
POO
Diffstat (limited to 'fvv1/n2.lyx')
| -rw-r--r-- | fvv1/n2.lyx | 1010 |
1 files changed, 1010 insertions, 0 deletions
diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx new file mode 100644 index 0000000..c190e9d --- /dev/null +++ b/fvv1/n2.lyx @@ -0,0 +1,1010 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Derivadas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + normados, +\begin_inset Formula $\Omega\subseteq E$ +\end_inset + + abierto y +\begin_inset Formula $f:\Omega\rightarrow F$ +\end_inset + +, dados +\begin_inset Formula $a\in\Omega$ +\end_inset + + y +\begin_inset Formula $u\in E$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\series bold +derivable +\series default + en +\begin_inset Formula $a$ +\end_inset + + según +\begin_inset Formula $u$ +\end_inset + + si existe la +\series bold +derivada direccional +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x$ +\end_inset + + según +\begin_inset Formula $u$ +\end_inset + +, dada por +\begin_inset Formula +\[ +d_{u}f(x_{0}):=\lim_{t\rightarrow0}\frac{f(a+tu)-f(a)}{t} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $u=\vec{e}_{i}$ +\end_inset + + es el vector +\begin_inset Formula $i$ +\end_inset + +-ésimo de la base canónica hablamos de la +\series bold +derivada parcial +\series default + +\begin_inset Formula $i$ +\end_inset + +-ésima, que denotamos +\begin_inset Formula +\[ +\frac{\partial f}{\partial x_{i}}(a):=d_{i}f(a):=d_{\vec{e}_{i}}f(a) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\vec{u}=\lambda\vec{v}$ +\end_inset + + con +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $d_{\vec{u}}f(t)$ +\end_inset + + existe si y sólo si existe +\begin_inset Formula $d_{\vec{v}}f(t)$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula +\[ +d_{\vec{u}}f(t)=\lim_{t\rightarrow0}\frac{f(a+t\lambda\vec{v})-f(a)}{t}=\lim_{t\rightarrow0}\frac{f(a+t\lambda\vec{v})-f(a)}{t\lambda}\lambda\overset{t\lambda\rightarrow0}{=}\lambda d_{\vec{v}}f(t) +\] + +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}^{n}$ +\end_inset + + es derivable en +\begin_inset Formula $x_{0}$ +\end_inset + + si cada una de sus coordenadas lo es, y entonces +\begin_inset Formula $f'(x_{0})=(f'_{1}(x_{0}),\dots,f'_{n}(x_{0}))$ +\end_inset + +. +\end_layout + +\begin_layout Section +Diferenciales +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\Omega\subseteq E$ +\end_inset + + abierto, +\begin_inset Formula $f:\Omega\rightarrow F$ +\end_inset + + y +\begin_inset Formula $a\in\Omega$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\series bold +diferenciable +\series default + en +\begin_inset Formula $a$ +\end_inset + + si existe una aplicación lineal +\begin_inset Formula $L:E\rightarrow F$ +\end_inset + + tal que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Esta aplicación es la +\series bold +diferencial +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, denotada por +\begin_inset Formula $df(a)$ +\end_inset + +, y si existe es única. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $L,M:E\rightarrow F$ +\end_inset + + dos diferenciales de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +. + Entonces +\begin_inset Formula $\lim_{h\rightarrow0}\frac{L(h)-M(h)}{\Vert h\Vert}=\lim_{h\rightarrow0}\left(\frac{f(a+h)-f(a)-M(h)}{\Vert h\Vert}-\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)=0-0=0$ +\end_inset + +, pero entonces, dado +\begin_inset Formula $v\neq0$ +\end_inset + + arbitrario, +\begin_inset Formula $0=\lim_{t\rightarrow0^{+}}\frac{L(tv)-M(tv)}{\Vert tv\Vert}=\lim_{t\rightarrow0^{+}}\frac{L(v)-M(v)}{\Vert v\Vert}$ +\end_inset + +, con lo que +\begin_inset Formula $L(v)=M(v)$ +\end_inset + + y +\begin_inset Formula $L=M$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Escribimos +\begin_inset Formula $L\equiv M$ +\end_inset + + si +\begin_inset Formula $M$ +\end_inset + + es la matriz asociada a la aplicación lineal +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + + con diferencial +\begin_inset Formula $L$ +\end_inset + + si y sólo si cada +\begin_inset Formula $f_{i}:\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, es diferenciable con diferencial +\begin_inset Formula $L_{i}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula $\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\rightarrow0\iff\forall i\in\{1,\dots,n\},\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)_{i}\rightarrow0\iff\frac{f_{i}(a+h)-f_{i}(a)-L_{i}(h)}{\Vert h\Vert}\rightarrow0$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:\Omega\subseteq E\rightarrow F$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + +, también es continua en +\begin_inset Formula $a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $a$ +\end_inset + + si y sólo si +\begin_inset Formula $\lim_{x\rightarrow a}f(x)=f(a)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\lim_{h\rightarrow0}f(a+h)-f(a)=0$ +\end_inset + +. + Pero si +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=0$ +\end_inset + +, multiplicando por +\begin_inset Formula $\Vert h\Vert$ +\end_inset + +, que tiende a 0, tenemos +\begin_inset Formula $\lim_{h\rightarrow0}f(a+h)-f(a)-L(h)=0$ +\end_inset + +, y como +\begin_inset Formula $L(h)$ +\end_inset + + tiende a 0 nos queda la expresión de arriba. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + + ( +\begin_inset Formula $\Omega$ +\end_inset + + abierto) si para todo +\begin_inset Formula $P\in\Omega$ +\end_inset + + existen todas las derivadas parciales +\begin_inset Formula $\frac{\partial f_{i}}{\partial x_{j}}(P)$ +\end_inset + + y son continuas en +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Podemos suponer +\begin_inset Formula $n=1$ +\end_inset + +, pues de lo contrario basta probar que cada +\begin_inset Formula $f_{i}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a$ +\end_inset + +. + Se trata pues de probar que +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}}{\Vert h\Vert}=0$ +\end_inset + +, lo que ocurre si y sólo si +\begin_inset Formula +\begin{eqnarray*} +0 & = & \lim_{h\rightarrow0}\frac{|f(a+h)-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}|}{\Vert h\Vert}=\lim_{h\rightarrow0}\frac{f(a+\sum_{i=1}^{m}h_{i}\vec{e}_{i})-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}}{\Vert h\Vert}\\ + & = & \lim_{h\rightarrow0}\frac{\left|\sum_{i=1}^{m}\left(f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right)\right|}{\Vert h\Vert} +\end{eqnarray*} + +\end_inset + +El último sumatorio con sus dos primeros elementos forma una +\series bold +suma telescópica +\series default +: todos los elementos se anulan salvo el primero y el último. + Sabemos que cada +\begin_inset Formula $a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i}$ +\end_inset + + está en el dominio de +\begin_inset Formula $f$ +\end_inset + + porque +\begin_inset Formula $\Omega$ +\end_inset + + es abierto y +\begin_inset Formula $h$ +\end_inset + + se supone lo suficientemente pequeño. + Ahora llamamos +\begin_inset Formula $\varphi_{i}(t):=f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ +\end_inset + +, con lo que +\begin_inset Formula $\varphi'_{i}(t)=\frac{\partial f}{\partial x_{i}}(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ +\end_inset + +, y +\begin_inset Formula $\Delta_{i}:=\varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$ +\end_inset + + para algún +\begin_inset Formula $\xi_{i}$ +\end_inset + + entre 0 y +\begin_inset Formula $h_{i}$ +\end_inset + +, que tiende a 0. + Sustituyendo nos queda que lo anterior es igual a +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{\left|\sum_{i=1}^{m}\varphi'_{i}(\xi_{i})h_{i}-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right|}{\Vert h\Vert} +\] + +\end_inset + +Entonces, +\begin_inset Formula +\begin{eqnarray*} +0 & \leq & \frac{\left|\sum_{i=1}^{m}\varphi'_{i}(\xi_{i})h_{i}-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right|}{\Vert h\Vert_{\infty}}\\ + & \leq & \left|\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+\xi_{i}\vec{e}_{i})-\frac{\partial f}{\partial x_{i}}(a)\right|\frac{\left|h_{i}\right|}{\Vert h\Vert_{\infty}}\rightarrow0 +\end{eqnarray*} + +\end_inset + +Que esta última expresión tienda a 0 se debe a que +\begin_inset Formula $0\leq\frac{|h_{i}|}{\Vert h\Vert_{\infty}}\leq1$ +\end_inset + + y a que las derivadas parciales de +\begin_inset Formula $f$ +\end_inset + + sean continuas y por tanto +\begin_inset Formula $\lim_{h\rightarrow0}\frac{\partial f}{\partial x_{i}}(a+\dots)=\frac{\partial f}{\partial x_{i}}(\lim_{h\rightarrow0}(a+\dots))$ +\end_inset + +. + Entonces, por la regla del sandwich, el límite inicial tiende a 0. + Hemos utilizado la norma +\begin_inset Formula $\Vert\cdot\Vert_{\infty}$ +\end_inset + +, pero como dada una norma +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + +\begin_inset Formula $\exists\alpha,\beta>0:\forall h,\alpha\leq\frac{\Vert h\Vert_{\infty}}{\Vert h\Vert}\leq\beta$ +\end_inset + +, la convergencia a 0 no depende de la norma que tomemos. +\end_layout + +\begin_layout Section +Regla de la cadena +\end_layout + +\begin_layout Standard +La +\series bold +regla de la cadena +\series default + afirma que si +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}$ +\end_inset + + y +\begin_inset Formula ${\cal V}\subseteq\mathbb{R}^{n}$ +\end_inset + + son abiertos, +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + y +\begin_inset Formula ${\cal U}\overset{f}{\rightarrow}{\cal V}\overset{g}{\rightarrow}\mathbb{R}^{k}$ +\end_inset + + son diferenciables en +\begin_inset Formula $a$ +\end_inset + + y en +\begin_inset Formula $f(a)$ +\end_inset + +, respectivamente, entonces +\begin_inset Formula $g\circ f$ +\end_inset + + es diferenciable en +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $d(g\circ f)(a)=dg(f(a))\circ df(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $L:=df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $S:=dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$ +\end_inset + +, tenemos que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=\lim_{\eta\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}=0 +\] + +\end_inset + +y queremos ver que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{g(f(a+h))-g(f(a))-S(L(h))}{\Vert h\Vert}=0 +\] + +\end_inset + +Si llamamos +\begin_inset Formula $\eta:=f(a+h)-f(a)$ +\end_inset + +, que tiende a 0 por la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula +\begin{multline*} +\lim_{h\rightarrow0}\frac{g(f(a+h))-g(f(a))-S(L(h))}{\Vert h\Vert}=\lim_{h\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert h\Vert}+\frac{S(\eta)-S(L(h))}{\Vert h\Vert}\\ +=\lim_{h\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}\frac{\Vert\eta\Vert}{\Vert h\Vert}-S\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right) +\end{multline*} + +\end_inset + +Como +\begin_inset Formula $S\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)\rightarrow0$ +\end_inset + + usando la linealidad de +\begin_inset Formula $S$ +\end_inset + + y su continuidad (que se deduce de su linealidad), y como +\begin_inset Formula $\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}\rightarrow0$ +\end_inset + +, el límite tenderá a 0 si y sólo si +\begin_inset Formula $\frac{\Vert\eta\Vert}{\Vert h\Vert}$ +\end_inset + + es acotado, pero +\begin_inset Formula +\begin{eqnarray*} +0 & \leq & \frac{\Vert\eta\Vert}{\Vert h\Vert}=\frac{\Vert f(a+h)-f(a)-L(h)+L(h)\Vert}{\Vert h\Vert}\\ + & \leq & \frac{\Vert f(a+h)-f(a)-L(h)\Vert}{\Vert h\Vert}+\frac{\Vert L(h)\Vert}{\Vert h\Vert}\rightarrow0+\frac{\Vert L(h)\Vert}{\Vert h\Vert}\leq\frac{\Vert L\Vert\Vert h\Vert}{\Vert h\Vert}<+\infty +\end{eqnarray*} + +\end_inset + + por la continuidad de +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Section +Incremento finito +\end_layout + +\begin_layout Standard +El +\series bold +teorema del incremento finito +\series default + afirma que, sean +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $a,b\in\Omega$ +\end_inset + + con el segmento +\begin_inset Formula $[a,b]\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $L:\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + lineal, si +\begin_inset Formula $\Vert df(x)\Vert\leq M$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + + se tiene +\begin_inset Formula $\Vert f(b)-f(a)\Vert\leq M\Vert b-a\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sabemos que para +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(x+h)-f(x)-df(x)(h)}{\Vert h\Vert}=0$ +\end_inset + + y por tanto existe +\begin_inset Formula $\delta_{x}>0$ +\end_inset + + tal que para +\begin_inset Formula $\Vert h\Vert<\delta_{x}$ +\end_inset + + se tiene +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)-df(x)(h)\Vert<\varepsilon\Vert h\Vert +\] + +\end_inset + +con lo que +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)\Vert-\Vert df(x)(h)\Vert\leq\Vert f(x+h)-f(x)-df(x)(h)\Vert<\varepsilon\Vert h\Vert +\] + +\end_inset + + y por tanto +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)\Vert<\varepsilon\Vert h\Vert+\Vert df(x)(h)\Vert\leq\varepsilon\Vert h\Vert+\Vert df(x)\Vert\Vert h\Vert\leq(\varepsilon+M)\Vert h\Vert +\] + +\end_inset + +Esta desigualdad depende de +\begin_inset Formula $\delta_{x}$ +\end_inset + + y por tanto de +\begin_inset Formula $x$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\{B(x,\frac{\delta_{x}}{2})\}_{x\in[a,b]}$ +\end_inset + + un re +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +cu +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +bri +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +mien +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +to por abiertos de +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\{B_{i}\}_{i=1}^{k}:=\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ +\end_inset + + un subrecubrimiento finito del que suponemos que no podemos quitar ninguna + bola. + Ahora llamamos +\begin_inset Formula $x_{0}:=a$ +\end_inset + + y +\begin_inset Formula $x_{k+1}:=b$ +\end_inset + + y suponemos +\begin_inset Formula $a=x_{0}<x_{1}<\dots<x_{k}<x_{k+1}=b$ +\end_inset + +. + Por la desigualdad anterior, para +\begin_inset Formula $x,y\in[a,b]$ +\end_inset + + con +\begin_inset Formula $\Vert y-x\Vert<\delta_{x}$ +\end_inset + + o +\begin_inset Formula $\Vert x-y\Vert<\delta_{y}$ +\end_inset + +, +\begin_inset Formula $\Vert f(y)-f(x)\Vert\leq(M+\varepsilon)\Vert x-y\Vert$ +\end_inset + +. + El segmento +\begin_inset Formula $[x_{i},x_{i+1}]$ +\end_inset + + queda cubierto por +\begin_inset Formula $B_{i}$ +\end_inset + + y +\begin_inset Formula $B_{i+1}$ +\end_inset + +, pues si hiciera falta además +\begin_inset Formula $B_{j}$ +\end_inset + + con +\begin_inset Formula $j\neq i,i+1$ +\end_inset + + para cubrirlo sería +\begin_inset Formula $x_{j}<x_{i}$ +\end_inset + + y entonces +\begin_inset Formula $B_{i}\subseteq B_{j}$ +\end_inset + + o +\begin_inset Formula $x_{j}>x_{i+1}$ +\end_inset + + y entonces +\begin_inset Formula $B_{i+1}\subseteq B_{j}$ +\end_inset + +, pero entonces podríamos quitar una bola del recubrimiento +\begin_inset Formula $\#$ +\end_inset + +. + Por tanto +\begin_inset Formula $\Vert x_{i+1}-x_{i}\Vert<\frac{\delta_{x_{i}}}{2}+\frac{\delta_{x_{i+1}}}{2}\leq\max\{\delta_{x_{i}},\delta_{x_{i+1}}\}$ +\end_inset + +. + Finalmente tenemos que +\begin_inset Formula $\Vert f(b)-f(a)\Vert=\Vert f(x_{k+1})-f(x_{k})+\dots+f(x_{1})-f(x_{0})\Vert\leq\sum_{i=0}^{k}\Vert f(x_{i+1})-f(x_{i})\Vert\leq\sum_{i=0}^{k}\Vert x_{i+1}-x_{i}\Vert(M+\varepsilon)$ +\end_inset + + y, como todos los +\begin_inset Formula $x_{i+1}-x_{i}$ +\end_inset + + tienen la forma +\begin_inset Formula $\lambda(b-a)$ +\end_inset + + con +\begin_inset Formula $\lambda>0$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{i=0}^{k}\Vert x_{i+1}-x_{i}\Vert(M+\varepsilon)=\Vert b-a\Vert(M+\varepsilon)$ +\end_inset + +. + Como esto se da para todo +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, el resultado queda probado. +\end_layout + +\end_body +\end_document |
