diff options
| author | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
|---|---|---|
| committer | Juan Marín Noguera <juan.marinn@um.es> | 2020-02-24 11:22:00 +0100 |
| commit | 79e1a51eb55d0df43323c0fe77a7d55b2c2bd17d (patch) | |
| tree | 89bd93a329f9deb72efce8fed205b69918c3d9b9 /fvv1 | |
| parent | 1f7f9bcc7660fba0827a62c3068d5c7082f025d7 (diff) | |
POO
Diffstat (limited to 'fvv1')
| -rw-r--r-- | fvv1/n.lyx | 205 | ||||
| -rw-r--r-- | fvv1/n1.lyx | 1914 | ||||
| -rw-r--r-- | fvv1/n2.lyx | 1010 | ||||
| -rw-r--r-- | fvv1/n3.lyx | 1046 | ||||
| -rw-r--r-- | fvv1/n4.lyx | 592 |
5 files changed, 4767 insertions, 0 deletions
diff --git a/fvv1/n.lyx b/fvv1/n.lyx new file mode 100644 index 0000000..0e1cf08 --- /dev/null +++ b/fvv1/n.lyx @@ -0,0 +1,205 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\begin_preamble +\input{../defs} +\end_preamble +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize 10 +\spacing single +\use_hyperref false +\papersize a5paper +\use_geometry true +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\leftmargin 0.2cm +\topmargin 0.7cm +\rightmargin 0.2cm +\bottommargin 0.7cm +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style swiss +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle empty +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Title +Funciones de varias variables I +\end_layout + +\begin_layout Date +\begin_inset Note Note +status open + +\begin_layout Plain Layout + +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +def +\backslash +cryear{2018} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "../license.lyx" + +\end_inset + + +\end_layout + +\begin_layout Standard +Bibliografía: +\end_layout + +\begin_layout Itemize +Antonio Avilés. +\end_layout + +\begin_layout Itemize +FVV1, Luis Oncina (2016–17). +\end_layout + +\begin_layout Chapter +Normas y convergencia +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n1.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Derivadas y diferenciales +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n2.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Dobles diferenciales +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n3.lyx" + +\end_inset + + +\end_layout + +\begin_layout Chapter +Regiones de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset CommandInset include +LatexCommand input +filename "n4.lyx" + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/fvv1/n1.lyx b/fvv1/n1.lyx new file mode 100644 index 0000000..41aa455 --- /dev/null +++ b/fvv1/n1.lyx @@ -0,0 +1,1914 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Sea +\begin_inset Formula $E$ +\end_inset + + un +\begin_inset Formula $\mathbb{R}$ +\end_inset + +-espacio vectorial, una +\series bold +norma +\series default + es una aplicación +\begin_inset Formula $\Vert\cdot\Vert:E\rightarrow\mathbb{R}$ +\end_inset + + tal que +\begin_inset Formula $\forall x,y\in E,\lambda\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert x\Vert\geq0\land(\Vert x\Vert=0\iff x=0)$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert x+y\Vert\leq\Vert x\Vert+\Vert y\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert\lambda x\Vert=|\lambda|\Vert x\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El par +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + + es un +\series bold +espacio normado +\series default +. + Llamamos +\series bold +distancia asociada a la norma +\series default + a +\begin_inset Formula $d(x,y):=\Vert x-y\Vert$ +\end_inset + +. + Dos normas son equivalentes si sus distancias lo son. +\end_layout + +\begin_layout Standard +Ejemplos de normas en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + son las dadas por +\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{p}:=\sqrt[p]{\sum_{i=1}^{n}|x_{i}|^{p}}$ +\end_inset + + y +\begin_inset Newline newline +\end_inset + + +\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{\infty}:=\max\{|x_{i}|\}_{i=1}^{n}$ +\end_inset + +. + Además, +\begin_inset Formula $V:={\cal C}[a,b]:=\{f:[a,b]\rightarrow\mathbb{R}\text{ continua}\}$ +\end_inset + + con +\begin_inset Formula $\Vert f\Vert_{\infty}:=\sup\{|f(x)|\}_{x\in[a,b]}$ +\end_inset + + es un espacio normado. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Enumerate +Dado +\begin_inset Formula $f\in V$ +\end_inset + +, existe al menos un +\begin_inset Formula $x\in[a,b]$ +\end_inset + + y entonces +\begin_inset Formula $\Vert f\Vert_{\infty}\geq|f(x)|\geq0$ +\end_inset + +, y +\begin_inset Formula $\Vert f\Vert_{\infty}=0\iff\forall x\in[a,b],f(x)=0\iff f=0$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\Vert f+g\Vert_{\infty}=\sup\{|f(x)+g(x)|\}_{x\in[a,b]}\leq\sup\{|f(x)|+|g(x)|\}_{x\in[a,b]}\leq\sup\{|f(x)|\}_{x\in[a,b]}+\sup\{|g(x)|\}_{x\in[a,b]}=\Vert f\Vert_{\infty}+\Vert g\Vert_{\infty}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Dado +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $\Vert\lambda f\Vert_{\infty}=\sup\{|\lambda f(x)|\}_{x\in[a,b]}=|\lambda|\sup\{|f(x)|\}_{x\in[a,b]}=|\lambda|\Vert f\Vert_{\infty}$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{TEM} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(X,d)\rightarrow(Y,d')$ +\end_inset + + es continua en +\begin_inset Formula $p$ +\end_inset + + [...] si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall x\in X,(d(x,p)<\delta\implies d'(f(x),f(p))<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Definimos la norma de una aplicación +\begin_inset Formula $L:(E,\Vert\cdot\Vert)\rightarrow(F,\Vert\cdot\Vert')$ +\end_inset + + como +\begin_inset Formula $\Vert L\Vert:=\Vert L\Vert_{\Vert\cdot\Vert}^{\Vert\cdot\Vert'}:=\sup\{\Vert L(x)\Vert'\}_{x\in E,\Vert x\Vert\leq1}$ +\end_inset + +, y tenemos como +\series bold +teorema +\series default + que +\begin_inset Formula $L$ +\end_inset + + es continua si y sólo si +\begin_inset Formula $\Vert L\Vert<+\infty$ +\end_inset + +, y entonces es uniformemente continua. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Sea +\begin_inset Formula $L$ +\end_inset + + continua en 0, es decir, +\begin_inset Formula $\forall\varepsilon>0,\exists\delta>0:\forall y\in E,(\Vert y\Vert<\delta\implies\Vert L(y)\Vert'<\varepsilon)$ +\end_inset + +. + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + +, sea +\begin_inset Formula $\Vert z\Vert\leq1$ +\end_inset + +, entonces +\begin_inset Formula $\Vert\frac{\delta}{2}z\Vert<\delta$ +\end_inset + + y +\begin_inset Formula $\Vert L(\frac{\delta}{2}z)\Vert'<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\Vert L(z)\Vert'<\frac{2\varepsilon}{\delta}$ +\end_inset + + y +\begin_inset Formula $\Vert L\Vert<\frac{2\varepsilon}{\delta}$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Veamos primero que +\begin_inset Formula $\Vert L\Vert<+\infty\implies\forall x\in E,\Vert L(x)\Vert'\leq\Vert L\Vert\Vert x\Vert$ +\end_inset + +. + En efecto, para +\begin_inset Formula $\Vert x\Vert=1$ +\end_inset + +, +\begin_inset Formula $\Vert L(x)\Vert'\leq\sup\{\Vert L(y)\Vert\}_{\Vert y\Vert\leq1}=\Vert L\Vert=\Vert L\Vert\Vert x\Vert$ +\end_inset + +, y para cualquier otra +\begin_inset Formula $x$ +\end_inset + + basta dividir entre la norma. + Ahora bien, dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, tomando +\begin_inset Formula $\delta:=\frac{\varepsilon}{\Vert L\Vert+1}$ +\end_inset + + entonces +\begin_inset Formula $\Vert y-x\Vert<\delta\implies\Vert L(y)-L(x)\Vert'=\Vert L(y-x)\Vert'\leq\Vert L\Vert\Vert y-x\Vert<\Vert L\Vert\delta=\frac{\Vert L\Vert\varepsilon}{\Vert L\Vert+1}<\varepsilon$ +\end_inset + +. + Pero como +\begin_inset Formula $\delta$ +\end_inset + + no depende de +\begin_inset Formula $x$ +\end_inset + +, +\begin_inset Formula $L$ +\end_inset + + es uniformemente continua. +\end_layout + +\begin_layout Section +Equivalencia de normas +\end_layout + +\begin_layout Standard +Dos normas +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + son equivalentes si y sólo si +\begin_inset Formula $\exists\alpha,\beta>0:\forall x\in E,\alpha\Vert x\Vert\leq\Vert x\Vert'\leq\beta\Vert x\Vert$ +\end_inset + +. + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $L:=id_{E}:(E,\Vert\cdot\Vert)\rightarrow(E,\Vert\cdot\Vert')$ +\end_inset + + y +\begin_inset Formula $L':=L^{-1}$ +\end_inset + +, entonces +\begin_inset Formula ${\cal T}_{\Vert\cdot\Vert}={\cal T}_{\Vert\cdot\Vert'}$ +\end_inset + + si y sólo si +\begin_inset Formula $L$ +\end_inset + + y +\begin_inset Formula $L'$ +\end_inset + + son continuas, pues +\begin_inset Formula $L\text{ es continua}\iff\forall A\in{\cal T}_{\Vert\cdot\Vert'},A\in{\cal T}_{\Vert\cdot\Vert}\iff{\cal T}_{\Vert\cdot\Vert'}\subseteq{\cal T}_{\Vert\cdot\Vert}$ +\end_inset + +, y el otro contenido es análogo. + Entonces: +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\implies]$ +\end_inset + + +\end_layout + +\end_inset + +Si +\begin_inset Formula $L$ +\end_inset + + es continua +\begin_inset Formula $\Vert L\Vert<+\infty$ +\end_inset + +, luego +\begin_inset Formula $\Vert x\Vert'=\Vert L(x)\Vert'\leq\Vert L\Vert\Vert x\Vert\overset{\beta:=\Vert L\Vert}{=}\beta\Vert x\Vert$ +\end_inset + +. + La otra cota se hace de forma análoga. +\end_layout + +\begin_layout Itemize +\begin_inset Argument item:1 +status open + +\begin_layout Plain Layout +\begin_inset Formula $\impliedby]$ +\end_inset + + +\end_layout + +\end_inset + +Si existe +\begin_inset Formula $\beta$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in E,\Vert x\Vert'\leq\beta\Vert x\Vert$ +\end_inset + +, en particular se cumple para +\begin_inset Formula $\Vert x\Vert\leq1$ +\end_inset + +, y entonces +\begin_inset Formula $\Vert L(x)\Vert=\Vert x\Vert'\leq\beta\Vert x\Vert$ +\end_inset + +, luego +\begin_inset Formula $\Vert L\Vert=\sup\{\Vert x\Vert'\}_{\Vert x\Vert\leq1}\leq\beta<+\infty$ +\end_inset + + y +\begin_inset Formula $L$ +\end_inset + + es continua. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{TEM} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Las métricas +\begin_inset Formula $d_{E}$ +\end_inset + +, +\begin_inset Formula $d_{T}$ +\end_inset + + y +\begin_inset Formula $d_{\infty}$ +\end_inset + + [...] son equivalentes, [...]. + +\series bold +Demostración: +\series default + Se deduce de que +\begin_inset Formula $\frac{1}{n}d_{T}(x,y)\leq d_{\infty}(x,y)\leq d_{T}(x,y)$ +\end_inset + + y +\begin_inset Formula $\frac{1}{\sqrt{n}}d_{E}(x,y)\leq d_{\infty}(x,y)\leq d_{E}(x,y)$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Todo cerrado +\begin_inset Formula $C$ +\end_inset + + de un compacto +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es compacto. + [...] En [...] +\begin_inset Formula $(\mathbb{R},{\cal T}_{u})$ +\end_inset + + [...] todo subespacio cerrado y acotado es compacto. + [...] Todo subespacio compacto +\begin_inset Formula $K$ +\end_inset + + de un espacio métrico +\begin_inset Formula $(X,d)$ +\end_inset + + es [cerrado y] acotado. + [...]Si +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,{\cal T}')$ +\end_inset + + es continua y +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es compacto entonces +\begin_inset Formula $f(X)$ +\end_inset + + es compacto. + [...] +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + es +\series bold +compacto +\series default +[...] si toda sucesión admite una subsucesión convergente. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Toda norma +\begin_inset Formula $\Vert\cdot\Vert:(E,\Vert\cdot\Vert)\rightarrow\mathbb{R}$ +\end_inset + + es uniformemente continua. + +\series bold +Demostración: +\series default + Fijado +\begin_inset Formula $\varepsilon$ +\end_inset + + y tomando +\begin_inset Formula $\delta:=\varepsilon$ +\end_inset + +, si +\begin_inset Formula $\Vert x-y\Vert<\delta$ +\end_inset + + entonces usando que +\begin_inset Formula $|\Vert x\Vert-\Vert y\Vert|\leq\Vert x-y\Vert$ +\end_inset + +, lo que se deduce de +\begin_inset Formula $\Vert x\Vert\leq\Vert x-y\Vert+\Vert y\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert y\Vert\leq\Vert y-x\Vert+\Vert x\Vert$ +\end_inset + +, obtenemos que +\begin_inset Formula $|\Vert x\Vert-\Vert y\Vert|<\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, en +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +, todas las normas son equivalentes. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\Vert x\Vert\leq C\Vert x\Vert_{1}]$ +\end_inset + + +\begin_inset Formula $\Vert x\Vert=\Vert\sum x_{i}\vec{e}_{i}\Vert\leq\sum|x_{i}|\Vert\vec{e}_{i}\Vert\leq\max\{\Vert\vec{e}_{i}\Vert\}\sum|x_{i}|=\max\{\Vert\vec{e}_{i}\Vert\}\Vert x\Vert_{1}$ +\end_inset + +. +\end_layout + +\begin_layout Labeling +\labelwidthstring 00.00.0000 +\begin_inset Formula $\Vert x\Vert_{1}\leq D\Vert x\Vert]$ +\end_inset + + Tomamos +\begin_inset Formula $(\mathbb{R}^{n},\Vert\cdot\Vert_{1})\overset{id}{\rightarrow}(\mathbb{R}^{n},\Vert\cdot\Vert)\overset{\Vert\cdot\Vert}{\rightarrow}\mathbb{R}$ +\end_inset + +, que es continua por ser composición de dos funciones continuas (la identidad + es continua por la otra cota y la demostración del teorema anterior), entonces + +\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}:\Vert x\Vert_{1}=1\}$ +\end_inset + + es cerrado dentro del compacto +\begin_inset Formula $\overline{B}(0,1)$ +\end_inset + +, luego es compacto y como la función dada es continua, +\begin_inset Formula $\Vert\cdot\Vert(S)$ +\end_inset + + es compacto y alcanza su máximo y su mínimo. + Sea ahora +\begin_inset Formula $\mu:=\min\{\Vert x\Vert\}_{x\in S}>0$ +\end_inset + + (pues +\begin_inset Formula $0\notin S$ +\end_inset + +), si +\begin_inset Formula $\Vert x\Vert_{1}=1$ +\end_inset + + para un cierto +\begin_inset Formula $x\in\mathbb{R}^{n}$ +\end_inset + +, entonces +\begin_inset Formula $\Vert x\Vert\geq\mu$ +\end_inset + +, luego +\begin_inset Formula $x\neq0$ +\end_inset + + y +\begin_inset Formula $\left\Vert \frac{x}{\Vert x\Vert_{1}}\right\Vert =1$ +\end_inset + +, con lo que +\begin_inset Formula $\left\Vert \frac{x}{\Vert x\Vert_{1}}\right\Vert \geq\mu$ +\end_inset + + y +\begin_inset Formula $\Vert x\Vert\geq\mu\Vert x\Vert_{1}$ +\end_inset + +, y entonces +\begin_inset Formula $\Vert x\Vert_{1}\leq\frac{1}{\mu}\Vert x\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Tenemos pues que toda +\begin_inset Formula $T:(\mathbb{R}^{m},\Vert\cdot\Vert)\rightarrow(\mathbb{R}^{n},\Vert\cdot\Vert')$ +\end_inset + + lineal es continua +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues equivale a una multiplicación por una matriz en +\begin_inset Formula $M_{n\times m}(\mathbb{R})$ +\end_inset + +, que es continua con la norma euclídea y por tanto en todas las demás +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Convergencia +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(X,{\cal T})$ +\end_inset + + un espacio topológico e +\begin_inset Formula $(Y,d)$ +\end_inset + + un espacio métrico, una sucesión de funciones +\begin_inset Formula $(f_{n}:(X,{\cal T})\rightarrow(Y,d))_{n}$ +\end_inset + + +\series bold +converge puntualmente +\series default + a +\begin_inset Formula $f:(X,{\cal T})\rightarrow(Y,d)$ +\end_inset + + si para todo +\begin_inset Formula $x\in X$ +\end_inset + +, +\begin_inset Formula $f_{n}(x)\rightarrow f(x)$ +\end_inset + +, y converge +\series bold +uniformemente +\series default + a +\begin_inset Formula $f$ +\end_inset + + si +\begin_inset Formula $d_{\infty}(f_{n},f)\rightarrow0$ +\end_inset + +. + Sea +\begin_inset Formula $x_{0}\in(X,{\cal T})$ +\end_inset + + y +\begin_inset Formula $(f_{n}:X\rightarrow\mathbb{R})_{n}$ +\end_inset + + una sucesión de funciones continuas en +\begin_inset Formula $x_{0}$ +\end_inset + + que converge uniformemente a +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $x_{0}$ +\end_inset + +. + +\series bold +Demostración: +\series default + Fijado un +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, existe un +\begin_inset Formula $n_{0}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{0}$ +\end_inset + + y +\begin_inset Formula $x\in X$ +\end_inset + + se tiene +\begin_inset Formula $|f_{n}(x)-f(x)|<\frac{\varepsilon}{3}$ +\end_inset + +. + Como +\begin_inset Formula $f_{n}$ +\end_inset + + es continua, existe +\begin_inset Formula ${\cal V}\in{\cal E}(x_{0})$ +\end_inset + + tal que si +\begin_inset Formula $x\in{\cal V}$ +\end_inset + + entonces +\begin_inset Formula $|f_{n}(x)-f_{n}(x_{0})|<\frac{\varepsilon}{3}$ +\end_inset + +, con lo que +\begin_inset Formula $|f(x)-f(x_{0})|\leq|f(x)-f_{n}(x)|+|f_{n}(x)-f_{n}(x_{0})|+|f_{n}(x_{0})-f(x_{0})|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +El límite puntual de funciones continuas no es necesariamente continua, + ni siquera en funciones de +\begin_inset Formula $(a,b)$ +\end_inset + + a +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, y como contraejemplo tenemos +\begin_inset Formula $(f_{n}:(-1,1)\rightarrow\mathbb{R})_{n}$ +\end_inset + + dada por +\begin_inset Formula $f_{n}(x)=\begin{cases} +0 & \text{si }x\leq0\\ +nx & \text{si }0<x<\frac{1}{n}\\ +1 & \text{si }x\geq\frac{1}{n} +\end{cases}$ +\end_inset + +, que converge a +\begin_inset Formula $f(x)=\begin{cases} +0 & \text{si }x\leq0\\ +1 & \text{si }x>0 +\end{cases}$ +\end_inset + +. + Asimismo, el límite uniforme de funciones derivables no es necesariamente + derivable, y como contraejemplo tenemos +\begin_inset Formula $f_{n}(x)=\sqrt{x^{2}+\frac{1}{n}}$ +\end_inset + +, que converge a +\begin_inset Formula $f(x)=|x|$ +\end_inset + +. +\end_layout + +\begin_layout Plain Layout +La función +\begin_inset Formula $\sum_{n}\frac{\cos(7^{n}\pi x)}{2^{n}}$ +\end_inset + + es continua en todos los puntos ( +\begin_inset Formula $\Vert\frac{\cos(7^{n}\pi x)}{2^{n}}\Vert_{\infty}=\frac{1}{2^{n}}\implies\Vert\sum_{n}\frac{\cos(7^{n}\pi x)}{2^{n}}\Vert<+\infty$ +\end_inset + +, con lo que la función es continua por ser la suma de una sucesión convergente + de funciones continuas) pero no es derivable en ninguno. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{FUVR1} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $\lim_{n}x_{n}=\pm\infty$ +\end_inset + + entonces +\begin_inset Formula $\lim_{n}\left(1+\frac{1}{x_{n}}\right)^{x_{n}}=e$ +\end_inset + + y +\begin_inset Formula $\lim_{n}\left(1-\frac{1}{x_{n}}\right)^{x_{n}}=e^{-1}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Si existe +\begin_inset Formula $\lim_{n}\frac{z_{n+1}}{z_{n}}=w\in\mathbb{R}$ +\end_inset + + con +\begin_inset Formula $|w|<1$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}z_{n}=0$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $b>0$ +\end_inset + +, +\begin_inset Formula $c>1$ +\end_inset + + y +\begin_inset Formula $d>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\log n\ll n^{b}\ll c^{n}\ll n^{dn} +\] + +\end_inset + +Si además +\begin_inset Formula $d\geq1$ +\end_inset + +, entonces +\begin_inset Formula $c^{n}\ll n!\ll n^{dn}$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + con +\begin_inset Formula $0<|x_{n}|<1$ +\end_inset + +, entonces: +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $\log(1+x_{n})\sim x_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +\begin_inset Formula $e^{x_{n}}-1\sim x_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=1$ +\end_inset + + con +\begin_inset Formula $x_{n}\neq1$ +\end_inset + + y +\begin_inset Formula $\lim_{n}y_{n}=\pm\infty$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}x_{n}^{y_{n}}=e^{\lim_{n}y_{n}(x_{n}-1)} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\lim_{n}x_{n}=0$ +\end_inset + + y +\begin_inset Formula $x_{n}\neq0$ +\end_inset + +, entonces +\begin_inset Formula $\sin x_{n}\sim x_{n}$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Criterios de Stolz: +\series default + Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + y +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + son sucesiones de reales tales que +\begin_inset Formula $(b_{n})_{n}$ +\end_inset + + es estrictamente creciente o decreciente y bien +\begin_inset Formula $\lim_{n}a_{n}=\lim_{n}b_{n}=0$ +\end_inset + +, bien +\begin_inset Formula $\lim_{n}b_{n}=\infty$ +\end_inset + +, si existe +\begin_inset Formula $\lim_{n}\frac{a_{n+1}-a_{n}}{b_{n+1}-b_{n}}=L\in\overline{\mathbb{R}}$ +\end_inset + +, entonces +\begin_inset Formula $\lim_{n}\frac{a_{n}}{b_{n}}=L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como consecuencia: +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula +\[ +\lim_{n}\frac{a_{1}+\dots+a_{n}}{n}=\lim_{n}a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + converge y +\begin_inset Formula $a_{n}>0$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{1}\cdots a_{n}}=\lim_{n}a_{n} +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $a_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $\lim_{n}\frac{a_{n}}{a_{n-1}}$ +\end_inset + +, entonces +\begin_inset Formula +\[ +\lim_{n}\sqrt[n]{a_{n}}=\lim_{n}\frac{a_{n}}{a_{n-1}} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +sremember{FUVR1} +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +La +\series bold +condición de Cauchy +\series default + nos dice que +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + es convergente si y sólo si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{0}\in\mathbb{N}:\forall p,q\in\mathbb{N},(n_{0}\leq p\leq q\implies|a_{p+1}+\dots+a_{q}|<\varepsilon)$ +\end_inset + +. +\end_layout + +\begin_layout Standard +[...] Si +\begin_inset Formula $S_{n}$ +\end_inset + + converge, entonces +\begin_inset Formula $\lim_{n}a_{n}=0$ +\end_inset + +. + [...] La convergencia de una serie no se altera modificando un número finito + de términos de esta. + [...] +\end_layout + +\begin_layout Standard +Dada una serie +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + de términos +\begin_inset Formula $a_{n}\geq0$ +\end_inset + +, esta es convergente si y sólo si la sucesión de sumas parciales es acotada + [...]. +\end_layout + +\begin_layout Standard + +\series bold +Criterios de comparación: +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}\geq0$ +\end_inset + +, si existe +\begin_inset Formula $M>0$ +\end_inset + + tal que +\begin_inset Formula $a_{n}\leq Mb_{n}\forall n$ +\end_inset + +, entonces la convergencia de +\begin_inset Formula $\sum_{n=1}^{\infty}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n=1}^{\infty}a_{n}$ +\end_inset + + [...]. +\end_layout + +\begin_layout Enumerate +Dadas +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + y +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n},b_{n}>0$ +\end_inset + + y existe +\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$ +\end_inset + +: +\end_layout + +\begin_deeper +\begin_layout Enumerate +Si +\begin_inset Formula $0<l<\infty$ +\end_inset + +, ambas series tienen el mismo carácter. + [...] +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=0$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $l=+\infty$ +\end_inset + + entonces la convergencia de +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + implica la de +\begin_inset Formula $\sum_{n}b_{n}$ +\end_inset + +. + [...] +\end_layout + +\end_deeper +\begin_layout Standard + +\series bold +Criterio de la raíz: +\series default + Dada +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$ +\end_inset + +: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. + [...] +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. + [...] +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a=1$ +\end_inset + + no se puede afirmar nada. +\end_layout + +\begin_layout Standard + +\series bold +Criterio del cociente: +\series default + Sea +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}>0$ +\end_inset + + y +\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$ +\end_inset + +. + [...] +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a<1$ +\end_inset + +, la serie converge. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $a>1$ +\end_inset + +, la serie diverge. +\end_layout + +\begin_layout Standard + +\series bold +Criterio de condensación: +\series default + Dada una sucesión +\begin_inset Formula $(a_{n})_{n}$ +\end_inset + + monótona decreciente con +\begin_inset Formula $a_{n}>0$ +\end_inset + +. + Entonces +\begin_inset Formula +\[ +\sum_{n=1}^{\infty}a_{n}\in\mathbb{R}\iff\sum_{n=1}^{\infty}2^{n}a_{2^{n}}\in\mathbb{R} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Una serie +\begin_inset Formula $\sum_{n}a_{n}$ +\end_inset + + con +\begin_inset Formula $a_{n}\in\mathbb{R}$ +\end_inset + + es +\series bold +absolutamente convergente +\series default + si +\begin_inset Formula $\sum_{n}|a_{n}|$ +\end_inset + + es convergente. + Toda serie absolutamente convergente es convergente. + [...] +\end_layout + +\begin_layout Standard +La +\series bold +serie geométrica +\series default + +\begin_inset Formula $\sum_{n=0}^{\infty}r^{n}$ +\end_inset + + es convergente si +\begin_inset Formula $|r|<1$ +\end_inset + + con suma +\begin_inset Formula $\frac{1}{1-r}$ +\end_inset + + y divergente si +\begin_inset Formula $|r|\geq1$ +\end_inset + +. + La +\series bold +serie armónica +\series default + +\begin_inset Formula $\sum_{n=1}^{\infty}\frac{1}{n^{k}}$ +\end_inset + + es convergente si +\begin_inset Formula $k>1$ +\end_inset + + y divergente si +\begin_inset Formula $k\leq1$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +eremember +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Section +Completitud +\end_layout + +\begin_layout Standard +Una sucesión +\begin_inset Formula $(x_{n})$ +\end_inset + + en un espacio métrico +\begin_inset Formula $(E,d)$ +\end_inset + + es +\series bold +de Cauchy +\series default + si +\begin_inset Formula $\forall\varepsilon>0,\exists n_{\varepsilon}\in\mathbb{N}:\forall n,m\geq n_{\varepsilon},d(x_{n},x_{m})<\varepsilon$ +\end_inset + +. + Un espacio métrico es +\series bold +completo +\series default + si toda sucesión de Cauchy es convergente. + Un +\series bold +espacio de Banach +\series default + es un espacio normado completo. + Dadas dos normas +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + y +\begin_inset Formula $\Vert\cdot\Vert'$ +\end_inset + + equivalentes sobre +\begin_inset Formula $E$ +\end_inset + +, +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + + es completo si y sólo si lo es +\begin_inset Formula $(E,\Vert\cdot\Vert')$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Existen +\begin_inset Formula $\alpha,\beta>0$ +\end_inset + + tales que +\begin_inset Formula $\alpha\Vert x\Vert\leq\Vert x\Vert'\leq\beta\Vert x\Vert$ +\end_inset + +, luego si +\begin_inset Formula $(x_{n})$ +\end_inset + + es de Cauchy en +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + + también lo es en +\begin_inset Formula $(E,\Vert\cdot\Vert')$ +\end_inset + + sin más que tomar +\begin_inset Formula $n_{\frac{\varepsilon}{\beta}}$ +\end_inset + +, y viceversa, y como +\begin_inset Formula $(x_{n})$ +\end_inset + + converge a +\begin_inset Formula $x$ +\end_inset + + en +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + + si y sólo si converge en +\begin_inset Formula $(E,\Vert\cdot\Vert')$ +\end_inset + +, la completitud de uno implica la del otro. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + es un espacio de Banach con cualquier norma. + +\series bold +Demostración: +\series default + Basta probar que +\begin_inset Formula $(\mathbb{R}^{n},\Vert\cdot\Vert_{\infty})$ +\end_inset + + es completo. + Si +\begin_inset Formula $(x_{m})$ +\end_inset + + es de Cauchy en +\begin_inset Formula $(\mathbb{R}^{n},\Vert\cdot\Vert_{\infty})$ +\end_inset + +, como +\begin_inset Formula $|x_{mi}-x_{ki}|\leq\Vert x_{m}-x_{k}\Vert_{\infty}$ +\end_inset + + para todo +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, entonces +\begin_inset Formula $(x_{mi})_{m}$ +\end_inset + + es de Cauchy en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y por tanto convergente a un +\begin_inset Formula $x_{0i}$ +\end_inset + +, con lo que +\begin_inset Formula $(x_{m})_{m}$ +\end_inset + + converge a +\begin_inset Formula $(x_{01},\dots,x_{0n})$ +\end_inset + +, y se tiene que +\begin_inset Formula $(\mathbb{R}^{n},\Vert\cdot\Vert)$ +\end_inset + + es completo. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, +\begin_inset Formula $({\cal C}[a,b],\Vert\cdot\Vert_{\infty})$ +\end_inset + + es un espacio de Banach. + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $(f_{n})_{n}$ +\end_inset + + una sucesión de Cauchy en +\begin_inset Formula $({\cal C}[a,b],\Vert\cdot\Vert_{\infty})$ +\end_inset + +, fijado un +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe un +\begin_inset Formula $n_{0}$ +\end_inset + + tal que para +\begin_inset Formula $n,m\geq n_{0}$ +\end_inset + + y +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, +\begin_inset Formula $|f_{n}(x)-f_{m}(x)|<\frac{\varepsilon}{2}$ +\end_inset + +. + Por tanto para cada +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, +\begin_inset Formula $(f_{n}(x))_{n}$ +\end_inset + + es de Cauchy en +\begin_inset Formula $\mathbb{R}$ +\end_inset + + y converge pues a un valor +\begin_inset Formula $f(x)$ +\end_inset + +. + Ahora bien, dado un +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, por la convergencia puntual que acabamos de probar existe +\begin_inset Formula $n_{x}\in\mathbb{N}$ +\end_inset + + tal que para +\begin_inset Formula $n\geq n_{x}$ +\end_inset + + se tiene +\begin_inset Formula $|f_{n}(x)-f(x)|<\frac{\varepsilon}{2}$ +\end_inset + +. + Si +\begin_inset Formula $n>n_{0}$ +\end_inset + +, +\begin_inset Formula $|f_{n}(x)-f(x)|\leq|f_{n}(x)-f_{\max\{n_{0},n_{x}\}}(x)|+|f_{\max\{n_{0},n_{x}\}}(x)-f(x)|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ +\end_inset + +, y como +\begin_inset Formula $n_{0}$ +\end_inset + + no depende de +\begin_inset Formula $x$ +\end_inset + + (sólo de +\begin_inset Formula $\varepsilon$ +\end_inset + +), queda probada la convergencia uniforme. +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $(x_{n})_{n}$ +\end_inset + + una sucesión en el espacio de Banach +\begin_inset Formula $(E,\Vert\cdot\Vert)$ +\end_inset + + con +\begin_inset Formula $\sum_{n}\Vert x_{n}\Vert<+\infty$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{n}x_{n}$ +\end_inset + + converge. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Tenemos que +\begin_inset Formula $\sum_{n}\Vert x_{n}\Vert$ +\end_inset + +, por ser convergente, es de Cachy, por lo que dado +\begin_inset Formula $\varepsilon>0$ +\end_inset + + existe +\begin_inset Formula $n_{\varepsilon}$ +\end_inset + + tal que si +\begin_inset Formula $n,m>n_{\varepsilon}$ +\end_inset + + se tiene +\begin_inset Formula $|\sum_{k=1}^{n}\Vert x_{k}\Vert-\sum_{k=1}^{m}\Vert x_{k}\Vert|<\varepsilon$ +\end_inset + +. + Pero por la desigualdad triangular +\begin_inset Formula $\Vert\sum_{k=1}^{n}x_{k}-\sum_{k=1}^{m}x_{k}\Vert\leq|\sum_{k=1}^{n}\Vert x_{k}\Vert-\sum_{k=1}^{m}\Vert x_{k}\Vert|<\varepsilon$ +\end_inset + +, luego +\begin_inset Formula $\sum_{n}x_{n}$ +\end_inset + + también es de Cauchy y por tanto convergente por estar en un espacio completo. +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx new file mode 100644 index 0000000..c190e9d --- /dev/null +++ b/fvv1/n2.lyx @@ -0,0 +1,1010 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Section +Derivadas +\end_layout + +\begin_layout Standard +Sean +\begin_inset Formula $E$ +\end_inset + + y +\begin_inset Formula $F$ +\end_inset + + normados, +\begin_inset Formula $\Omega\subseteq E$ +\end_inset + + abierto y +\begin_inset Formula $f:\Omega\rightarrow F$ +\end_inset + +, dados +\begin_inset Formula $a\in\Omega$ +\end_inset + + y +\begin_inset Formula $u\in E$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\series bold +derivable +\series default + en +\begin_inset Formula $a$ +\end_inset + + según +\begin_inset Formula $u$ +\end_inset + + si existe la +\series bold +derivada direccional +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $x$ +\end_inset + + según +\begin_inset Formula $u$ +\end_inset + +, dada por +\begin_inset Formula +\[ +d_{u}f(x_{0}):=\lim_{t\rightarrow0}\frac{f(a+tu)-f(a)}{t} +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $u=\vec{e}_{i}$ +\end_inset + + es el vector +\begin_inset Formula $i$ +\end_inset + +-ésimo de la base canónica hablamos de la +\series bold +derivada parcial +\series default + +\begin_inset Formula $i$ +\end_inset + +-ésima, que denotamos +\begin_inset Formula +\[ +\frac{\partial f}{\partial x_{i}}(a):=d_{i}f(a):=d_{\vec{e}_{i}}f(a) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $\vec{u}=\lambda\vec{v}$ +\end_inset + + con +\begin_inset Formula $\lambda\in\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $d_{\vec{u}}f(t)$ +\end_inset + + existe si y sólo si existe +\begin_inset Formula $d_{\vec{v}}f(t)$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula +\[ +d_{\vec{u}}f(t)=\lim_{t\rightarrow0}\frac{f(a+t\lambda\vec{v})-f(a)}{t}=\lim_{t\rightarrow0}\frac{f(a+t\lambda\vec{v})-f(a)}{t\lambda}\lambda\overset{t\lambda\rightarrow0}{=}\lambda d_{\vec{v}}f(t) +\] + +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:(a,b)\rightarrow\mathbb{R}^{n}$ +\end_inset + + es derivable en +\begin_inset Formula $x_{0}$ +\end_inset + + si cada una de sus coordenadas lo es, y entonces +\begin_inset Formula $f'(x_{0})=(f'_{1}(x_{0}),\dots,f'_{n}(x_{0}))$ +\end_inset + +. +\end_layout + +\begin_layout Section +Diferenciales +\end_layout + +\begin_layout Standard +Sea +\begin_inset Formula $\Omega\subseteq E$ +\end_inset + + abierto, +\begin_inset Formula $f:\Omega\rightarrow F$ +\end_inset + + y +\begin_inset Formula $a\in\Omega$ +\end_inset + +, +\begin_inset Formula $f$ +\end_inset + + es +\series bold +diferenciable +\series default + en +\begin_inset Formula $a$ +\end_inset + + si existe una aplicación lineal +\begin_inset Formula $L:E\rightarrow F$ +\end_inset + + tal que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Esta aplicación es la +\series bold +diferencial +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, denotada por +\begin_inset Formula $df(a)$ +\end_inset + +, y si existe es única. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $L,M:E\rightarrow F$ +\end_inset + + dos diferenciales de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +. + Entonces +\begin_inset Formula $\lim_{h\rightarrow0}\frac{L(h)-M(h)}{\Vert h\Vert}=\lim_{h\rightarrow0}\left(\frac{f(a+h)-f(a)-M(h)}{\Vert h\Vert}-\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)=0-0=0$ +\end_inset + +, pero entonces, dado +\begin_inset Formula $v\neq0$ +\end_inset + + arbitrario, +\begin_inset Formula $0=\lim_{t\rightarrow0^{+}}\frac{L(tv)-M(tv)}{\Vert tv\Vert}=\lim_{t\rightarrow0^{+}}\frac{L(v)-M(v)}{\Vert v\Vert}$ +\end_inset + +, con lo que +\begin_inset Formula $L(v)=M(v)$ +\end_inset + + y +\begin_inset Formula $L=M$ +\end_inset + +. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +Escribimos +\begin_inset Formula $L\equiv M$ +\end_inset + + si +\begin_inset Formula $M$ +\end_inset + + es la matriz asociada a la aplicación lineal +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + + con diferencial +\begin_inset Formula $L$ +\end_inset + + si y sólo si cada +\begin_inset Formula $f_{i}:\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + +, +\begin_inset Formula $i\in\{1,\dots,n\}$ +\end_inset + +, es diferenciable con diferencial +\begin_inset Formula $L_{i}$ +\end_inset + + +\begin_inset Note Comment +status open + +\begin_layout Plain Layout +, pues +\begin_inset Formula $\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\rightarrow0\iff\forall i\in\{1,\dots,n\},\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)_{i}\rightarrow0\iff\frac{f_{i}(a+h)-f_{i}(a)-L_{i}(h)}{\Vert h\Vert}\rightarrow0$ +\end_inset + + +\end_layout + +\end_inset + +. +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $f:\Omega\subseteq E\rightarrow F$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + +, también es continua en +\begin_inset Formula $a$ +\end_inset + +. +\begin_inset Note Comment +status open + +\begin_layout Plain Layout + +\series bold +Demostración: +\series default + +\begin_inset Formula $f$ +\end_inset + + es continua en +\begin_inset Formula $a$ +\end_inset + + si y sólo si +\begin_inset Formula $\lim_{x\rightarrow a}f(x)=f(a)$ +\end_inset + +, si y sólo si +\begin_inset Formula $\lim_{h\rightarrow0}f(a+h)-f(a)=0$ +\end_inset + +. + Pero si +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=0$ +\end_inset + +, multiplicando por +\begin_inset Formula $\Vert h\Vert$ +\end_inset + +, que tiende a 0, tenemos +\begin_inset Formula $\lim_{h\rightarrow0}f(a+h)-f(a)-L(h)=0$ +\end_inset + +, y como +\begin_inset Formula $L(h)$ +\end_inset + + tiende a 0 nos queda la expresión de arriba. +\end_layout + +\end_inset + + +\end_layout + +\begin_layout Standard +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + + ( +\begin_inset Formula $\Omega$ +\end_inset + + abierto) si para todo +\begin_inset Formula $P\in\Omega$ +\end_inset + + existen todas las derivadas parciales +\begin_inset Formula $\frac{\partial f_{i}}{\partial x_{j}}(P)$ +\end_inset + + y son continuas en +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Podemos suponer +\begin_inset Formula $n=1$ +\end_inset + +, pues de lo contrario basta probar que cada +\begin_inset Formula $f_{i}$ +\end_inset + + es diferenciable en +\begin_inset Formula $a$ +\end_inset + +. + Se trata pues de probar que +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}}{\Vert h\Vert}=0$ +\end_inset + +, lo que ocurre si y sólo si +\begin_inset Formula +\begin{eqnarray*} +0 & = & \lim_{h\rightarrow0}\frac{|f(a+h)-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}|}{\Vert h\Vert}=\lim_{h\rightarrow0}\frac{f(a+\sum_{i=1}^{m}h_{i}\vec{e}_{i})-f(a)-\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a)h_{i}}{\Vert h\Vert}\\ + & = & \lim_{h\rightarrow0}\frac{\left|\sum_{i=1}^{m}\left(f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right)\right|}{\Vert h\Vert} +\end{eqnarray*} + +\end_inset + +El último sumatorio con sus dos primeros elementos forma una +\series bold +suma telescópica +\series default +: todos los elementos se anulan salvo el primero y el último. + Sabemos que cada +\begin_inset Formula $a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i}$ +\end_inset + + está en el dominio de +\begin_inset Formula $f$ +\end_inset + + porque +\begin_inset Formula $\Omega$ +\end_inset + + es abierto y +\begin_inset Formula $h$ +\end_inset + + se supone lo suficientemente pequeño. + Ahora llamamos +\begin_inset Formula $\varphi_{i}(t):=f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ +\end_inset + +, con lo que +\begin_inset Formula $\varphi'_{i}(t)=\frac{\partial f}{\partial x_{i}}(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$ +\end_inset + +, y +\begin_inset Formula $\Delta_{i}:=\varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$ +\end_inset + + para algún +\begin_inset Formula $\xi_{i}$ +\end_inset + + entre 0 y +\begin_inset Formula $h_{i}$ +\end_inset + +, que tiende a 0. + Sustituyendo nos queda que lo anterior es igual a +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{\left|\sum_{i=1}^{m}\varphi'_{i}(\xi_{i})h_{i}-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right|}{\Vert h\Vert} +\] + +\end_inset + +Entonces, +\begin_inset Formula +\begin{eqnarray*} +0 & \leq & \frac{\left|\sum_{i=1}^{m}\varphi'_{i}(\xi_{i})h_{i}-\frac{\partial f}{\partial x_{i}}(a)h_{i}\right|}{\Vert h\Vert_{\infty}}\\ + & \leq & \left|\sum_{i=1}^{m}\frac{\partial f}{\partial x_{i}}(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+\xi_{i}\vec{e}_{i})-\frac{\partial f}{\partial x_{i}}(a)\right|\frac{\left|h_{i}\right|}{\Vert h\Vert_{\infty}}\rightarrow0 +\end{eqnarray*} + +\end_inset + +Que esta última expresión tienda a 0 se debe a que +\begin_inset Formula $0\leq\frac{|h_{i}|}{\Vert h\Vert_{\infty}}\leq1$ +\end_inset + + y a que las derivadas parciales de +\begin_inset Formula $f$ +\end_inset + + sean continuas y por tanto +\begin_inset Formula $\lim_{h\rightarrow0}\frac{\partial f}{\partial x_{i}}(a+\dots)=\frac{\partial f}{\partial x_{i}}(\lim_{h\rightarrow0}(a+\dots))$ +\end_inset + +. + Entonces, por la regla del sandwich, el límite inicial tiende a 0. + Hemos utilizado la norma +\begin_inset Formula $\Vert\cdot\Vert_{\infty}$ +\end_inset + +, pero como dada una norma +\begin_inset Formula $\Vert\cdot\Vert$ +\end_inset + + +\begin_inset Formula $\exists\alpha,\beta>0:\forall h,\alpha\leq\frac{\Vert h\Vert_{\infty}}{\Vert h\Vert}\leq\beta$ +\end_inset + +, la convergencia a 0 no depende de la norma que tomemos. +\end_layout + +\begin_layout Section +Regla de la cadena +\end_layout + +\begin_layout Standard +La +\series bold +regla de la cadena +\series default + afirma que si +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}$ +\end_inset + + y +\begin_inset Formula ${\cal V}\subseteq\mathbb{R}^{n}$ +\end_inset + + son abiertos, +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + y +\begin_inset Formula ${\cal U}\overset{f}{\rightarrow}{\cal V}\overset{g}{\rightarrow}\mathbb{R}^{k}$ +\end_inset + + son diferenciables en +\begin_inset Formula $a$ +\end_inset + + y en +\begin_inset Formula $f(a)$ +\end_inset + +, respectivamente, entonces +\begin_inset Formula $g\circ f$ +\end_inset + + es diferenciable en +\begin_inset Formula $a$ +\end_inset + + y +\begin_inset Formula $d(g\circ f)(a)=dg(f(a))\circ df(a)$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sean +\begin_inset Formula $L:=df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $S:=dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$ +\end_inset + +, tenemos que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}=\lim_{\eta\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}=0 +\] + +\end_inset + +y queremos ver que +\begin_inset Formula +\[ +\lim_{h\rightarrow0}\frac{g(f(a+h))-g(f(a))-S(L(h))}{\Vert h\Vert}=0 +\] + +\end_inset + +Si llamamos +\begin_inset Formula $\eta:=f(a+h)-f(a)$ +\end_inset + +, que tiende a 0 por la continuidad de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, entonces +\begin_inset Formula +\begin{multline*} +\lim_{h\rightarrow0}\frac{g(f(a+h))-g(f(a))-S(L(h))}{\Vert h\Vert}=\lim_{h\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert h\Vert}+\frac{S(\eta)-S(L(h))}{\Vert h\Vert}\\ +=\lim_{h\rightarrow0}\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}\frac{\Vert\eta\Vert}{\Vert h\Vert}-S\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right) +\end{multline*} + +\end_inset + +Como +\begin_inset Formula $S\left(\frac{f(a+h)-f(a)-L(h)}{\Vert h\Vert}\right)\rightarrow0$ +\end_inset + + usando la linealidad de +\begin_inset Formula $S$ +\end_inset + + y su continuidad (que se deduce de su linealidad), y como +\begin_inset Formula $\frac{g(f(a)+\eta)-g(f(a))-S(\eta)}{\Vert\eta\Vert}\rightarrow0$ +\end_inset + +, el límite tenderá a 0 si y sólo si +\begin_inset Formula $\frac{\Vert\eta\Vert}{\Vert h\Vert}$ +\end_inset + + es acotado, pero +\begin_inset Formula +\begin{eqnarray*} +0 & \leq & \frac{\Vert\eta\Vert}{\Vert h\Vert}=\frac{\Vert f(a+h)-f(a)-L(h)+L(h)\Vert}{\Vert h\Vert}\\ + & \leq & \frac{\Vert f(a+h)-f(a)-L(h)\Vert}{\Vert h\Vert}+\frac{\Vert L(h)\Vert}{\Vert h\Vert}\rightarrow0+\frac{\Vert L(h)\Vert}{\Vert h\Vert}\leq\frac{\Vert L\Vert\Vert h\Vert}{\Vert h\Vert}<+\infty +\end{eqnarray*} + +\end_inset + + por la continuidad de +\begin_inset Formula $L$ +\end_inset + +. +\end_layout + +\begin_layout Section +Incremento finito +\end_layout + +\begin_layout Standard +El +\series bold +teorema del incremento finito +\series default + afirma que, sean +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, +\begin_inset Formula $a,b\in\Omega$ +\end_inset + + con el segmento +\begin_inset Formula $[a,b]\subseteq\Omega$ +\end_inset + + y +\begin_inset Formula $L:\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + lineal, si +\begin_inset Formula $\Vert df(x)\Vert\leq M$ +\end_inset + + para todo +\begin_inset Formula $x\in[a,b]$ +\end_inset + + se tiene +\begin_inset Formula $\Vert f(b)-f(a)\Vert\leq M\Vert b-a\Vert$ +\end_inset + +. +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Fijado +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, sabemos que para +\begin_inset Formula $x\in[a,b]$ +\end_inset + +, +\begin_inset Formula $\lim_{h\rightarrow0}\frac{f(x+h)-f(x)-df(x)(h)}{\Vert h\Vert}=0$ +\end_inset + + y por tanto existe +\begin_inset Formula $\delta_{x}>0$ +\end_inset + + tal que para +\begin_inset Formula $\Vert h\Vert<\delta_{x}$ +\end_inset + + se tiene +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)-df(x)(h)\Vert<\varepsilon\Vert h\Vert +\] + +\end_inset + +con lo que +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)\Vert-\Vert df(x)(h)\Vert\leq\Vert f(x+h)-f(x)-df(x)(h)\Vert<\varepsilon\Vert h\Vert +\] + +\end_inset + + y por tanto +\begin_inset Formula +\[ +\Vert f(x+h)-f(x)\Vert<\varepsilon\Vert h\Vert+\Vert df(x)(h)\Vert\leq\varepsilon\Vert h\Vert+\Vert df(x)\Vert\Vert h\Vert\leq(\varepsilon+M)\Vert h\Vert +\] + +\end_inset + +Esta desigualdad depende de +\begin_inset Formula $\delta_{x}$ +\end_inset + + y por tanto de +\begin_inset Formula $x$ +\end_inset + +. + Sea entonces +\begin_inset Formula $\{B(x,\frac{\delta_{x}}{2})\}_{x\in[a,b]}$ +\end_inset + + un re +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +cu +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +bri +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +mien +\begin_inset ERT +status open + +\begin_layout Plain Layout + + +\backslash +- +\end_layout + +\end_inset + +to por abiertos de +\begin_inset Formula $[a,b]$ +\end_inset + + y +\begin_inset Formula $\{B_{i}\}_{i=1}^{k}:=\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$ +\end_inset + + un subrecubrimiento finito del que suponemos que no podemos quitar ninguna + bola. + Ahora llamamos +\begin_inset Formula $x_{0}:=a$ +\end_inset + + y +\begin_inset Formula $x_{k+1}:=b$ +\end_inset + + y suponemos +\begin_inset Formula $a=x_{0}<x_{1}<\dots<x_{k}<x_{k+1}=b$ +\end_inset + +. + Por la desigualdad anterior, para +\begin_inset Formula $x,y\in[a,b]$ +\end_inset + + con +\begin_inset Formula $\Vert y-x\Vert<\delta_{x}$ +\end_inset + + o +\begin_inset Formula $\Vert x-y\Vert<\delta_{y}$ +\end_inset + +, +\begin_inset Formula $\Vert f(y)-f(x)\Vert\leq(M+\varepsilon)\Vert x-y\Vert$ +\end_inset + +. + El segmento +\begin_inset Formula $[x_{i},x_{i+1}]$ +\end_inset + + queda cubierto por +\begin_inset Formula $B_{i}$ +\end_inset + + y +\begin_inset Formula $B_{i+1}$ +\end_inset + +, pues si hiciera falta además +\begin_inset Formula $B_{j}$ +\end_inset + + con +\begin_inset Formula $j\neq i,i+1$ +\end_inset + + para cubrirlo sería +\begin_inset Formula $x_{j}<x_{i}$ +\end_inset + + y entonces +\begin_inset Formula $B_{i}\subseteq B_{j}$ +\end_inset + + o +\begin_inset Formula $x_{j}>x_{i+1}$ +\end_inset + + y entonces +\begin_inset Formula $B_{i+1}\subseteq B_{j}$ +\end_inset + +, pero entonces podríamos quitar una bola del recubrimiento +\begin_inset Formula $\#$ +\end_inset + +. + Por tanto +\begin_inset Formula $\Vert x_{i+1}-x_{i}\Vert<\frac{\delta_{x_{i}}}{2}+\frac{\delta_{x_{i+1}}}{2}\leq\max\{\delta_{x_{i}},\delta_{x_{i+1}}\}$ +\end_inset + +. + Finalmente tenemos que +\begin_inset Formula $\Vert f(b)-f(a)\Vert=\Vert f(x_{k+1})-f(x_{k})+\dots+f(x_{1})-f(x_{0})\Vert\leq\sum_{i=0}^{k}\Vert f(x_{i+1})-f(x_{i})\Vert\leq\sum_{i=0}^{k}\Vert x_{i+1}-x_{i}\Vert(M+\varepsilon)$ +\end_inset + + y, como todos los +\begin_inset Formula $x_{i+1}-x_{i}$ +\end_inset + + tienen la forma +\begin_inset Formula $\lambda(b-a)$ +\end_inset + + con +\begin_inset Formula $\lambda>0$ +\end_inset + +, entonces +\begin_inset Formula $\sum_{i=0}^{k}\Vert x_{i+1}-x_{i}\Vert(M+\varepsilon)=\Vert b-a\Vert(M+\varepsilon)$ +\end_inset + +. + Como esto se da para todo +\begin_inset Formula $\varepsilon>0$ +\end_inset + +, el resultado queda probado. +\end_layout + +\end_body +\end_document diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx new file mode 100644 index 0000000..776351a --- /dev/null +++ b/fvv1/n3.lyx @@ -0,0 +1,1046 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es +\series bold +dos veces diferenciable +\series default + o +\series bold +de clase +\series default + +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + + en +\begin_inset Formula $a\in\Omega$ +\end_inset + + si +\begin_inset Formula $f$ +\end_inset + + es diferenciable en +\begin_inset Formula ${\cal U}\in{\cal E}(a)$ +\end_inset + + y +\begin_inset Formula $df:{\cal U}\rightarrow{\cal L}(\mathbb{R}^{m},\mathbb{R}^{n})\equiv M_{n\times m}(\mathbb{R})\equiv\mathbb{R}^{nm}$ +\end_inset + + (la aplicación que a cada elemento de +\begin_inset Formula ${\cal U}$ +\end_inset + + le asigna un vector en +\begin_inset Formula $\mathbb{R}^{nm}$ +\end_inset + + que contiene, en algún orden, los elementos de la matriz asociada a la + diferencial del elemento) es diferenciable en +\begin_inset Formula $a$ +\end_inset + +. + Por inducción se define el ser +\begin_inset Formula $n$ +\end_inset + + veces diferenciable o de clase +\begin_inset Formula ${\cal C}^{n}$ +\end_inset + +, y el ser infinitamente diferenciable o de clase +\begin_inset Formula ${\cal C}^{\infty}$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Denotamos la derivada parcial +\begin_inset Formula $k$ +\end_inset + +-ésima de la derivada parcial +\begin_inset Formula $j$ +\end_inset + +-ésima de la +\begin_inset Formula $i$ +\end_inset + +-ésima coordenada de +\begin_inset Formula $f$ +\end_inset + +, o la +\begin_inset Formula $i$ +\end_inset + +-ésima coordenada de la doble derivada parcial respecto a +\begin_inset Formula $x_{j}$ +\end_inset + + y +\begin_inset Formula $x_{k}$ +\end_inset + +, como +\begin_inset Formula $\frac{\partial^{2}f_{i}}{\partial x_{j}\partial x_{k}}$ +\end_inset + +, y si +\begin_inset Formula $j=k$ +\end_inset + +, también escribimos +\begin_inset Formula $\frac{\partial^{2}f_{i}}{\partial x_{j}^{2}}$ +\end_inset + +. + Si +\begin_inset Formula $f$ +\end_inset + + tiene derivadas parciales segundas +\begin_inset Formula $\frac{\partial f_{i}}{\partial x_{k}\partial x_{j}}$ +\end_inset + + todas continuas en +\begin_inset Formula $a$ +\end_inset + + entonces +\begin_inset Formula $f$ +\end_inset + + es dos veces diferenciable en +\begin_inset Formula $a$ +\end_inset + +. +\end_layout + +\begin_layout Section +Matriz hessiana +\end_layout + +\begin_layout Standard +Del mismo modo que podemos pensar en la diferencial de una función diferenciable + como +\begin_inset Formula $df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + dada por +\begin_inset Formula $\vec{u}\mapsto d_{\vec{u}}f(a)$ +\end_inset + +, llamamos +\series bold +diferencial segunda +\series default + de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + a la aplicación +\begin_inset Formula $d^{2}f(a):\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$ +\end_inset + + con +\begin_inset Formula $(\vec{u},\vec{v})\mapsto d_{\vec{v}}d_{\vec{u}}f(a)$ +\end_inset + +, y vemos que esta es una aplicación bilineal. +\end_layout + +\begin_layout Standard +La matriz de +\begin_inset Formula $d^{2}f(a):\mathbb{R}^{m}\times\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + +, dada por +\begin_inset Formula +\[ +\left(\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}\right)_{ij} +\] + +\end_inset + + se denomina +\series bold +matriz hessiana +\series default +. + Así, si +\begin_inset Formula $M$ +\end_inset + + es la matriz hessiana de +\begin_inset Formula $f$ +\end_inset + +, entonces +\begin_inset Formula +\[ +d^{2}f(a)(\vec{u},\vec{v})=\left(\begin{array}{ccc} +- & \vec{u} & -\end{array}\right)M\left(\begin{array}{c} +|\\ +\vec{v}\\ +| +\end{array}\right) +\] + +\end_inset + + +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{2}\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $a=(x_{0},y_{0})\in\Omega$ +\end_inset + +, si +\begin_inset Formula $\frac{\partial^{2}f}{\partial x\partial y}$ +\end_inset + + y +\begin_inset Formula $\frac{\partial^{2}f}{\partial y\partial x}$ +\end_inset + + están definidas en +\begin_inset Formula $\Omega$ +\end_inset + + y son continuas en +\begin_inset Formula $a$ +\end_inset + +, entonces su valor en +\begin_inset Formula $a$ +\end_inset + + coincide. + Esto significa que la matriz Hessiana es simétrica. + +\series bold +Demostración: +\series default + Como +\begin_inset Formula $\Omega$ +\end_inset + + es abierto, existe +\begin_inset Formula $\varepsilon$ +\end_inset + + tal que +\begin_inset Formula $B_{\infty}(a,\varepsilon)=(x_{0}-\varepsilon,x_{0}+\varepsilon)\times(y_{0}-\varepsilon,y_{0}+\varepsilon)\subseteq\Omega$ +\end_inset + +. + Fijamos +\begin_inset Formula $t\in(x_{0}-\varepsilon,y_{0}+\varepsilon)$ +\end_inset + + y +\begin_inset Formula $s\in(y_{0}-\varepsilon,y_{0}+\varepsilon)$ +\end_inset + +, y consideramos +\begin_inset Formula $\Delta_{t,s}:=f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$ +\end_inset + +. + Si ahora llamamos +\begin_inset Formula $F_{\overline{s}}(\overline{t}):=f(\overline{t},\overline{s})-f(\overline{t},y_{0})$ +\end_inset + +, vemos que +\begin_inset Formula $F_{\overline{s}}(\overline{t})$ +\end_inset + + es derivable con +\begin_inset Formula $F'_{\overline{s}}(\overline{t})=\frac{\partial f}{\partial x}(\overline{t},\overline{s})-\frac{\partial f}{\partial x}(\overline{t},y_{0})$ +\end_inset + + y que entonces +\begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s}):=\frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$ +\end_inset + +. + Permutando los papeles de las dos coordenadas (definiendo +\begin_inset Formula $\sigma_{\overline{t}}(\overline{s}):=f(\overline{t},\overline{s})-f(x,\overline{s})$ +\end_inset + +) obtenemos que +\begin_inset Formula $\Delta_{t,s}=\sigma_{\overline{t}}(\overline{s})-\sigma_{\overline{t}}(y_{0})=\frac{\partial^{2}f}{\partial y\partial x}(\hat{\xi}_{t,s},\hat{\eta}_{t,s})(s-y_{0})(t-x_{0})$ +\end_inset + +. + Haciendo ahora tender +\begin_inset Formula $(t,s)$ +\end_inset + + a +\begin_inset Formula $(x_{0},y_{0})$ +\end_inset + +, por la regla del sandwich +\begin_inset Formula $(\xi_{t,s},\eta_{ts})$ +\end_inset + + y +\begin_inset Formula $(\hat{\xi}_{t,s},\hat{\eta}_{t,s})$ +\end_inset + + también tienden a +\begin_inset Formula $(x_{0},y_{0})$ +\end_inset + +, y aplicando la continuidad de las derivadas parciales dobles en +\begin_inset Formula $a$ +\end_inset + +, nos queda finalmente que +\begin_inset Formula $\frac{\partial^{2}f}{\partial x\partial y}(x_{0},y_{0})=\frac{\partial^{2}f}{\partial y\partial x}(x_{0},y_{0})$ +\end_inset + +. +\end_layout + +\begin_layout Section +Desarrollos de Taylor +\end_layout + +\begin_layout Standard +Despejando de la definición de diferencial, nos queda que +\begin_inset Formula $f(a+h)=f(a)+df(a)(h)+o(\Vert h\Vert)$ +\end_inset + +, lo que podemos interpretar como una aproximación de +\begin_inset Formula $f(x)$ +\end_inset + + cerca de +\begin_inset Formula $a$ +\end_inset + + por un polinomio de grado 1. + Como +\series bold +teorema +\series default +, si +\begin_inset Formula $f:\Omega\subseteq\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + + es dos veces diferenciable en +\begin_inset Formula $a\in\Omega$ +\end_inset + + entonces +\begin_inset Formula $f(a+h)=f(a)+df(a)(h)+\frac{1}{2}d^{2}f(a)(h,h)+o(\Vert h\Vert^{2})$ +\end_inset + +. + +\end_layout + +\begin_layout Standard + +\series bold +Demostración: +\series default + Sea +\begin_inset Formula $R(h):=f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$ +\end_inset + +, y hemos de ver que +\begin_inset Formula $\lim_{h\rightarrow0}\frac{R(h)}{\Vert h\Vert^{2}}=0$ +\end_inset + +. + Como todas las normas en +\begin_inset Formula $\mathbb{R}^{m}$ +\end_inset + + son equivalentes, elegimos +\begin_inset Formula $\Vert\cdot\Vert_{\infty}$ +\end_inset + +. + Usamos el teorema del incremento finito, que afirma que si +\begin_inset Formula $R$ +\end_inset + + es diferenciable y +\begin_inset Formula $\Vert dR(\xi)\Vert\leq M\forall\xi\in[0,h]$ +\end_inset + + entonces +\begin_inset Formula $\Vert R(h)-R(0)\Vert\leq M\cdot\Vert h-0\Vert$ +\end_inset + +. + +\begin_inset Formula $R$ +\end_inset + + es diferenciable al ser la suma de +\begin_inset Formula $f(c+h)$ +\end_inset + + y un polinomio de grado máximo 2. + Para estimar +\begin_inset Formula $\Vert dR\Vert$ +\end_inset + + vemos que +\begin_inset Formula $R(a)=f(a+h)-f(a)-\sum_{i}\frac{\partial f}{\partial x_{i}}(a)h_{i}-\frac{1}{2}\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)h_{i}h_{j}$ +\end_inset + +, y usando la +\begin_inset Formula $\delta$ +\end_inset + + de Kronecker, +\begin_inset Formula +\[ +\frac{\partial}{\partial x_{k}}\frac{1}{2}\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)h_{i}h_{j}=\frac{1}{2}\sum_{i,j}\left(\frac{\partial f}{\partial x_{i}x_{j}}(a)\delta_{ik}+\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)\delta_{jk}\right)=\frac{1}{2}\cdot2d\left(\frac{\partial f}{\partial x_{k}}\right)(a)(h) +\] + +\end_inset + + Por tanto +\begin_inset Formula +\[ +\frac{\partial R}{\partial x_{k}}=\frac{\partial f}{\partial x_{k}}(a+h)-0-\frac{\partial f}{\partial x_{k}}(a)-d\left(\frac{\partial f}{\partial x_{k}}\right)(a)(h)=:\psi_{k}(h)\Vert h\Vert +\] + +\end_inset + +donde +\begin_inset Formula $\lim_{h\rightarrow0}\psi(h)=0$ +\end_inset + +. + Como +\begin_inset Formula $\frac{\partial R}{\partial x_{k}}$ +\end_inset + + es continua, definiendo el compacto +\begin_inset Formula $[0,h]$ +\end_inset + + como +\family roman +\series medium +\shape up +\size normal +\emph off +\bar no +\strikeout off +\xout off +\uuline off +\uwave off +\noun off +\color none + +\begin_inset Formula $\{th\}_{t\in[0,1]}$ +\end_inset + + +\family default +\series default +\shape default +\size default +\emph default +\bar default +\strikeout default +\xout default +\uuline default +\uwave default +\noun default +\color inherit + existe un punto +\begin_inset Formula $t_{k,h}h\in[0,h]$ +\end_inset + + tal que +\begin_inset Formula +\[ +\frac{\partial R}{\partial x_{k}}(t_{k,h}h)=\max\left\{ \frac{\partial R}{\partial x_{k}}(\xi)\right\} _{\xi\in[0,h]} +\] + +\end_inset + +Por esto, y como +\begin_inset Formula $dR(\xi)\equiv\left(\frac{\partial R}{\partial x_{1}}(\xi),\dots,\frac{\partial R}{\partial x_{m}}(\xi)\right)$ +\end_inset + +, existe +\begin_inset Formula $C$ +\end_inset + + tal que +\begin_inset Formula +\[ +\Vert dR(\xi)\Vert\leq C\cdot\Vert dR(a)\Vert_{\infty}=C\cdot\max\left\{ \left|\frac{\partial R}{\partial x_{k}}(a)\right|\right\} _{k=1}^{n} +\] + +\end_inset + +para +\begin_inset Formula $\xi\in[0,h]$ +\end_inset + +, y por el teorema del incremento finito, si +\begin_inset Formula $p$ +\end_inset + + es tal que +\begin_inset Formula +\[ +\left|\frac{\partial R}{\partial x_{p}}(a)\right|=\max\left\{ \left|\frac{\partial R}{\partial x_{k}}(a)\right|\right\} _{k=1}^{n} +\] + +\end_inset + +tenemos +\begin_inset Formula +\[ +\Vert R(h)\Vert=\Vert R(h)-R(0)\Vert\leq C\left|\frac{\partial R}{\partial x_{p}}(t_{p,h})\right|\Vert h\Vert=C\psi_{p}(t_{p,h}h)\Vert h\Vert\Vert h\Vert=C\psi_{p}(t_{p,h}h)\Vert h\Vert^{2} +\] + +\end_inset + + y entonces +\begin_inset Formula $\frac{|R(h)|}{\Vert h\Vert^{2}}\leq C\psi_{p}(t_{p,h}h)\rightarrow0$ +\end_inset + +, lo que prueba el teorema. +\end_layout + +\begin_layout Section +Extremos relativos +\end_layout + +\begin_layout Standard +Si +\begin_inset Formula $V$ +\end_inset + + es un +\begin_inset Formula $K$ +\end_inset + +-espacio vectorial con +\begin_inset Formula $k:=\dim_{K}(V)<+\infty$ +\end_inset + + y +\begin_inset Formula $\sigma:V\times V\rightarrow\mathbb{R}$ +\end_inset + + una aplicación bilineal, existe +\begin_inset Formula $A=(a_{ij})\in{\cal M}_{k}(K)$ +\end_inset + + asociado a +\begin_inset Formula $\sigma$ +\end_inset + + y podemos definir +\begin_inset Formula +\[ +\Delta_{1}=\left|a_{11}\right|,\Delta_{2}=\left|\begin{array}{cc} +a_{11} & a_{12}\\ +a_{21} & a_{22} +\end{array}\right|,\dots,\Delta_{k}=\left|\begin{array}{ccc} +a_{11} & \cdots & a_{1k}\\ +\vdots & \ddots & \vdots\\ +a_{k1} & \cdots & a_{kk} +\end{array}\right| +\] + +\end_inset + +Entonces un +\series bold +teorema +\series default + de álgebra nos dice que +\begin_inset Formula $\sigma$ +\end_inset + + es: +\end_layout + +\begin_layout Enumerate +Semidefinida positiva si y sólo si +\begin_inset Formula $\Delta_{i}\geq0\forall i$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Semidefinida negativa si y sólo si +\begin_inset Formula $\Delta_{i}(-1)^{i}\geq0\forall i$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Definida positiva si y sólo si +\begin_inset Formula $\Delta_{i}>0\forall i$ +\end_inset + +. +\end_layout + +\begin_layout Enumerate +Definida negativa si y sólo si +\begin_inset Formula $\Delta_{i}(-1)^{i}>0\forall i$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Como +\series bold +teorema +\series default +, sea +\begin_inset Formula $\Omega\subseteq\mathbb{R}^{m}$ +\end_inset + + abierto, +\begin_inset Formula $f:\Omega\rightarrow\mathbb{R}$ +\end_inset + + y +\begin_inset Formula $a\in\Omega$ +\end_inset + +, +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + alcanza en +\begin_inset Formula $a$ +\end_inset + + un extremo relativo entonces +\begin_inset Formula $df(a)=0$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Podemos suponer que alcanza un máximo. + Entonces +\begin_inset Formula $\exists{\cal U}\in{\cal E}(a):f(x)\leq f(a)\forall x\in{\cal U}$ +\end_inset + +, luego si para +\begin_inset Formula $i\in\{1,\dots,m\}$ +\end_inset + + definimos +\begin_inset Formula $\varphi_{i}(t):=f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$ +\end_inset + +, fijado +\begin_inset Formula $i$ +\end_inset + +, +\begin_inset Formula $\exists\varepsilon>0:\forall t\in(a-\varepsilon,a+\varepsilon),\varphi_{i}(t)\leq\varphi_{i}(a_{i})$ +\end_inset + + y +\begin_inset Formula $\frac{\partial f}{\partial x_{i}}(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})=\varphi'(t)$ +\end_inset + +, luego +\begin_inset Formula $\frac{\partial f}{\partial x_{i}}(a)=\varphi'(a_{i})=0$ +\end_inset + + y +\begin_inset Formula +\[ +df(a)=\left(\begin{array}{ccc} +\frac{\partial f}{\partial x_{1}}(a) & \cdots & \frac{\partial f}{\partial x_{m}}(a)\end{array}\right)=0 +\] + +\end_inset + + +\end_layout + +\begin_layout Enumerate +Si +\begin_inset Formula $f$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + + y +\begin_inset Formula $df(a)=0$ +\end_inset + +, entonces +\begin_inset Formula +\begin{eqnarray*} +d^{2}f(a)\text{ definida positiva} & \implies & f\text{ tiene un mínimo estricto en }a\implies\\ +\implies f\text{ tiene un mínimo en }a & \implies & d^{2}f(a)\text{ semidefinida positiva} +\end{eqnarray*} + +\end_inset + + +\end_layout + +\begin_deeper +\begin_layout Description +\begin_inset Formula $1\implies2]$ +\end_inset + + Consideremos el desarrollo de Taylor de +\begin_inset Formula $f$ +\end_inset + + de orden 2 en +\begin_inset Formula $a$ +\end_inset + +, que como +\begin_inset Formula $df(a)=0$ +\end_inset + +, queda como +\begin_inset Formula +\begin{eqnarray*} +f(x) & = & f(a)+\frac{1}{2}d^{2}f(a)(x-a,x-a)+o(\Vert x-a\Vert^{2})\\ + & = & f(a)+\frac{1}{2}\Vert x-a\Vert^{2}d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)+o(\Vert x-a\Vert^{2})\\ + & = & f(a)+\frac{1}{2}\Vert x-a\Vert^{2}\left(d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)+\frac{2o(\Vert x-a\Vert^{2})}{\Vert x-a\Vert^{2}}\right) +\end{eqnarray*} + +\end_inset + +suponiendo +\begin_inset Formula $x\neq a$ +\end_inset + +. + Pero +\begin_inset Formula $\frac{x-a}{\Vert x-a\Vert}\in\{y\in\mathbb{R}^{m}:\Vert y\Vert=1\}=:K$ +\end_inset + +, que es compacto por ser cerrado y acotado, y +\begin_inset Formula $\Phi:\mathbb{R}^{m}\rightarrow\mathbb{R}$ +\end_inset + + dada por +\begin_inset Formula $\Phi(u):=d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$ +\end_inset + + es continua, luego +\begin_inset Formula $\Phi(K)=\left\{ d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)\right\} _{x\in\mathbb{R}^{m}}$ +\end_inset + + es compacto y, por ser además +\begin_inset Formula $d^{2}f(a)$ +\end_inset + + definida positiva, existe +\begin_inset Formula $M>0$ +\end_inset + + tal que +\begin_inset Formula $\Phi(K)\geq M$ +\end_inset + +. +\begin_inset Newline newline +\end_inset + +Como +\begin_inset Formula $\frac{2o(\Vert x-a\Vert^{2})}{\Vert x-a\Vert^{2}}\rightarrow0$ +\end_inset + + cuando +\begin_inset Formula $x\rightarrow a$ +\end_inset + +, existe +\begin_inset Formula ${\cal U}\in{\cal E}(a)$ +\end_inset + + tal que +\begin_inset Formula $\forall x\in{\cal U},\left|\frac{2o(\Vert x-a\Vert)^{2}}{\Vert x-a\Vert^{2}}\right|<M$ +\end_inset + +, luego si +\begin_inset Formula $x\in{\cal U}\backslash\{a\},d^{2}f(a)\left(\frac{x-a}{\Vert x-a\Vert},\frac{x-a}{\Vert x-a\Vert}\right)+\frac{2o(\Vert x-a\Vert^{2})}{\Vert x-a\Vert^{2}}>M-M=0$ +\end_inset + + y +\begin_inset Formula $f(x)>f(a)+\frac{1}{2}\Vert x-a\Vert^{2}\cdot0=f(a)$ +\end_inset + +. +\end_layout + +\begin_layout Description +\begin_inset Formula $2\implies3]$ +\end_inset + + Obvio. +\end_layout + +\begin_layout Description +\begin_inset Formula $3\implies4]$ +\end_inset + + Fijamos +\begin_inset Formula $u\in\mathbb{R}^{m}$ +\end_inset + + y definimos +\begin_inset Formula $\varphi(t):=a+tu$ +\end_inset + + como la función +\begin_inset Formula $\varphi:\mathbb{R}\rightarrow\mathbb{R}^{m}$ +\end_inset + + que parametriza la recta +\begin_inset Formula $a+<\vec{u}>$ +\end_inset + +. + Sea +\begin_inset Formula ${\cal U}\in{\cal E}(a)$ +\end_inset + + con +\begin_inset Formula $f(a)\leq f(x)\forall x\in{\cal U}$ +\end_inset + +, si restringimos +\begin_inset Formula $\varphi$ +\end_inset + + a +\begin_inset Formula $\varphi^{-1}({\cal U})$ +\end_inset + +, un entorno de 0 en +\begin_inset Formula $\mathbb{R}$ +\end_inset + +, entonces +\begin_inset Formula $f\circ\varphi$ +\end_inset + + alcanza un mínimo en 0, pues +\begin_inset Formula $(f\circ\varphi)(0)=f(\varphi(0))=f(a)\leq f(\varphi(t))\forall t\in\varphi^{-1}({\cal U})$ +\end_inset + +, y tenemos que +\begin_inset Formula $f\circ\varphi$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + + y semidefinida positiva. + Por la regla de la cadena, al ser +\begin_inset Formula $\varphi$ +\end_inset + + y +\begin_inset Formula $f$ +\end_inset + + diferenciables, +\begin_inset Formula +\begin{multline*} +d(f\circ\varphi)(t)=df(\varphi(t))\circ d\varphi(t)\equiv\\ +\equiv\left(\begin{array}{ccc} +\frac{\partial f}{\partial x_{1}}(a+tu) & \cdots & \frac{\partial f}{\partial x_{m}}(a+tu)\end{array}\right)\left(\begin{array}{c} +u_{1}\\ +\vdots\\ +u_{m} +\end{array}\right)=\sum_{i}\frac{\partial f}{\partial x_{i}}(a+tu)u_{i} +\end{multline*} + +\end_inset + +Entonces +\begin_inset Formula $d^{2}(f\circ\varphi)(t)\equiv\frac{d}{dt}\sum_{i}\frac{\partial f}{\partial x_{i}}(a+tu)u_{i}=\sum_{i}u_{i}\frac{d}{dt}\left(\frac{\partial f}{\partial x_{i}}(a+tu)\right)$ +\end_inset + +. + Como +\begin_inset Formula $\frac{\partial f}{\partial x_{i}}$ +\end_inset + + es diferenciable al ser +\begin_inset Formula $f$ +\end_inset + + de clase +\begin_inset Formula ${\cal C}^{2}$ +\end_inset + +, +\begin_inset Formula +\begin{multline*} +\frac{d}{dt}\left(\frac{\partial f}{\partial x_{i}}(a+tu)\right)=d\left(\frac{\partial f}{\partial x_{i}}\circ\varphi\right)(t)=d\frac{\partial f}{\partial x_{i}}(\varphi(t))\circ d\varphi(t)\equiv\\ +\equiv\left(\begin{array}{ccc} +\frac{\partial^{2}f}{\partial_{i}\partial_{1}}(a+tu) & \cdots & \frac{\partial^{2}f}{\partial_{i}\partial_{m}}(a+tu)\end{array}\right)\left(\begin{array}{c} +u_{1}\\ +\vdots\\ +u_{m} +\end{array}\right)=\sum_{j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(a+tu)u_{j} +\end{multline*} + +\end_inset + +Sustituyendo, +\begin_inset Formula $d^{2}(f\circ\varphi)(t)\equiv\sum_{i,j}\frac{\partial^{2}f}{\partial x_{i}\partial x_{j}}(a+tu)u_{i}u_{j}=d^{2}f(a+tu)(u,u)$ +\end_inset + +. + Pero al ser +\begin_inset Formula $f\circ\varphi$ +\end_inset + + una función real de una variable real dos veces derivable con su mínimo + en 0, sustituyendo +\begin_inset Formula $0\leq(f\circ\varphi)''(0)=d^{2}f(a)(u,u)$ +\end_inset + +, y como esto se cumple para todo +\begin_inset Formula $u\in\mathbb{R}^{m}$ +\end_inset + +, queda probado que +\begin_inset Formula $d^{2}f(a)$ +\end_inset + + es semidefinida positiva. +\end_layout + +\end_deeper +\end_body +\end_document diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx new file mode 100644 index 0000000..07fa28a --- /dev/null +++ b/fvv1/n4.lyx @@ -0,0 +1,592 @@ +#LyX 2.3 created this file. For more info see http://www.lyx.org/ +\lyxformat 544 +\begin_document +\begin_header +\save_transient_properties true +\origin unavailable +\textclass book +\use_default_options true +\maintain_unincluded_children false +\language spanish +\language_package default +\inputencoding auto +\fontencoding global +\font_roman "default" "default" +\font_sans "default" "default" +\font_typewriter "default" "default" +\font_math "auto" "auto" +\font_default_family default +\use_non_tex_fonts false +\font_sc false +\font_osf false +\font_sf_scale 100 100 +\font_tt_scale 100 100 +\use_microtype false +\use_dash_ligatures true +\graphics default +\default_output_format default +\output_sync 0 +\bibtex_command default +\index_command default +\paperfontsize default +\spacing single +\use_hyperref false +\papersize default +\use_geometry false +\use_package amsmath 1 +\use_package amssymb 1 +\use_package cancel 1 +\use_package esint 1 +\use_package mathdots 1 +\use_package mathtools 1 +\use_package mhchem 1 +\use_package stackrel 1 +\use_package stmaryrd 1 +\use_package undertilde 1 +\cite_engine basic +\cite_engine_type default +\biblio_style plain +\use_bibtopic false +\use_indices false +\paperorientation portrait +\suppress_date false +\justification true +\use_refstyle 1 +\use_minted 0 +\index Index +\shortcut idx +\color #008000 +\end_index +\secnumdepth 3 +\tocdepth 3 +\paragraph_separation indent +\paragraph_indentation default +\is_math_indent 0 +\math_numbering_side default +\quotes_style french +\dynamic_quotes 0 +\papercolumns 1 +\papersides 1 +\paperpagestyle default +\tracking_changes false +\output_changes false +\html_math_output 0 +\html_css_as_file 0 +\html_be_strict false +\end_header + +\begin_body + +\begin_layout Standard +Podemos describir una región de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + +: +\end_layout + +\begin_layout Enumerate +De forma +\series bold +implícita +\series default +, como el conjunto de puntos que cumplen +\begin_inset Formula $f(x)=0$ +\end_inset + + para cierta función +\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}^{k}$ +\end_inset + +, siendo +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{n}$ +\end_inset + + un abierto. + La región +\begin_inset Formula $A=\{(x_{1},\dots,x_{n})\in{\cal U}:f(x_{1},\dots,x_{n})=0\}$ +\end_inset + + está +\series bold +descrita implícitamente de forma +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular +\series default + si +\begin_inset Formula $f$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $\forall p\in A,\text{rg}(df(p))=k$ +\end_inset + + (el rango de la diferencial es +\begin_inset Formula $k$ +\end_inset + +). +\end_layout + +\begin_layout Enumerate +De forma +\series bold +paramétrica +\series default +, como la imagen de una función +\begin_inset Formula $\varphi:{\cal U}\rightarrow\mathbb{R}^{n}$ +\end_inset + +, siendo +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}$ +\end_inset + + un abierto. + La +\series bold +parametrización +\series default + es +\series bold + +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular +\series default + si +\begin_inset Formula $\varphi$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + y +\begin_inset Formula $\forall p\in{\cal U},\text{rg}(d\varphi(p))=m$ +\end_inset + +. +\end_layout + +\begin_layout Standard +El +\series bold +teorema de la función implícita +\series default + +\begin_inset Foot +status open + +\begin_layout Plain Layout +Esto corresponde a FVV3, pero lo estudiamos por su utilidad práctica. +\end_layout + +\end_inset + + afirma que, para +\begin_inset Formula $A\subseteq\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $p\in A$ +\end_inset + +, existe un +\begin_inset Formula ${\cal U}\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}\cap A$ +\end_inset + + admite una presentación implícita +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular si y sólo si existe +\begin_inset Formula ${\cal U}'\in{\cal E}(p)$ +\end_inset + + tal que +\begin_inset Formula ${\cal U}\cap A$ +\end_inset + + admite una parametrización +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +-regular. +\end_layout + +\begin_layout Standard +Sean pues +\begin_inset Formula ${\cal U}\subseteq\mathbb{R}^{m}\overset{\varphi}{\longrightarrow}{\cal V}\subseteq\mathbb{R}^{n}\overset{f}{\longrightarrow}{\cal W}\subseteq\mathbb{R}^{k}$ +\end_inset + + la parametrización y la forma implícita de +\begin_inset Formula $A$ +\end_inset + + y +\begin_inset Formula $q\in{\cal U}$ +\end_inset + + tal que +\begin_inset Formula $\varphi(q)=p\in{\cal V}$ +\end_inset + +, se tiene que +\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$ +\end_inset + +. + En efecto, como +\begin_inset Formula $f$ +\end_inset + + es constante en +\begin_inset Formula $A$ +\end_inset + + por ser +\begin_inset Formula $f(A)=\{0\}$ +\end_inset + +, +\begin_inset Formula $f\circ\varphi$ +\end_inset + + también lo es, luego +\begin_inset Formula $0=d(f\circ\varphi)(q)=df(p)\circ d\varphi(q)$ +\end_inset + + y entonces +\begin_inset Formula $\text{Im}(d\varphi(q))\subseteq\ker(df(p))$ +\end_inset + +, pero como ambos subespacios tienen la misma dirección +\begin_inset Note Note +status open + +\begin_layout Plain Layout +(¿por qué?) +\end_layout + +\end_inset + +, se tiene la igualdad. + Esto significa además que este espacio no depende de +\begin_inset Formula $\varphi$ +\end_inset + + o +\begin_inset Formula $f$ +\end_inset + +, y en esta situación llamamos +\series bold +espacio tangente +\series default + al compacto +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿por qué compacto? +\end_layout + +\end_inset + + +\begin_inset Formula $A$ +\end_inset + + en el punto +\begin_inset Formula $p$ +\end_inset + + al espacio afín que pasa por +\begin_inset Formula $p$ +\end_inset + + y tiene por dirección +\begin_inset Formula $\text{Im}(d\varphi(q))=\ker(df(p))$ +\end_inset + +. +\end_layout + +\begin_layout Standard +Llamamos +\series bold +gradiente +\series default + en +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + de una función +\begin_inset Formula $f:D\subseteq\mathbb{R}^{n}\rightarrow\mathbb{R}$ +\end_inset + + diferenciable en +\begin_inset Formula $a$ +\end_inset + + al vector +\begin_inset Formula $\nabla f(a):=\left(\frac{\partial f}{\partial x_{1}},\dots,\frac{\partial f}{\partial x_{n}}\right)\in\mathbb{R}^{n}$ +\end_inset + +, la matriz de la diferencial de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + expresada como vector. + Para encontrar los extremos relativos de una función +\begin_inset Formula $f:D\rightarrow\mathbb{R}^{n}$ +\end_inset + + sobre un subconjunto +\begin_inset Formula $D\subseteq\mathbb{R}^{n}$ +\end_inset + + no abierto: +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $D$ +\end_inset + + está dado en forma paramétrica como +\begin_inset Formula $\varphi({\cal U})$ +\end_inset + +, donde +\begin_inset Formula ${\cal U}$ +\end_inset + + es un abierto de +\begin_inset Formula $\mathbb{R}^{m}$ +\end_inset + + y +\begin_inset Formula $\varphi:{\cal {\cal U}}\rightarrow\mathbb{R}^{n}$ +\end_inset + + es diferenciable, buscamos los extremos relativos de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula ${\cal U}$ +\end_inset + +, teniendo en cuenta que +\begin_inset Formula $f\circ\varphi$ +\end_inset + + tiene máximo absoluto en +\begin_inset Formula $a$ +\end_inset + + si y sólo si +\begin_inset Formula $f$ +\end_inset + + tiene un máximo absoluto en +\begin_inset Formula $\varphi(a)$ +\end_inset + +. + Si además +\begin_inset Formula $\varphi$ +\end_inset + + es continua, un máximo relativo de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\varphi(a)$ +\end_inset + + implica uno de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + +, y si +\begin_inset Formula $\varphi:({\cal U},{\cal T}_{u}|_{{\cal U}})\rightarrow(\varphi({\cal U}),{\cal T}_{u}|_{\varphi({\cal U})})$ +\end_inset + + es abierta, un máximo relativo de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula $a$ +\end_inset + + es uno de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $\varphi(a)$ +\end_inset + +. +\end_layout + +\begin_layout Itemize +Si +\begin_inset Formula $D$ +\end_inset + + está dado en forma implícita como +\begin_inset Formula $\{x\in{\cal U}:g(x)=0\}$ +\end_inset + +, donde +\begin_inset Formula ${\cal U}$ +\end_inset + + es un abierto de +\begin_inset Formula $\mathbb{R}^{n}$ +\end_inset + + y +\begin_inset Formula $g:{\cal U}\rightarrow\mathbb{R}^{k}$ +\end_inset + + es de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + +, aplicamos el +\series bold +teorema de los multiplicadores de Lagrange +\series default +, que afirma que si +\begin_inset Formula $f:{\cal U}\rightarrow\mathbb{R}$ +\end_inset + + es diferenciable, alcanza en un punto +\begin_inset Formula $a\in{\cal U}$ +\end_inset + + un extremo relativo y +\begin_inset Formula $\text{rg}(dg(a))=k$ +\end_inset + +, entonces +\begin_inset Formula $\nabla f(a)\in\text{span}(\nabla g_{1}(a),\dots,\nabla g_{k}(a)):=<\nabla g_{1}(a),\dots,\nabla g_{k}(a)>$ +\end_inset + + (el espacio generado por los vectores). + +\series bold +Demostración: +\series default + Por el teorema de la función implícita, existen +\begin_inset Formula ${\cal V}\subseteq\mathbb{R}^{n-k}$ +\end_inset + + abierto, +\begin_inset Formula ${\cal W}\in{\cal E}(a)$ +\end_inset + + y +\begin_inset Formula $\varphi:{\cal V}\rightarrow{\cal W}$ +\end_inset + + de clase +\begin_inset Formula ${\cal C}^{1}$ +\end_inset + + con +\begin_inset Formula $\text{rg}(d\varphi(a))=n-k$ +\end_inset + + tales que +\begin_inset Formula $D\cap{\cal W}=\varphi({\cal V})$ +\end_inset + +, y si +\begin_inset Formula $a$ +\end_inset + + es extremo relativo de +\begin_inset Formula $f$ +\end_inset + + en +\begin_inset Formula $D$ +\end_inset + +, por la continuidad de +\begin_inset Formula $\varphi$ +\end_inset + +, el punto +\begin_inset Formula $b\in{\cal V}$ +\end_inset + + con +\begin_inset Formula $\varphi(b)=a$ +\end_inset + + es extremo relativo de +\begin_inset Formula $f\circ\varphi$ +\end_inset + + en +\begin_inset Formula ${\cal V}$ +\end_inset + +, luego +\begin_inset Formula $d(f\circ\varphi)(b)=0=df(a)\circ\varphi(b)$ +\end_inset + + y entonces +\begin_inset Formula $\text{Im}(d\varphi(b))=\ker(dg(a))=\ker(dg_{1}(a),\dots,dg_{k}(a))\subseteq\ker(df(a))$ +\end_inset + + y por tanto +\begin_inset Formula $\bigcap_{i=1}^{k}\ker(dg_{i}(a))\subseteq\ker(df(a))$ +\end_inset + +, que por un misterioso lema de álgebra equivale a que +\begin_inset Formula $df(a)\in\text{span}(dg_{1}(a),\dots,dg_{k}(a))$ +\end_inset + +. +\begin_inset Note Note +status open + +\begin_layout Plain Layout +¿Ñandé? +\end_layout + +\end_inset + + +\end_layout + +\end_body +\end_document |
