aboutsummaryrefslogtreecommitdiff
path: root/fvv1
diff options
context:
space:
mode:
authorJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
committerJuan Marin Noguera <juan@mnpi.eu>2022-12-04 22:49:17 +0100
commitc34b47089a133e58032fe4ea52f61efacaf5f548 (patch)
tree4242772e26a9e7b6f7e02b1d1e00dfbe68981345 /fvv1
parent214b20d1614b09cd5c18e111df0f0d392af2e721 (diff)
Oops
Diffstat (limited to 'fvv1')
-rw-r--r--fvv1/n1.lyx32
-rw-r--r--fvv1/n2.lyx16
-rw-r--r--fvv1/n3.lyx18
-rw-r--r--fvv1/n4.lyx4
4 files changed, 35 insertions, 35 deletions
diff --git a/fvv1/n1.lyx b/fvv1/n1.lyx
index e3422b2..8eede13 100644
--- a/fvv1/n1.lyx
+++ b/fvv1/n1.lyx
@@ -137,7 +137,7 @@ espacio normado
distancia asociada a la norma
\series default
a
-\begin_inset Formula $d(x,y):=\Vert x-y\Vert$
+\begin_inset Formula $d(x,y)\coloneqq \Vert x-y\Vert$
\end_inset
.
@@ -150,7 +150,7 @@ Ejemplos de normas en
\end_inset
son las dadas por
-\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{p}:=\sqrt[p]{\sum_{i=1}^{n}|x_{i}|^{p}}$
+\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{p}\coloneqq \sqrt[p]{\sum_{i=1}^{n}|x_{i}|^{p}}$
\end_inset
y
@@ -158,16 +158,16 @@ Ejemplos de normas en
\end_inset
-\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{\infty}:=\max\{|x_{i}|\}_{i=1}^{n}$
+\begin_inset Formula $\Vert(x_{1},\dots,x_{n})\Vert_{\infty}\coloneqq \max\{|x_{i}|\}_{i=1}^{n}$
\end_inset
.
Además,
-\begin_inset Formula $V:={\cal C}[a,b]:=\{f\mid [a,b]\rightarrow\mathbb{R}\text{ continua}\}$
+\begin_inset Formula $V\coloneqq {\cal C}[a,b]\coloneqq \{f\mid [a,b]\rightarrow\mathbb{R}\text{ continua}\}$
\end_inset
con
-\begin_inset Formula $\Vert f\Vert_{\infty}:=\sup\{|f(x)|\}_{x\in[a,b]}$
+\begin_inset Formula $\Vert f\Vert_{\infty}\coloneqq \sup\{|f(x)|\}_{x\in[a,b]}$
\end_inset
es un espacio normado.
@@ -274,7 +274,7 @@ Definimos la norma de una aplicación
\end_inset
como
-\begin_inset Formula $\Vert L\Vert:=\Vert L\Vert_{\Vert\cdot\Vert}^{\Vert\cdot\Vert'}:=\sup\{\Vert L(x)\Vert'\}_{x\in E,\Vert x\Vert\leq1}$
+\begin_inset Formula $\Vert L\Vert\coloneqq \Vert L\Vert_{\Vert\cdot\Vert}^{\Vert\cdot\Vert'}\coloneqq \sup\{\Vert L(x)\Vert'\}_{x\in E,\Vert x\Vert\leq1}$
\end_inset
, y tenemos como
@@ -377,7 +377,7 @@ Veamos primero que
\end_inset
, tomando
-\begin_inset Formula $\delta:=\frac{\varepsilon}{\Vert L\Vert+1}$
+\begin_inset Formula $\delta\coloneqq \frac{\varepsilon}{\Vert L\Vert+1}$
\end_inset
entonces
@@ -423,11 +423,11 @@ Dos normas
Demostración:
\series default
Sean
-\begin_inset Formula $L:=id_{E}:(E,\Vert\cdot\Vert)\rightarrow(E,\Vert\cdot\Vert')$
+\begin_inset Formula $L\coloneqq id_{E}:(E,\Vert\cdot\Vert)\rightarrow(E,\Vert\cdot\Vert')$
\end_inset
y
-\begin_inset Formula $L':=L^{-1}$
+\begin_inset Formula $L'\coloneqq L^{-1}$
\end_inset
, entonces
@@ -472,7 +472,7 @@ Si
\end_inset
, luego
-\begin_inset Formula $\Vert x\Vert'=\Vert L(x)\Vert'\leq\Vert L\Vert\Vert x\Vert\overset{\beta:=\Vert L\Vert}{=}\beta\Vert x\Vert$
+\begin_inset Formula $\Vert x\Vert'=\Vert L(x)\Vert'\leq\Vert L\Vert\Vert x\Vert\overset{\beta\coloneqq \Vert L\Vert}{=}\beta\Vert x\Vert$
\end_inset
.
@@ -644,7 +644,7 @@ Demostración:
\end_inset
y tomando
-\begin_inset Formula $\delta:=\varepsilon$
+\begin_inset Formula $\delta\coloneqq \varepsilon$
\end_inset
, si
@@ -706,7 +706,7 @@ teorema
, que es continua por ser composición de dos funciones continuas (la identidad
es continua por la otra cota y la demostración del teorema anterior), entonces
-\begin_inset Formula $S:=\{x\in\mathbb{R}^{n}\mid \Vert x\Vert_{1}=1\}$
+\begin_inset Formula $S\coloneqq \{x\in\mathbb{R}^{n}\mid \Vert x\Vert_{1}=1\}$
\end_inset
es cerrado dentro del compacto
@@ -719,7 +719,7 @@ teorema
es compacto y alcanza su máximo y su mínimo.
Sea ahora
-\begin_inset Formula $\mu:=\min\{\Vert x\Vert\}_{x\in S}>0$
+\begin_inset Formula $\mu\coloneqq \min\{\Vert x\Vert\}_{x\in S}>0$
\end_inset
(pues
@@ -1338,7 +1338,7 @@ Dadas
\end_inset
y existe
-\begin_inset Formula $l:=\lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$
+\begin_inset Formula $l\coloneqq \lim_{n}\frac{a_{n}}{b_{n}}\in\mathbb{R}\cup\{+\infty\}$
\end_inset
:
@@ -1403,7 +1403,7 @@ Criterio de la raíz:
\end_inset
y
-\begin_inset Formula $a:=\lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$
+\begin_inset Formula $a\coloneqq \lim_{n}\sqrt[n]{a_{n}}\in\mathbb{R}$
\end_inset
:
@@ -1449,7 +1449,7 @@ Criterio del cociente:
\end_inset
y
-\begin_inset Formula $a:=\lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$
+\begin_inset Formula $a\coloneqq \lim_{n}\frac{a_{n+1}}{a_{n}}\in\mathbb{R}$
\end_inset
.
diff --git a/fvv1/n2.lyx b/fvv1/n2.lyx
index 1b761e2..f9a9447 100644
--- a/fvv1/n2.lyx
+++ b/fvv1/n2.lyx
@@ -542,7 +542,7 @@ suma telescópica
se supone lo suficientemente pequeño.
Ahora llamamos
-\begin_inset Formula $\varphi_{i}(t):=f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$
+\begin_inset Formula $\varphi_{i}(t)\coloneqq f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1}+t\vec{e}_{i})$
\end_inset
, con lo que
@@ -550,7 +550,7 @@ suma telescópica
\end_inset
, y
-\begin_inset Formula $\Delta_{i}:=\varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$
+\begin_inset Formula $\Delta_{i}\coloneqq \varphi_{i}(h_{i})-\varphi_{i}(0)=f(a+h_{1}\vec{e}_{1}+\dots+h_{i}\vec{e}_{i})-f(a+h_{1}\vec{e}_{1}+\dots+h_{i-1}\vec{e}_{i-1})=\varphi'_{i}(\xi_{i})h_{i}$
\end_inset
para algún
@@ -662,11 +662,11 @@ regla de la cadena
Demostración:
\series default
Sean
-\begin_inset Formula $L:=df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$
+\begin_inset Formula $L\coloneqq df(a):\mathbb{R}^{m}\rightarrow\mathbb{R}^{n}$
\end_inset
y
-\begin_inset Formula $S:=dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$
+\begin_inset Formula $S\coloneqq dg(f(a)):\mathbb{R}^{n}\rightarrow\mathbb{R}^{k}$
\end_inset
, tenemos que
@@ -686,7 +686,7 @@ y queremos ver que
\end_inset
Si llamamos
-\begin_inset Formula $\eta:=f(a+h)-f(a)$
+\begin_inset Formula $\eta\coloneqq f(a+h)-f(a)$
\end_inset
, que tiende a 0 por la continuidad de
@@ -897,17 +897,17 @@ to por abiertos de
\end_inset
y
-\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\mid =\{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
+\begin_inset Formula $\{B_{i}\}_{i=1}^{k}\coloneqq \{B(x_{i},\frac{\delta_{x_{i}}}{2})\}_{i=1}^{k}$
\end_inset
un subrecubrimiento finito del que suponemos que no podemos quitar ninguna
bola.
Ahora llamamos
-\begin_inset Formula $x_{0}:=a$
+\begin_inset Formula $x_{0}\coloneqq a$
\end_inset
y
-\begin_inset Formula $x_{k+1}:=b$
+\begin_inset Formula $x_{k+1}\coloneqq b$
\end_inset
y suponemos
diff --git a/fvv1/n3.lyx b/fvv1/n3.lyx
index 91f5019..b6138cf 100644
--- a/fvv1/n3.lyx
+++ b/fvv1/n3.lyx
@@ -343,12 +343,12 @@ Demostración:
\end_inset
, y consideramos
-\begin_inset Formula $\Delta_{t,s}:=f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$
+\begin_inset Formula $\Delta_{t,s}\coloneqq f(t,s)-f(t,y_{0})-f(x_{0},s)+f(x_{0},y_{0})$
\end_inset
.
Si ahora llamamos
-\begin_inset Formula $F_{\overline{s}}(\overline{t}):=f(\overline{t},\overline{s})-f(\overline{t},y_{0})$
+\begin_inset Formula $F_{\overline{s}}(\overline{t})\coloneqq f(\overline{t},\overline{s})-f(\overline{t},y_{0})$
\end_inset
, vemos que
@@ -360,12 +360,12 @@ Demostración:
\end_inset
y que entonces
-\begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s}):=\frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$
+\begin_inset Formula $\Delta_{t,s}=F_{s}(t)-F_{s}(x_{0})=F'_{\overline{s}}(\xi_{t,s})(t-x_{0})=\left(\frac{\partial f}{\partial x}(\xi_{t,s},s)-\frac{\partial f}{\partial x}(\xi_{t,s},y_{0})\right)(t-x_{0})\overset{\Phi(\overline{s})\coloneqq \frac{\partial f}{\partial x}(\xi_{t,s},\overline{s})}{=}(\Phi(s)-\Phi(y_{0}))(t-x_{0})\overset{\Phi\text{ derivable por hipótesis}}{=}\Phi'(\eta_{t,s})(s-y_{0})(t-x_{0})=\frac{\partial^{2}f}{\partial x\partial y}(\xi_{t,s},\eta_{t,s})(s-y_{0})(t-x_{0})$
\end_inset
.
Permutando los papeles de las dos coordenadas (definiendo
-\begin_inset Formula $\sigma_{\overline{t}}(\overline{s}):=f(\overline{t},\overline{s})-f(x,\overline{s})$
+\begin_inset Formula $\sigma_{\overline{t}}(\overline{s})\coloneqq f(\overline{t},\overline{s})-f(x,\overline{s})$
\end_inset
) obtenemos que
@@ -448,7 +448,7 @@ teorema
Demostración:
\series default
Sea
-\begin_inset Formula $R(h):=f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$
+\begin_inset Formula $R(h)\coloneqq f(a+h)-f(a)-df(a)(h)-\frac{1}{2}d^{2}f(a)(h,h)$
\end_inset
, y hemos de ver que
@@ -631,7 +631,7 @@ Si
\end_inset
-espacio vectorial con
-\begin_inset Formula $k:=\dim_{K}(V)<+\infty$
+\begin_inset Formula $k\coloneqq \dim_{K}(V)<+\infty$
\end_inset
y
@@ -751,7 +751,7 @@ Podemos suponer que alcanza un máximo.
\end_inset
definimos
-\begin_inset Formula $\varphi_{i}(t):=f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$
+\begin_inset Formula $\varphi_{i}(t)\coloneqq f(a_{1},\dots,a_{i-1},t,a_{i+1},\dots,a_{m})$
\end_inset
, fijado
@@ -848,7 +848,7 @@ suponiendo
\end_inset
dada por
-\begin_inset Formula $\Phi(u):=d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$
+\begin_inset Formula $\Phi(u)\coloneqq d^{2}f(a)(u,u)=\sum_{i,j}\frac{\partial f}{\partial x_{i}\partial x_{j}}(a)u_{i}u_{j}$
\end_inset
es continua, luego
@@ -914,7 +914,7 @@ Como
\end_inset
y definimos
-\begin_inset Formula $\varphi(t):=a+tu$
+\begin_inset Formula $\varphi(t)\coloneqq a+tu$
\end_inset
como la función
diff --git a/fvv1/n4.lyx b/fvv1/n4.lyx
index f95baae..2edff4c 100644
--- a/fvv1/n4.lyx
+++ b/fvv1/n4.lyx
@@ -341,7 +341,7 @@ gradiente
\end_inset
al vector
-\begin_inset Formula $\nabla f(a):=\left(\frac{\partial f}{\partial x_{1}},\dots,\frac{\partial f}{\partial x_{n}}\right)\in\mathbb{R}^{n}$
+\begin_inset Formula $\nabla f(a)\coloneqq \left(\frac{\partial f}{\partial x_{1}},\dots,\frac{\partial f}{\partial x_{n}}\right)\in\mathbb{R}^{n}$
\end_inset
, la matriz de la diferencial de
@@ -495,7 +495,7 @@ teorema de los multiplicadores de Lagrange
\end_inset
, entonces
-\begin_inset Formula $\nabla f(a)\in\text{span}(\nabla g_{1}(a),\dots,\nabla g_{k}(a)):=<\nabla g_{1}(a),\dots,\nabla g_{k}(a)>$
+\begin_inset Formula $\nabla f(a)\in\text{span}(\nabla g_{1}(a),\dots,\nabla g_{k}(a))\coloneqq <\nabla g_{1}(a),\dots,\nabla g_{k}(a)>$
\end_inset
(el espacio generado por los vectores).